用户名: 密码: 验证码:
玉米株型、穗部性状QTL鉴定和不育系遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产是玉米育种的主要目标。研究表明种植密度的增加、株型的改善和穗部性状的优化是玉米产量提高的主要原因。因此,进行株型和穗部性状的遗传研究对玉米育种具有重要的意义。本研究构建了以农系928为遗传背景玉米导入系群体,利用导入系和DH系两种群体对株型和穗部性状进行QTL定位,并分析了2种密度处理下的株型和穗部性状的遗传基础。此外,还对选育的雄性不育系进行育性和胞质类型鉴定及遗传分析。主要结果如下:
     1.分别以4个自交系为供体亲本,农系928为受体亲本,通过4代回交和2-3代自交,结合SSR分子标记选择,构建了由161个导入系组成的玉米导入系群体。该群体共导入986个供体片段,每个导入系中含有2-13个导入片段,平均6.24个。导入片段长度在4.24cM~269.20cM,平均长度65.04 cM。导入系的背景回复率为84.25%~97.59%,平均92.64%。不同供体来源的导入系,导入片段的数目和长度存在一定的差异。不同染色体上,导入片段的数目和长度也各不相同。这些导入系为开展玉米QTL精细定位和功能基因组研究提供了材料。
     2.基于导入系群体连续2年的株型和穗部性状表型值,分别检测到30个株型性状QTL和18个穗部性状QTL。这些QTL分布于10条染色体上,单个QTL可解释的表型变异在7.00%~28.75%。控制不同性状的QTL定位在相邻或相同的染色体区域,在第3染色体umc1399-umc1307区间和第6染色体bnlg1538-umc159及umc1614-bnlg1154区间出现了3个QTL的富集区。
     3.在60000株/hm~2和90000株/hm~2两种密度处理下DH群体的株高、穗位高、节间数、平均节间长、茎粗和穗位系数6个株型相关性状均存在极显著差异,株高和穗位高均与穗高系数呈显著正相关,但穗位高与穗位系数的关系更为密切。检测到株型相关性状的27个加性QTL和4对上位性QTL,其中7个QTL与环境存在显著互作。只有7个株型性状的QTL在两种密度下同时被检测到。发现位于第1、8、9、10染色体上的6个重要染色体区段存在株型性状的环境钝感主效QTL(在2个以上环境中检测到,且贡献率大于10%)。
     4.两种密度下DH群体的穗长、穗粗、行粒数、秃尖长和粒宽存在显著差异,而穗行数、粒长、粒厚和百粒重差异不显著。检测到穗部性状的14个加性QTL和1对上位性QTL,其中3个QTL与环境存在显著互作。只有3个穗部性状QTL在两种密度下同时被检测到。发现位于第4、5染色体上的2个重要染色体区段存在穗部性状的环境钝感主效QTL。
     5.在自交系1261和农系928的回交后代中发现一个玉米雄性不育系—农系928cms-Q1261。该系雄穗无花药外露,花粉败育彻底,不育性状稳定。质不育基因来自自交系Q1261,为S型;核不育基因来自农系928,由1对隐性基因控制。小孢子从单核晚期开始自溶,成熟期完全降解。自交系郑58和PH6WC能保持其不育性。
The development of yield is the main objectives in maize breeding. Many studies have shown that the increased plant density, optimization of plant type and ear traits are the major contributor to maize yield improvement in China and elsewhere in the world. Therefore, the genetic dissection of plant type and ear traits is especially important in maize breeding. In the study, a set of introgression lines (ILs) were produced using the inbred line NongXi928 as recipient parents by means of marker-assisted backcrossing. Both ILs and DH lines were utilized to QTL analysis for plant type and ear traits. Furthermore, the genetic basis of plant type and ear traits were investigate under two different densities treatment. Meanwhile, a new cytoplasmic male sterile line discovered in the backcrossing population was indentified for type of male sterile, stage of microspore abortion and genetic mechanism. The major results are as follows:
     1. A series of 161 introgression lines were developed with NongXi928 as the recurrent parents and 4 elite inbred lines as donor, respectively through 4 cycles advanced backcross, 2-3 cycles self-cross and SSR-based marker-assisted selection. Genetic evaluation showed that 986 segments from the donor line were introgressed into NongXi928. The number of introgressed segment ranged from 2 to 13 with an average of 6.12 per lines. The average length of introgressive segment was 65.04 cM, varying from 4.24 to 269.20 cM. The length and the number of introgressed segment varied along with the different donor and different chromosomes. Recovery of the Nongxi928gnome ranged from 84.25% to 97.59% with an average of 92.64% in this ILs poplation. These ILs could be used into fine mapping of QTL and functional genomics researches in maize.
