用户名: 密码: 验证码:
振荡电场刺激对脊髓少突胶质前体细胞的活化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分振荡电场刺激大鼠脊髓损伤模型后脊髓少突胶质前体细胞的增殖和分化
     目的:观察振荡电场刺激后,损伤脊髓内少突胶质前体细胞增殖和分化为新生少突胶质细胞的数量和表型,揭示振荡电场刺激对少突胶质前体细胞的活化作用。方法:建立SD大鼠脊髓损伤模型,分为脊髓损伤组、振荡电场刺激组和正常组。运用BrdU标记及少突胶质细胞系细胞表面标记物标记少突胶质细胞系,采用冰冻切片、免疫荧光染色及电镜等观察方法,检测少突胶质前体细胞的分化及与受体共定位表达。结果:脊髓损伤组、振荡电场刺激组的少突胶质前体细胞的数量在4d至14d时呈现递减的趋势,而成熟少突胶质细胞的数量在4d至14d时呈现递增的趋势;振荡电场刺激组的少突胶质细胞系的细胞数量在4d、7d、10d和14d时均优于脊髓损伤组。振荡电场刺激组在4d、7d、10d和14d时的NG2-P1共定位表达均优于脊髓损伤组;但在振荡电场刺激组内,NG2-P1共定位的表达在14d时弱于4d、7d和10d的表达。结论:振荡电场刺激能改善损伤脊髓内少突胶质前体细胞的活化,促进少突胶质前体细胞分化为成熟少突胶质细胞,利于髓鞘的形成。
     第二部分振荡电场刺激促进少突胶质前体细胞活化过程中嘌呤能神经递质ATP和细胞因子LIF的含量变化
     目的:研究振荡电场刺激促进少突胶质前体细胞活化过程中嘌呤能神经递质和细胞因子的含量变化,揭示振荡电场刺激促进少突胶质前体细胞活化的可能机理。方法:建立SD大鼠脊髓损伤模型,分为脊髓损伤组、振荡电场刺激组和正常组。采用ELISA等方法,检测嘌呤神经递质(ATP)、细胞因子(LIF)的含量变化。结果:脊髓损伤组、振荡电场刺激组的损伤脊髓局部ATP、LIF的表达含量在4W、6W时均高于正常组,各组在各点的检测值与正常组比较,均存在统计学差异(P<0.05);并且,振荡电场刺激组与脊髓损伤组在损伤脊髓局部的ATP、LIF含量在4W、6W时的检测值比较也存在统计学差异(P<0.05);在同一组内的ATP、LIF的含量在脊髓损伤后4W、6W的检测值呈现逐渐增高的趋势。在6周以后,ATP、LIF的含量呈现下降趋势,但振荡电场刺激组在8W时的检测值仍高于正常对照组。结论:脊髓损伤后,在少突胶质前体细胞活化的过程中,振荡电场刺激能够促进嘌呤能神经递质ATP和细胞因子LIF在损伤脊髓局部的表达含量和活性增加,尤其是在振荡电场刺激的早期促进作用明显。表明嘌呤能神经递质ATP和细胞因子LIF在振荡电场刺激促进少突胶质前体细胞活化过程中起着重要作用。
     第三部分振荡电场刺激修复脊髓损伤后的神经功能恢复
     目的:评估振荡电场刺激修复脊髓损伤大鼠的神经功能恢复。方法:建立SD大鼠脊髓损伤模型组、振荡电场刺激组和正常对照组。记录并统计不同时点脊髓损伤大鼠的BBB评分、斜板试验评分和MEP检测,并进行统计学分析。结果:在振荡电场刺激的前2周,脊髓损伤组的BBB评分和斜板试验评分高于振荡电场刺激组,从第3周开始,脊髓损伤组的BBB评分和斜板试验评分明显低于振荡电场刺激组,两组之间的差异均存在统计学意义(P<0.05)。而诱发电位检测显示振荡电场刺激组MEP潜伏期在各时点均低于脊髓损伤组,两组之间存在统计学差异(P<0.05)。在建模后2周内,脊髓损伤组和振荡电场刺激组的腹水发生率分别在为14.7%和25.2%,两组之间比较存在统计学差异(P<0.05)。结论:振荡电场刺激能够有效修复大鼠脊髓损伤,促进脊髓损伤大鼠的神经功能恢复。在振荡电场刺激的早期,振荡电场刺激器造成了大鼠腹水的发生,可能恶化了大鼠的机体状态,影响了神经功能的评价。在振荡电场刺激的后期,神经功能的评价相对客观、真实。
Part ⅠProliferation and differentiation ofoligodendrocyte precursor cells ofspinal cord injury model rats after oscillating field stimulation.