     2. Based on the phenotype of plant type and ear traits that were investigated in two years, 30 QTL for plant type related traits and 18 QTL for ear traits were detected in ILs population. Those QTL were mapped on 10 chromosomes and explained 7.07%–28.75% of the phenotypic variance. Some QTL for diverse traits were located in the same or adjacent chromosome region. Three QTL-rich regions were formed on chromosome 3 in the interval umc1399-umc1307, chromosome 6 in the interval bnlg1538-umc159 and umc1614-bnlg1154.
     3. Differences between density of 60,000 and 90,000 plants per hectare were significant for plant height (PH), ear height (EH), internode number (IN), average internode length (AIL), stalk diameter (SD) and ear height coefficient (EHC) in the DH population. Both PH and EH were positively significantly correlated with EHC, but EH had more influence on EHC than PH. Twenty-seven additive QTL and four pairs of QTL with epistatic effect were detected for the investigated traits, of which seven QTLs with significant environment interactions were indentified. Only seven QTL were detected simultaneously under both densities. Six important regions distributed on chromosome 1, 8, 9 and 10 were found to exist constitutive QTL (detected in more than two environments, with contribution rate more than 10%) for plant type related traits.
     4. The ear length, ear diameter, kernel number per row, length of bare tip and kernel width had significant differences, but kernel row number per ear, kernel length, kernel thickness and 100 Grain weigh had no differences under the two densities treatment in DH population. Fourteen additive QTL and one pair of QTL with epistatic effect were detected for ear traits, of which three QTL with significant environment interactions were indentified. Only three QTL were detected simultaneously under both densities. Two important regions distributed on chromosome 4 and 5 were found to exist constitutive QTLs for ear traits.
     5. A male sterility line ( NongXi928cms-Q1261) was discovered in the BC3F1 population obtained using Q1261 as the donor genotype and NongXi928 as the recipient genotype. The male sterility characteristic of NongXi928cms-Q1261 was stable, no anthers exposed on tassel and pollen aborted completely. The cytoplasmic male sterile gene, which was classified into S type of CMS, originated from Q1261, and its nuclear sterile gene originated from NongXi928, which was controlled by a pair of recessive genes. The microspores started degrading at the late stage of microspore and degenerated completely at the mature pollen stage. Such male Sterility of NongXi928cms-Q1261 can be maintained by Zheng58 and PH6WC.
引文
[1]王守才.我国玉米育种概况与发展趋势[A].全国农业技术推广服务中心.中国玉米科技论坛[C].北京:中国农业科技出版社, 2007. 32-45
    [2]戴景瑞,鄂立柱.我国玉米育种科技创新问题的几点思考[J].玉米科学, 2010, 18(1): 1-5.
    [3]张世煌,徐伟平,李明顺,等.玉米育种面临的机遇和挑战[J].玉米科学, 2008, 16(6): 1-5.
    [4]丰光,刘志芳,李妍妍,等.中国不同时期玉米单交种产量变化的研究[J].中国农业科学, 2010, 43(2): 277-285.
    [5] Duvick D N. Heterosis: Feeding people and protecting natural resources [A]. Coors C J, Pandey S. Genetics and Exploitation of Hetorosis in Crops[C]. Madison, WI, USA: CSSA, ASA. 1999: 19-29.
    [6] Helentjaris T, Slocum M, Wright S, et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms [J]. Theoretical and Aapplied Genetics, 1986, 72: 761-769.
    [7] Burr B, Burr F, Thompson K H., et al. Gene mapping with recombinant inbreds in maize [J]. Genetics, 1988, 118: 519-526.
    [8] Beavis W D and Grant D. A linkage map based on information from 4 F2 populations of Maize (Zea mays L.) [J]. Theoretical and Applied Genetics, 1991, 82:636-644.
    [9] Gardiner J M, Coe E H, Melia-Hancock S, et al. Development of a core RFLP map in maize using an immortalized F2 population. [J]. Genetics, 1993, 134: 917-930.
    [10] Chin E, Senior L, Shu H, et al. Maize simple repetitive DNA sequences: abundance and allele variation [J]. Genome, 1996, 39: 866-873.
    [11] Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize [J]. Genome, 1996, 39:277-287.
    [12] Natalya S, McMullen M D, Schultz L, et al. Development and mapping of SSR markers for maize [J]. Plant Molecular Biology, 2002, 48: 463-481.
    [13]杨俊品,荣廷昭,黄烈健,等.玉米分子遗传框架图谱构建[J].作物学报, 2004, 30(1): 82-87.
    [14]席章营,吴建宇.作物次级群体的研究进展[J].农业生物技术学报, 2006, 14(1): 128-134.
    [15]何风华.水稻QTL分析的研究进展[J].西北植物学报, 2004, 24(11): 2163-2169.
    [16]陈绍江,黎亮,李浩川.玉米单倍体育种技术[M].北京:中国农业大学出版社, 2009. 11
    [17] Hyne V, Kersey M J, Pike D J. QTL analysis: unreliability and bias in estimation procedures [J]. Molecular Breeding, 1995, 1: 273-282.
    [18] Soller M, Beckman J S. Marker-based mapping of quantitative traits loci using replicated progenies [J]. Theoretical and Applied Genetics, 1990, 80(2): 205-208.
    [19] Lander E S, Botstein S. Mapping mendelian factors under lying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121: 185-199.
    [20] Matinez O and Curnow R N. Estimation the locations and the size of effects of quantitative trait loci using flanking markers [J]. Theoretical and Applied Genetics, 1988, 76: 815-829.
    [21] Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative traits loci [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 10972-10976.
    [22] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping [J]. Genetics, 2007, 175: 361-374.
    [23] Li H, Ribaut J M, Li Z, et al. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations[J]. Theoretical and Applied Genetics, 2008, 116: 243-260.
    [24]朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞,主编:全国作物育种学术讨论会论文集[C]北京:中国农业科技出版社,1998. 11-20.
    [25]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999, 33(3): 327-335.
    [26]王建康.数量性状基因的完备区间作图方法[J].作物学报, 2009, 35(2): 239-245.
    [27] Basten C J, Weir B S, Zeng Z B. Zmap—a QTL cartographer [A]. In: Smith C, Gavora J S, Benkel B, Chesnais J, Fairfull W, Gibson J P, Kennedy B W, Burnside E B, eds. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software [C]. Guelph, Ontario, Canada,1994, 65-66
    [28] Manly K F, Cudmore J R, Meer J M. Map Manager QTX, cross-platform software for genetic mapping[J]. Mammalian Genome, 2001, 12: 930-932.
    [29] Nelson J C. QGENE: Software for marker-based genomic analysis and breeding [J]. Molecular Breeding, 1997, 3: 239-245.
    [30] Van Ooijen J W, Maliepaard C. MapQTL version 3.0: software for the calculation of QTL positions on genetic maps [A]. Abstract of Plant Genome IV Conference (http://www.intl-pag.org /4/ abstracts/p316.html)[C], San Diego, CA, 1996
    [31] Wang D L, Zhu J, Li Z K, et al. User Manual for QTLMapper Version 1.6—A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Main Effects, Epistatic Effects and QTL×Environment Interactions. Department of Agronomy, Zhejiang University, Hangzhou, China (http://ibi.zju.edu.cn/software/qtlmapper/), 2003
    [32] Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations [J]. Bioinformatics, 2007, 23: 1527-1536.
    [33] Yang J, Hu C C, Hu H, et al. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations [J]. Bioinformatics, 2008, 24: 721-723.
    [34]苏成付,赵团结,盖钧镒.不同统计遗传模型QTL定位方法应用效果的模拟比较[J].作物学报,2010, 36(7): 1100-1107.
    [35] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994, 138: 963-971.
    [36] Paterson A H, DeVerna J W, Lanini B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato [J]. Genetics. 1990, 124(3): 735-742.
    [37] Eshed Y, Abu-abied M, saranga Y, et al. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii [J]. Theoretical and Applied Genetics, 1992, 83: 1027-1034.
    [38] Eshed Y and Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL [J]. Genetics, 1995, 141: 1147-1162.
    [39] Jena K K, Khush G S, Kochert G. RFLP analysis of rice (Oryza sativa L.) introgression lines [J]. Theoretical and Applied Genetics, 1992, 84: 608-616.
    [40] Aida Y, Tsunematsu H, Doi K, et al. Development of series of introgression lines of Japonica in the background of indica rice [J]. Rice Genetics Newsletter, 1997, 14: 41-43.
    [41] Doi K, Iwata N. Yoshlmra A. the construction of chromosome substitution lines of African rice (Oryan glaberrima Steud.) in the background of japonica rice (Osativa L.) [J]. Rice Genetics Newsletter, 1997, 14: 39-41.
    [42] Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica back-ground of rice [J]. Rice Genetics Newsletter, 1999, 16: 104-106.
    [43] Kurakazu T, Sbrizal, Iked K, et al. Oryan meridionalis chromosomal segment introgression lines in cultivated rice Oryza sativa L [J]. Rice Genetics Newsletter, 2001, 18: 81-82.
    [44] Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.)[J]. Breeding Science, 2002, 52: 319-325.
    [45]刘冠明,李文涛,曾瑞珍,等.水稻亚种间单片段代换系的建立[J].中国水稻科学, 2003, 17(3): 201-204.
    [46]刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定[J].遗传学报, 2004, 31(12): 1395-1400.
    [47]何风华,席章营,曾瑞珍,等.利用高代回交和分子标记辅助选择建立水稻单片段代换系[J].遗传学报, 2005, 32(8): 825-831.
    [48]何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL [J].中国农业科学,2005, 38(8): 1505-1513.
    [49] He F H,Xi Z Y, Zeng R Z, et al. Identification of QTLs for plant height and its components by using Single Segment Substitution Lines in rice (Oryza sativa L.) [J]. Rice Science, 2005, 12 (3): 151-156.