     Objective: This study is to evaluate the proliferation and differentiation ofoligodendrocyte precursor cells of spinal cord injury model rats after oscillating fieldstimulation. Methods: SD rats were divided into the spinal cord injury group, oscillatingfield stimulation group and the normal group. Oscillating field stimulation group wastreated by oscillating field stimulation. To detect the proliferation and differentiation ofoligodendrocyte precursor cells by means of frozen sections, immunofluorescence stainingand electron microscopy observation after labeled by Brdu and surface markers ofoligodendrocyte lineage cells. Results: The expression level of oligodendrocyte cell line ofoscillating field stimulation group was higher than that of spinal cord injury group in4d,7d,10d and14d, especially in10d and14d. Colocalization expression of NG2-P1ofoscillating field stimulation group was stronger than that in the spinal cord injury group in4d,7d,10d and14d. But in the oscillating electric field group, NG2-P1expression in14dwas weaker than that in4d,7d and10d. Conclusions: Oscillating field stimulation canimprove oligodendrocyte precursor cells proliferation in the injured spinal cord, whichwould contribute to the formation of myelin after spinal cord injury.
     Part ⅡTheATPand LIF expression level during the activation ofoligodendrocyte precursor cells after spinal cord injury treated by oscillating fieldstimulation.
     Objective: This study is to evaluate the expression level of theneurotransmitters purine (ATP) and cytokines (LIF)after promoting oligodendrocyteprecursor cells activation by oscillating field stimulation. Methods: SD rats were dividedinto the spinal cord injury group, oscillating field stimulation group and the normal group.Oscillating field stimulation group was treated by oscillating field stimulation. Detectingthe expression levels of ATP and LIF by method of ELISA. Results: The ATP and LIFexpression levels in the spinal cord injury group and oscillating electrical field stimulationgroup were higher than the normal group, there is a statistical difference between thenormal group and the two groups (P<0.05). Within the two groups, ATP and LIF showed agradual increasing trend from the first to the sixth week after spinal cord injury. But ATPand LIF showed a downward trend after the sixth week. Conclusions: Oscillating fieldstimulation can promote ATP and LIF expression levels in the injuried spinal cordespecially early atage after oscillating electric field stimulation. It showed that ATP andLIF played an important role for the activation of oligodendrocyte precursor cells afterspinal cord injury by the treatment of oscillating field stimulation.
     Part ⅢThe neurological function recovery of spinal cord injury rats treated byoscillating field stimulation.
     Objective: This study is to assessment the neurological function recoveryof spinal cord injury rats treated by oscillating field stimulation. Methods: SD rats weredivided into the spinal cord injury group, oscillating field stimulation group and the normalgroup. Basso-Beattie-Bresnahan(BBB)score, incline plane test and motor evokedpotential(MEP) were recorded and calculated. Results: The BBB score and incline plane score in the spinal cord injury group were more than that in the oscillating field stimulationgroup within two weeks after spinal cord injury. However, the BBB score and incline planescore in the spinal cord injury group were less than that in the oscillating field stimulationgroup from the third week, there is a statistical difference about the BBB score and inclineplane score between the two groups (P<0.05). The results of MEP in the the oscillatingfield stimulation group was better than that in the spinal cord injury group from first toeighth week. The incidence of ascites is14.7%and25.2%in the spinal cord injury groupand oscillating field stimulation group, there is a statistically significant difference (P <0.05)between the two groups(P<0.05). Conclusions: Oscillating field stimulation caneffectively repair spinal cord injury and promote neurological function recovery. Theinstrument of oscillatingl field stimulation may contribute to the occurrence of ascites inrats affecting the assessment of neurological function in the early stage.
引文
[1] Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and futureimplications.Spinal Cord,2012,50(5):365-372.
    [2] Knútsdóttir S, Thórisdóttir H, Sigvaldason K, et al. Epidemiology of traumatic spinalcord injuries in Iceland from1975to2009. Spinal Cord,2012,50(2):123-6.
    [3] Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stemcells after severe spinal cord injury. Cell,2012,150(6):1264-1273.