    [50]曾瑞珍,施军琼,黄朝锋,等.籼稻背景的单片段代换系群体的构建[J].作物学报, 2006, 32 (1): 88-95.
    [51]曾瑞珍, Akshay T,刘芳,等.利用单片段代换系定位水稻粒形QTL[J].中国农业科学, 2006, 39(4): 647-654.
    [52]赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻(Oryza sativa L.)分蘖数QTL的非条件和条件定位[J].中国农业科学, 2008, 41(2): 322-330.
    [53]赵芳明,张桂权,曾瑞珍,等.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应[J].作物学报, 2009, 35(1): 48-56.
    [54]赵芳明,张桂权,曾瑞珍,等.基于单片段代换系的水稻粒型QTL加性及上位性效应分析[J].作物学报, 2011, 37(3): 469-476.
    [55]赵芳明,朱海涛,曾瑞珍,等.基于SSSL的水稻重要性状的QTL鉴定及稳定性分析[J].中国农业科学, 2007, 40(3): 447-456.
    [56]万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系群体检测水稻抗亚铁毒胁迫有关性状QTL [J].遗传学报, 2003, 30(10): 893-898.
    [57]夏军红,郑用琏.玉米Rf3等基因系的分子标记辅助回交选育与效益分析[J].作物学报, 2002,28(3): 339-344.
    [58]王立秋,赵永峰,薛亚东,等.玉米衔接式单片段导入系群体的构建和评价[J].作物学报,2007, 33(4): 663-668.
    [59] Bai W, Zhang H, Zhang Z,et al. The evidence for non-additive effect as the main geneticcomponent of plant height and ear height in maize using introgression line populations [J]. PlantBreeding, 2010, 129, 376-384.
    [60]李永祥,刘成,石云素,等.玉米花期耐旱导入系群体的构建与评价[J].植物遗传资源学报,2008, 9(3): 293-296.
    [61] Li Y, Liu C, Shi Y, et al. Genetic location and evaluation of chromosomal segments for droughttolerance at flowering stage in maize using selected backcross populations [J]. Plant Breeding.2009, 128(4): 342-347.
    [62] Hao Z, Liu X, Li X, et al. Identification of quantitative trait loci for drought tolerance at seedlingstage by screening a large number of introgression lines in maize [J]. Plant Breeding,2009, 128 (4):337-341.
    [63]郭晋杰,陈景堂,祝丽英,等.基于玉米导入系群体的3个农艺性状QTL分析[J].植物遗传资源学报, 2009, 10(1): 27-31.
    [64]赵璞,刘瑞响,李成璞,等.基于掖478导入系的玉米产量性状QTL鉴定[J].中国农业科学,2011, 44(17): 3508-3519.
    [65] Lu M Y, Li X H, Shang A L, et al. Characterization of a set of chromosome single segmentsubstitution lines derived from two sequenced elite maize inbred lines [J]. Maydica, 2011, 56:399-407.
    [66] Donald C M. The breeding of crop ideotypes [J]. Euphytica, 1968,17: 385-403
    [67]孙海艳,蔡一林,王久光,等.玉米株型性状的QTL定位[J].西南大学学报(自然科学版),2010, 32(12): 14-18.
    [68]王元东,段民孝,邢锦丰,等.玉米理想株型育种的研究进展[J].玉米科学, 2008, 16(3): 47-50.
    [69]张君,库丽霞,张伟强,等.玉米穗上节间距的QTL定位[J].玉米科学, 2010, 18(4): 45-48.
    [70]蒋锋,刘鹏飞,王汉宁,等.玉米穗高系数的遗传分析与QTL定位研究[J].中国农业大学学报,2011, 16(4): 9-15.
    [71]付志远,邵可可,陈德芝,等.穗上节间数与玉米抗倒伏能力的相关分析[J].河南农业大学学报, 2011, 45(2): 149-154.
    [72]汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位[J].遗传学报, 2005, 32(2): 203-209.
    [73] Zhang Y, Li Y X, Wang Y, et al. Stability of QTL across environments and QTL by environment interactions for plant and ear height in maize [J]. Agricultural Sciences in China, 2010, 9: 1400-1412.
    [74] Zhang Z M, Zhao M J, Ding H P, et al. Quantitative trait loci analysis of plant height and ear height in maize (zea mays L.) [J]. Russian journal of genetics, 2006, 42: 306-310.
    [75] Beavis W D, Grant D, Albertsen M C, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci [J]. Theoretical and Applied Genetics, 1991, 83: 141-145.
    [76] Yan J B, Tang H, Huang Y Q, et al. QTL analysis for plant height with molecular markers in maize [J]. Agricultural Sciences in China, 2003, 2(10): 1069-1075.
    [77] Tang J H, Ma X Q, Teng W T, et al. Detection of quantitative trait loci and heterotic loci for pant height using an immortalized F2 population in maize [J]. Chinese Science Bulletin, 2007, 52 (4): 477-483.
    [78]杨晓军,路明,张世煌,等.玉米株高和穗位高的QTL定位[J].遗传,2008, 30(11): 1477-1486.
    [79]吴建伟,刘成,石云素,等.不同水分条件下玉米株高和穗位高的QTL分析[J].植物遗传资源学报, 2005, 6(3): 266-271.
    [80]徐德林,蔡一林,吕学高,等.玉米株型性状的QTL定位[J].玉米科学, 2009, 17(6): 27-31.
    [81] Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize [J]. Crop Science, 2002, 42: 1902-1909.
    [82]于永涛,张吉民,石云素,等.利用不同群体对玉米株高和叶夹角的QTL分析[J].玉米科学,2006, 14(2): 88-92.
    [83]路明,周芳,谢传晓,等.玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J].遗传, 2007, 29(9): 1131-1138.
    [84] Tang J H, Teng W T, Yan J B, et al. Genetic dissection of plant height by molecular makers using a population of recombinant inbred lines in maize [J]. Euphytica, 2007, 155: 117-124.
    [85]李丁,刘志增,张淑贞,等.玉米植株结构分析及其QTL定位[J].玉米科学, 2009, 17(5): 49-52.
    [86] Wei M, Fu J, Li X, et al. Influence of dent corn genetic background on QTL detection for plant eight traits and their relationships in high-oil maize [J]. Theoretical and Applied Genetics, 2009, 50: 225-234.
    [87]谭巍巍,王阳,李永祥,等.不同环境下多个玉米穗部性状的QTL分析[J].中国农业科学, 2011, 44(2): 233-244.
    [88] Robinson H F, Comstock R E, Harvey P H. Genotypic and phenotypic correlations in corn and their implications in selection [J]. Agronomy Journal, 1951, 43: 282-287.
    [89]汤华,黄益勤,严建兵,等.玉米优良杂交种豫玉22产量性状的遗传分析[J].作物学报, 2004, 30(9): 922-926.
    [90]刘宗华,汤继华,卫晓轶,等.氮胁迫和正常条件下玉米穗部性状的QTL分析[J].中国农业科学, 2007, 40(11): 2409-2417.
    [91]汤继华,严建兵,马西青,等.利用“永久F2”群体剖析玉米产量及其相关性状的遗传机制[J].作物学报, 2007, 33(8): 1299-1303.
    [92] Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological traits in maize:ⅡDetermination of QTLs for grain yield and yield components [J]. Theoretical and Applied Genetics, 1994, 89: 451-458.
    [93] Beavis W D, Smith O S, Grant D, et al. Identification of Quantitative Trait Loci Using a small sample of Top cross and F4 Progeny from Maize [J]. Crop Science, 1994, 34: 882-896.
    [94] Austin, D, Lee, M .Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize [J]. Theoretical and Applied Genetics, 1996, 92(7): 817-826.
    [95]向道权,曹海河,曹永国,等.玉米SSR遗传图谱的构建及产量性状基因定位[J].遗传学报,2001, 28(8): 778-784.
    [96]李新海,刘贤德,李明顺,等.玉米雌雄开花间隔天数、结穗率与产量的数量性状位点(QTL)分析[J].植物学报(英文版), 2003, 45(7): 852-857.
    [97]兰进好,李新海,高树仁,等.不同生态环境下玉米产量性状QTL分析[J].作物学报, 2005, 31 (10): 1253-1259.
    [98]杨俊品,荣廷昭,向道权,等.玉米数量性状基因定位[J].作物学报, 2005, 31(2): 188-196.
    [99] Sabadin P K, de Souza C L, de Souza A P, Franco G A A. QTL mapping for yield components in a tropical maize population using microsatellite markers [J]. Hereditas, 2008, 145: 194-203.
    [100]谭巍巍,李永祥,王阳,等.在干旱和正常水分条件下玉米穗部性状QTL分析[J].作物学报, 2011, 37(2): 235-248.
    [101]刘建超,米国华,陈范骏.两种供氮水平下玉米穗部性状的QTL定位[J].玉米科学, 2011, 9(2): 17-20.
    [102]罗红兵,黄璜,朱卫平,等.玉米GDS细胞质雄性不育系的细胞学观察[J].湖南农业大学学报(自然科学版), 2003, 29(2): 109-111.
    [103]燕振国,曾孟潜.玉米细胞质雄性不育新类型BaoⅠ、BaoⅡ的发现[J].遗传, 1999, 21(6): 37-39.
    [104] Beckett J B. Classification of male sterile cytoplasms in maize (Zea mays L.) [J]. Crop Science, 1971, 11: 724-726.
    [105]郑用琏.若干玉米CMS类型雄性不育机理的研究[J].华中农学院学报,1982, (1): 44-50.
    [106]温振民.玉米雄性不育胞质鉴定与分类问题的探讨[J].遗传学报, 1983, 10(6): 477-482.