    [4] Aito S, Tucci L, Zidarich V, et al. Traumatic spinal cord injuries: evidence from30years in a single centre. Spinal Cord.2014Feb4.
    [5] Mackay-Sim A, Féron F. Clinical trials for the treatment of spinal cord injury: not sosimple.Methods Mol Biol.2013,1059:229-37.
    [6] Jones DG,Anderson ER, Galvin KA. Spinal cord regeneration: moving tentativelytowards new perspectives. NeuroRehabilitation.2003,18(4):339-51.
    [7] Krishnan RV, Muthusamy R, Sankar V. Spinal cord injury repair research: a newcombination treatment strategy.Int J Neurosci,2001,108(3-4):201-7.
    [8] Dubendorf P. Spinal cord injury pathophysiology. Crit Care Nurs Q.1999,22(2):31-5.
    [9] Norenberg MD, Smith J, Marcillo A, et al. The pathology of human spinal cord injury:defining the problems. J Neurotrauma.2004Apr;21(4):429-40.
    [10] Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressivedemyelination. J Comp Neurol.2005,486(4):373-83.
    [11] Patel N,Poe MM.Orientation of neurite growth by extracellular electric fields.JNeurosci,1982,2(4):483-496.
    [12] Borgens RB,Bohnert DM.The responses of mammalian spinal axons to an appliedDC voltage gradient.Exp Neurol,1997,145(2):376-389.
    [13] Strautman AF, Cork RJ, Robinson KR. The distribution of free calcium in transectedspinal axons and its modulation by applied electrical fields. The Journal ofneuroscience: the official journal of the Society for Neuroscience.1990,10:3564-75.
    [14] Moriarty LJ, Borgens RB. An oscillating extracellular voltage gradient reduces thedensity and influences the orientation of astrocytes in injured mammalian spinal cord.Journal of Neurocytology.2001,30:45-57.
    [15] Tederko P, Krasuski M, Kiwerski J, et al. Repair therapies in spinal cord injuries.Ortop Traumatol Rehabil.2009,11(3):199-208.
    [16]Beaumont E, Guevara E, Dubeau S, et al. Functional electrical stimulation post-spinalcord injury improves locomotion and increases afferent input into the central nervoussystem in rats.J Spinal Cord Med.2014,37(1):93-100.
    [17] Danzer E, Zhang L, Radu A, et al. Amniotic fluid levels of glial fibrillary acidicprotein in fetal rats with retinoic acid induced myelomeningocele: a potential markerfor spinal cord injury.Am J Obstet Gynecol.2011,204(2):178.e1-11.
    [18]陈虹,李俊岑,党彦丽,等.电刺激对大鼠脊髓损伤后神经生长因子表达的影响.中国康复理论与实践,2012,18(1):33-36.
    [19] McCaig CD.Spinal neurite reabsorption and regrowth in vitro depend on the polarityof an applied electric field.Development,1987,100(1):31-41.
    [20]潘素颖,张广浩,霍小林,宋涛.振荡电场刺激治疗脊髓损伤的研究进展.国际生物医学工程杂志,2010,33(6):376-380.
    [21] Othman T, Yan H, Rivkees SA. Oligodendrocytes express functional A1adenosinereceptors that stimulate cellular migration. Glia.2003,44:166-72.
    [22] Fields RD, Stevens B. ATP: an extracellular signaling molecule between neurons andglia. Trends Neurosci.2000,23:625-33.
    [23] Stevens B, Porta S, Haak LL, et al. Adenosine A Neuron-Glial Transmitter PromotingMyelination in the CNS in Response toAction Potentials. Neuron.2002,5:855-68.
    [24] Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote myelination in responseto electrical impulses. Neuron.2006,49:823-32.
    [25] Hamilton N, Vayro S, Wigley R, et al. Axons and astrocytes release ATP andglutamate to evoke calcium signals in NG2-glia. Glia.2010,58:66-79.
    [26] McCaig CD. Spinal neurite reabsorption and regrowth in vitro depend on the polarityof an applied electric field. Development.1987,100:31-41.
    [27] Borgens RB, Toombs JP, Breur G, et al. An imposed oscillating electrical fieldimproves the recovery of function in neurologically complete paraplegic dogs. JNeurotrauma.1999,16:639-57.
    [28] Borgens RB, Toombs JP, Blight AR, et al. Effects of applied electric-fields on clinicalcases of complete paraplegia in dogs. Restor Neurol Neurosci.1993,5:305-22.
    [29] Wan L, Xia R, Ding W. Short-term low-frequency electrical stimulation enhancedremyelination of injured peripheral nerves by inducing the promyelination effect ofbrain-derived neurotrophic factor on Schwann cell polarization. Journal ofneuroscience research.2010,88:2578-87.
    [30] Borgens RB,Bohnert DM.The responses of mammalian spinal axons to an appliedDC voltage gradient.Exp Neurol,1997,145(2):376-389.
    [31] Shapiro S,Borgens R,Pascuzzi R,et a1.Oscillating field stimulation for completespinal cord injury in humans:a phase1trial.J Neurosurg Spine,2005,2(1):3-10.
    [32] Li Q, Brus-Ramer M, Martin JH, et al. Electrical stimulation of the medullary pyramidpromotes proliferation and differentiation of oligodendrocyte progenitor cells in thecorticospinal tract of the adult rat. Neuroscience letters.2010,479:128-33.
    [33]潘素颖,张广浩,霍小林,宋涛.振荡电场刺激治疗脊髓损伤的研究进展.国际生物医学工程杂志,2010,33(6):376-380.
    [34] Wallace MC,Tator CH, Piper I. Recovery of spinal cord function induced bydirect current stimulation of the injured rat spinal cord. Neurosurgery,1987,20(6):878-884.
    [35] Fehlings MG, Tator CH, Linden RD. The effect of direct-current field on recoveryfrom experimental spinal cord injury. J Neurosurg,1988,68(5):781-792.
    [36] Graves MS, Hassell T, Beier BL,Albors GO, Irazoqui PP McCaig CD. Electricallymediated neuronal guidance with applied alternating current electric fields. AnnBiomed Eng,2011,39(6):1759-1767.
    [37] Borgens RB. Effects of applied electric fields on clinical cages of complete paraplegiain dogs. Rcstor Neurol Neumsci,1993,5(5):305-322.
    [38] Borgens RB, Toombs JP, Breur G, et al. An imposed oscillating electrical fieldimproves the recovery of function in neurologically cornplete paraplegic dogs. JNeurotrauma,1999,16(7):639-657.
    [39] Shapiro S, Borgens R, Pascuzzi R, et al. Oscillating field stimulation for completespinal cord injury in humans:a phase1trial.J Neurosurg Spine,2005,2(1):3-10.
    [40] Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regenerationafter spinal cord injury: an overview. Eur Spine J,2008,17(9):1256-1269.
    [41] Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web.Cell Tissue Res,2008,331(1):193-210.
    [42]林晓静,赵廷宝,刘少君.少突胶质前体细胞与髓鞘形成及再生的研究进展.第二军医大学学报,2011,32(7):786-789.
    [43] Van Strien ME1, Baron W, Bakker EN, et al.Tissue transglutaminase activity isinvolved in the differentiation of oligodendrocyte precursor cells into myelin-formingoligodendrocytes during CNS remyelination.Glia.2011,59(11):1622-34.
    [44] Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammaliancentral nervous system. Physiol Rev.2001,81(2):871-927.
    [45] Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelinationpost-spinal cord injuries: a review. Prog Neurobiol.2012,96(3):322-339.
    [46]吴斌,吴永超,潘海涛,等.大鼠脊髓源性少突胶质前体细胞的生物学特性.华中科技大学学报(医学版),2012,41(6):723.
    [47] Miron VE, Kuhlmann T, Antel JP. Cells of the oligodendroglial lineage, myelination,and remyelination. Biochimica et biophysica acta.2011,1812:184-93.
    [48] Emery B. Regulation of oligodendrocyte differentiation and myelination. Science.2010,330:779-82.
    [49] Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health anddisease. Trends Neurosci.2001,24:39-47.
    [50] Horner PJ, Power AE, Kempermann G, et al. Proliferation and Differentiation ofProgenitor Cells Throughout the intact adult rat spinal cord. The Journal ofneuroscience: the official journal of the Society for Neuroscience.2000,20:2218-28.
    [51] Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci.2002;3:705-14.
    [52]吴波,孙磊,任先军.少突胶质前体细胞移植治疗对大鼠脊髓损伤轴突髓鞘化的影响.中华创伤杂志,2010,11(26):1035-1039.
    [53] Mekhail M, Almazan G, Tabrizian M.Oligodendrocyte-protection and remyelinationpost-spinal cord injuries: a review.Prog Neurobiol.2012,96(3):322-39.