    [107]李小琴,刘纪麟,万邦惠,等.玉米CMS育性恢复专效性分类系统的研究[J].华中农业大学学报, 1999, 18(3): 203-206.
    [108] Pring D R, Conde M F, Levings C S. DNA heterogeneity within the C group of maize male sterility in Zea mays [J]. Crop Science, 1980, 20: 159-162.
    [109] Sisco P H, Gracen V E, Everett H L, et al. Fertility restoration and mitochondrial nucleic acidsdistinguish at least five subgroups among cms-S cytoplasms of maize ( Zea mays L ) [J]. Theoretical and Applied Genetics, 1985, 71: 5-19
    [110]韦桂旺,郑用琏,张德华,等.玉米CMS材料线粒体DNA遗传多型性的研究[J].遗传学报, 1997, 24(1): 66-77.
    [111]李小琴,万邦惠,刘纪麟,等.玉米细胞质线粒体DNA RFLP分类研究[J].作物学报,2001, (4): 476-481.
    [112] Liu Z Y, Peter S O, Long M H, et al. A PCR assay for rapid discrimination of sterile cytoplasm types in maize [J]. Crop Science, 2002, 42: 566-569.
    [113]张祖新,方明镜,杜何为,等.基于PCR技术的玉米CMS材料胞质类型的快速鉴定[J].作物学报, 2005, 31(10): 1386-1388.
    [114]荣凤军,曹墨菊,唐祈林,等.转Bt基因后代玉米新不育胞质A的遗传分析[J].四川农业大学学报,2007, 25(1): 29-33.
    [115]李小琴,刘纪麟,万邦惠,等.玉米新不育胞质WBMs的利用潜力研究[J].中国农业科学,2004, 37(8): 1099-1103.
    [116]刘纪麟.玉米育种学[M](第二版).北京:中国农业出版社, 2004. 257-258.
    [117]许珂,曹墨菊,朱英国,等.玉米C型细胞质雄性不育系C48-2及其保持系线粒体差异蛋白分析[J].作物学报, 2008, 34(2): 232-237.
    [118]汪静,荣廷昭,曹墨菊.两个新选玉米雄性不育材料的初步鉴定和分析[J].四川农业大学学报,2009, 27(4): 415-418.
    [119] Kheyr-pouri A, Gracenz V E, Everett H L. Genetics of fertility restoration in the C-group of cytoplasmic male sterility in maize [J]. Genetics, 1981, 98: 379-388.
    [120]周洪生.玉米细胞质雄性不育遗传机理的研究现状[J].遗传, 1994, 16(1): 45-48.
    [121] Colhoun C W, Steer M W. Microsporogenesis and the mechanism of cytoplasmic male sterility in maize [J]. Annals of Botany, 1981, 48: 417-424.
    [122] Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes [J]. Euphytica, 1994, 79: 175-179.
    [123] Bernacchi D, Beck-Bunn T, Emmatty D, et al. Advanced backcross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL- alleles derived from Lycopersicon Hirsutum and L. pimpinellifolium [J]. Theoretical and Applied Genetics, 1998, 97: 170-180.
    [124] Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population of chromosome single segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L) [J]. Genome, 2006, 49: 476-484.
    [125] Schmalenbach I, Korber N, Pillen K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust [J]. Theoretical and Applied Genetics, 2008, 117(7): 1093-1106.
    [126] Saha S, Jenkins J N, Wu J X, et al. Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits [J]. Genetics, 2006, 72(3): 1927-1938.
    [127] Szalma S J, Hostert B M, Ledeaux J R, et al. QTL mapping with near-isogenic lines in maize[J]. Theoretical and Applied Genetics, 2007,114 (7): 1211-28.
    [128] Salvi S, Corneti S, Bellotti M, et al. Genetic dissection of maize phenology using an intraspecific introgression library[J]. BMC Plant Biology, 2011, 11: 4.
    [129]张发林.玉米优良自交系郑58的育成和应用[J].作物杂志, 2001, (4): 21.
    [130]李玉玲,吕德彬,王延召,等.利用SSR标记研究爆裂玉米自交系的遗传变异及其与普通玉米的遗传关系[J].中国农业科学, 2003, 37(11): 1604-1610.
    [131] Saghai-Maroof M A, Biyashev R M, Yang G P. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location and population dynamics [J] . Proceedings of the National Academy of Sciences of the USA, 1994, 91: 5466-5470.
    [132] Young N D, Tanlaley S D. Restiction fragment polymorphism maps and the concept of graphical genotypes [J]. Theoretical and Applied Genetics, 1989, 77: 95-101.
    [133]方明镜,丁冬,杨文鹏,等.两个玉米回交一代群体中opaque2基因单侧连锁累赘的SSR分析[J].作物学报, 2005, 31(10): 1359-1364.
    [134]石云素.玉米种质资源描述规范和数据标准[M].北京:中国农业出版社, 2006. 17-20.
    [135] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on progeny mean basis [J]. Crop Science, 1985, 25: 192-194.
    [136] McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature [J]. Rice Genetics Newslettler, 1997, 14: 11-13.
    [137]徐华山,孙永建,周红菊,等.构建水稻优良恢复系背景的重叠片段代换系及其效应分析[J].作物学报, 2007, 33(6): 979–986.
    [138] Tian F, Li D J, Fu Q, et al. Construction of introgression lines carrying wild rice (Oryza ufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits [J]. Theoretical And Applied Genetics, 2006, 112( 3): 570-580.
    [139] Sch?n C C, Melchinger A E, Boppenmaier J, et al. RFLP mapping in maize - quantitative trait loci affecting testcross performance of elite European flint lines[J]. Crop Science. 1994. 34: 378- 389.
    [140] Sch?n C C, Lee M, Melchinger A E, et al. Mapping and characterization of quantitative trait loci affecting resistance against 2nd-generation European corn borer in maize with the aid of RFLPs[J]. Heredity. 1993, 70: 648-659.
    [141] Lin YR, Schertz KF, Paterson AH. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population [J]. Genetics. 1995, 141(1): 391–411.
    [142] Ajmone-Marsan P, Monfredini G, Ludwig W F, et al. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation of grain yield [J]. Theoretical and Applied Genetics, 1995, 90: 415-424.
    [143] Ma X Q, Tang J H, Teng W T, et al. Epistatic interaction is an important genetic basis of grainyield and its components in maize. Molecular Breeding, 2007, 20: 41–51.
    [144] Smith S J C, Duvick D N, Smith O S, et al. Changes in pedigree backgrounds of pioneer brand maize hybrids widly grown from 1930 to 1999.Crop Science, 2004, 44: 1935-1946.
    [145] Yan J B, Tang H, Huang YQ, et al. QTL Mapping for Developmental Behavior for Plant Height in Maize [J]. Chinese Science Bulletin, 2003, 48(23): 2601-2607.
    [146]刘宗华,汤继华,王春雨,等.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J].作物学报, 2007, 33(5): 782-789.
    [147] Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments.2. Plant height and flowering [J]. Crop Science. 1996, 36(5): 1320-1327.
    [148]吴建伟,刘成,石云素,等.对不同水分条件下玉米株高和穗位高的QTL分析[J].植物遗传资源学报, 2005, 6(3): 266-271.
    [149] Zhu J J, Wang X P, Sun C X, et al. Mapping of QTL associated with drough tolerance in a semi-automobile rain shelter in maize (Zea mays L.) [J]. Agricultural Sciences in China, 2011, 10(7): 987-996.
    [150]勾玲,黄建军,张宾,等.群体密度对玉米茎秆抗倒伏力学和农艺性状的影响[J].作物学报, 2007, 33(10): 1688-1695.
    [151]张洪生,赵明,吴沛波,等.种植密度对玉米茎秆和穗部性状的影响[J].玉米科学, 2009, 17(5): 130-133.
    [152] LeDeaux J R, Graham G I, Stuber C W. Stability of QTLs involved in heterosis in maize when mapped under several stress conditions [J]. Maydica, 2006, 51: 151-167.
    [153] LeDeaux JR; Stuber CW. Mapping heterosis QTLs in maize grown under various stress conditions [A]. In: the cennetics and exploitation of Heterosis in cops[C]. An International Symposium, Mexico City, Mexico. 1997. 40-41.
    [154] Lander E S, Green P, Abrahanson J, et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987, 1: 174-181.
    [155]彭勃,王阳,李永祥,等.不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析[J].作物学报, 2010, 36(11): 1832-1842.
    [156]李素萍,南文华,郝建平,等.密度与施氮量对不同玉米品种产量及穗部性状的影响[J].西北农业学报, 2007, 16(5): 80- 83.
    [157] Abler BS, Edwards M, Stuber CW. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds [J]. Crop Science, 1991, 31(2): 267- 274.
    [158] Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering [J]. Crop Science, 1996, 36: 1320-1327.
    [159] Li Y L, Li X H, Li J Z, et al. Dent corn geneticbackground influences QTL detection for grain yield and yield components in high-oil maize [J]. Euphytica, 2009, 169: 273-284.
    [160]代国丽,蔡一林,徐德林,等.玉米穗部性状的QTL定位.西南师范大学学报(自然科学版), 2009, 5: 133-138.
    [161] Tuberosa R, Salvi S, Sanguineti M C, et al. Mapping QTL regulating morphophysiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize [J]. Annals of Botany, 2002, 89: 941-96.
    [162]严建兵,汤华,黄益勤,等.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析[J].科学通报, 2006, 51(12): 1413-1421.
    [163] Zhao J Y, Becker H C, Ding H D, et al. QTL of three agronomically important traits and their interactions with envirorment in a european×chinese rapeseed population [J]. Acta Genetica Sinica, 2005, 32: 969-978.