    [54]BARRES BA, RAFF MC. Proliferation of oligodendrocyte precursor cells depends onelectrical activity in axons. Nature Protocols.1993,361:258-60.
    [19] Horky LL, Galimi F, Gage FH, et al. Fate of endogenous stem/progenitor cellsfollowing spinal cord injury. The Journal of comparative neurology.2006,498:525-38.
    [56] Belachew S, Gallo V. Synaptic and extrasynaptic neurotransmitter receptors in glialprecursors' quest for identity. Glia.2004,48(3):185-96.
    [57] Agresti C, Meomartini ME, Amadio S, et al. ATP regulates oligodendrocyte progenitormigration, proliferation, and differentiation: involvement of metabotropic P2receptors.Brain Res Brain Res Rev.2005,48(2):157-65.
    [58]童小萍,段树民.少突胶质前体细胞的迁移机制.生理科学进展,2010,41(5):387-391.
    [59] Gadea A1, Aguirre A, Haydar TF, et al. Endothelin-1regulates oligodendrocytedevelopment. J Neurosci.2009,29(32):10047-62.
    [60] Fruttiger M, Karlsson L, HallA C, et al. Defective oligodendroyte development andsevere hypomyelination in PDG F knock out mice. Development,1999,126(5):457-467.
    [61] Zhang H, Vutskits L, Calaora V, et al. A role for the polysialic acidneural celladhesion mole cule in PDGF induced chemotaxis of oligodendrocyte precurs or cells.J Cell Sci,2004,117(Pt1):93-103.
    [1] Binamé F, Sakry D, Dimou L, et al. NG2regulates directional migrationof oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. JNeurosci.2013,33(26):10858-10874.
    [2] Wu B, Guo S, Jiang T, et al. In vitro culture and characterization of oligod-endrocyteprecursor cells derived from neonatal rats. Neurol Res.2011,3(6):593-599.
    [3] Lü HZ, Wang YX, Zou J, et al.Differentiation of neural precursor cell-derivedoligodendrocyte progenitor cells following transplantation into normal and injuredspinal cords. Differentiation.2010,80(4-5):228-240.
    [4] Kleinsimlinghaus K, Marx R, Serdar M, et al. Strategies for repair of white matter:influence of osmolarity and microglia on proliferation and apoptosis of olig-odendrocyte precursor cells in different basal culture media. Front CellNeurosci.2013,26(7):277-279
    [5] Bakiri Y,Attwell D, Káradóttir R, et al. Electrical signalling propertiesof oligodendrocyte precursor cells. Neuron Glia Biol.2009,5(1-2):3-11.
    [6] Clemente D, Ortega MC, Melero-Jerez C, et al. The effect of glia-glia interactionson oligodendrocyte precursor cell biology during development and in demyelinatingdiseases. Front Cell Neurosci.2013,20(7):268.
    [7]潘素颖,张广浩,霍小林,等.振荡电场刺激治疗脊髓损伤的研究进展.国际生物医学工程杂志,2010,33(6):376-379
    [8] Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote myelination in responseto electrical impulses. Neuron.2006;49:823-32.
    [9] Shapiro S. AReview of Oscillating Field Stimulation to Treat Human Spinal CordInjury. World Neurosurg.2012,S1878-8750(12):01328-90132.
    [10] Mishima K, Nakamae S, Ohshima H, et al. Frequency dependenceof electric-field-induced orientation of myelin tubes. Biochim Biophys Acta.1994,1191(1):157-63.
    [11]杨成,刘同慎,吴洪华,等.电针对脊髓损伤后少突胶质细胞再髓鞘化的影响.解剖学杂志,2005,28(4):391-396
    [12] Rinholm JE, Hamilton NB, Kessaris N, et al. Regulation of oligodendrocyte de-velopment and myelination by glucose and lactate. J Neurosci.2011,31(2):538-48.
    [13] Back SA, Han BH, Luo NL, et al. Selective vulner ability of late oligodendrocy teprogenitors to hypoxia-ischemia. J Neurosci,2002,22:455–463
    [14] Dugas JC1, Emery B. Purification and culture of oligodendrocyte lineage cells. ColdSpring Harb Protoc.2013,2013(9):810-4.
    [15] Lee Y, Morrison BM, Li Y,et al. Oligodendroglia metabolically support axons andcontribute to neurodegeneration. Nature.2012,487(7408):443-8.