    [164] Xing Y Z, Tan Y F, Hua J P, et al. Characterization of the main effects,epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theoretical and Applied Genetics, 2002, 105: 248-257.
    [165] He Q, Zhang K X, Xu C G, et al. Additive and additive×additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines [J]. Journal of Genetics and Genomics, 2010, 37: 795-803.
    [166] Milena L, Souza C, Bento D, et al. Mapping QTL for grain yield and plant traits in a tropical maize population[J]. Molecular Breeding, 2006, 17: 227-239.
    [167] Moreau L, Charcosset A, Gallais A. Use of trial clustering to study QTL×environment effects for grain yield and related traits in maize[J].Theoretical and Applied Genetics, 2004, 110: 92-100.
    [168] Cockerham C C, Zeng Z B. Design III with marker loci [J]. Genetics, 1996, 143: 1437-1456.
    [169] Huang N, Angeles E R, Doming J. Pyramiding of bacterial blight resistance genes in rice: marker aid selection using RFLP and PCR [J]. Theoretical and Applied Genetics, 1997, 95: 313-320.
    [170] Tanksley S D, Ahn N, Causse M. RFLP mapping of the rice genome [A]. Proceeding of Second Internation Rice Genetics Symprosium. Rice GeneticsⅡ[C]. Los Banos, Laguna: International Rice Reasearch Institute, 1991: 435-442.
    [171]刘伟,吕鹏,苏凯,等.种植密度对夏玉米产量和源库特性的影响[J].应用生态学报, 2010, 21(7): 1737-1743.
    [172]丰光,黄长玲,邢锦丰.玉米抗倒伏的研究进展[J].作物杂志, 2008, 4: 17-19.
    [173]李玉玲,唐保军,冯兴跃等. 2个玉米优势群体不同发育时期植株性状的密度效应分析[J].河南农业科学, 2009, 12: 26-29.
    [174]谢振江,李明顺,李新海,等.密度压力下玉米杂交种农艺性状与产量相关性研究[J].玉米科学, 2007, 15(4): 100-104.
    [175]赵延明.玉米穗高系数遗传主基因及与环境互作效应分析[J].中国农学通报, 2008, 24(3): 130-133.
    [176]汤国民,龙丽萍,夏德君,等.玉米穗高系数对产量性状的影响[J].莱阳农学院学报, 2002, 19( 2) : 95~ 97.
    [177]王泽立,杨会,祝静静,等.玉米CMS-S恢复基因Rf3近等基因系的蛋白分析[J].中国农业科学, 2007, 40(5): 1050-1055.
    [178]曹墨菊,荣廷昭,潘光堂.首例航天诱变玉米雄性不育突变体的遗传分析[J].遗传学报,2003, 30(9): 817-822.
    [179]李建生,徐尚忠,赖菁茹,等.对两个玉米雄性不育系的细胞质分类研究[J].作物学报,1993, 19(2): 156-164.
    [180]李晚忱,荣廷昭,雷本鸣,等. 3个玉米细胞质雄性不育系的选育及分组鉴定[J].作物学报, 2001, 27(3): 308-312.
    [181]李小琴,万邦惠,刘纪麟,等.玉米细胞质雄性不育材料WBMs的胞质分类研究[J].作物学报, 2004, 30(4): 304-307.
    [182]陈伟,刘占先,鄂立柱,等.玉米细胞质雄性不育材料CMS-P的胞质分类研究[J].作物学报,2007, 33(2): 196-200.
    [183]郭宝健,张振兴,陈丙堂,等. Ta型玉米细胞质不育材料的遗传分析[J].分子育种学, 2008, 6(3): 491-494.
    [184]张采波,袁国钊,汪静,等.空间环境诱发玉米细胞质雄性不育突变体的遗传分析[J].遗传, 2011, 33(2): 175-181.
    [185]孙庆泉,荣廷昭.玉米雄性不育材料的研究和利用进展[J].玉米科学, 2003, 11(2): 22-27.
    [186]汤继华,胡彦民,付志远,等.一种新型玉米温敏核雄不育系的发现、鉴定及遗传分析[J].中国农业科学, 2007, 40(5): 889-894.
    [187]李小琴,万邦惠,刘纪麟,等.玉米新不育胞质WBMs小孢子败育的细胞学观察[J].中国农业科学, 2004, 37(9): 1261-1264.
    [188]侯爱斌,柳青山,董良利,等.玉米细胞质雄性不育系JnA的育性遗传分析及分组鉴定[J].玉米科学, 2006, 14(1): 50-52.
    [189] Sisco P H, Grance V E, Everett H L, Earle E D, Pring D R, Mcnay J W, Levings C S. Fertility restoration and mitochondrial nucleic acids distinguish at lest five subgriups among cms-S cytoplasms of maize(zea mays L.) [J]. Theoretical and Appllied Genetics, 1985, 71: 5-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700