    [16] Butt AM, Berry M.Oligodendrocytes and the control of myelination in vivo: newinsights from the rat anterior medullary velum. J Neurosci Res.2000,59(4):477-88.
    [17] Espinosa JE. Spinal cord trauma.Rev Med Panama.2001;26:19-21.
    [18] Wu Bo, Lei Sun, Peijia Li. Transplantation of oligodendrocyte precursorcells improves myelination and promotes functional recovery after spinalcord injury. Injury.2012,43(6):794-801
    [19] Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligoden-drocyte progenitors in CNS remyelination.Adv Exp Med Biol.1999,468:183-97.
    [20] Chong SY, Chan JR. Tapping into the glial reservoir: cells committed o remaininguncommitted. J Cell Biol,2010,188(3):305-312
    [21] Kremer D, Aktas O, Hartung HP, et al. The complex world of oligodendroglialdifferentiation inhibitors [J].Ann Neurol,2011,69(4):602-618
    [22] Harsan LA, Steibel J, Zaremba A, et al. Recovery from chronic demyelination bythyroid hormone therapy: myelinogenesis induction and assessment by diffusiontensor magnetic resonance imaging. J Neurosci,2008,28(52):14189-14201.
    [23]蒋萌,胡怀强,林晓静.少突胶质前体细胞分化的调节机制.组织工程与重建外科杂志,2012,8(1):56-59.
    [24] Rosenberg SS, Kelland EE, Tokar E, et al. The geometric and spatialconstraints of the microenvironment induce oligodendrocyte differentiation. Proc NatlAcad Sci USA,2008,105(38):14662-14667
    [25] Aguirre A, Maturana CJ, Harcha PA,et al. Possible involvement of TLRs andhemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation.Mediators Inflamm.2013;2013:893521.
    [26]王新家,孔抗美,齐伟力.针刺影响大鼠慢性脊髓损伤神经递质的表达.中医正骨,2002,14(6):325
    [27]湛宏鸣,吴良芳,保天然,等.针刺对去部分背根和背根NG F mR NA的影响.神经解剖学杂志,2000,16(4):319-322.
    [28]白金柱,洪毅,关骅,等.振荡电场对脊髓损伤大鼠运动功能恢复和轴突再生的影响.中国脊柱脊髓杂志,2012,2(4):352-356
    [29] Stangel M, Hartung HP. Remyelinating strategies for the treatment of multiplesclerosis. Prog Neurobiol.2002,68(5):361-76.
    [30] Moriarty U, BorgensRB. Anoscillatingextracellularvoltage gradient reduces thedensity and influences the orientation ofastrocytes in injured mammalian spinal cord.JNeurocytol.2001,30(1):45-57.
    [1] Mekhail M1, Almazan G, Tabrizian M, et al. Prog Neurobiol.Oligodendrocyteprotection and remyelination post-spinal cord injuries: a review.2012,96(3):322-39.
    [2] Keirstead HS, Blakemore WF.The role of oligodendrocytes and oligodendrocyteprogenitors in CNS remyelination.Adv Exp Med Biol.1999,468:183-97.
    [3] Yang QK, Xiong JX, Yao ZX. Neuron-NG2cell synapses: novel functions forregulating NG2cell proliferation and differentiation.Biomed Res Int.2013,2013:402843.
    [4] Foote AK, Blakemore WF. Inflammation stimulates remyelination in areas of chronicdemyelination. Brain.2005,128(Pt3):528-39.
    [5] Groot DM, Coenen AJ, Verhofstad A, et al.In vivo induction of glial cell proliferationand axonal outgrowth and myelination by brain-derived neurotrophic factor.MolEndocrinol.2006,20(11):2987-98.
    [6] Kuribara M, Hess MW, Cazorla M, et al.Brain-derived neurotrophic factor stimulatesgrowth of pituitary melanotrope cells in an autocrine way. Gen Comp Endocrinol.2011,170(1):156-61.
    [7] Jiang S, Khan MI, Lu Y, Wang J, et al.Neuroreport. Guanosine promotes myelinationand functional recovery in chronic spinal injury.2003,14(18):2463-7.
    [8] Wu B, Ren X. Promoting axonal myelination for improving neurological recovery inspinal cord injury. J Neurotrauma.2009,26(10):1847-56.
    [9] Hu JG1, Wu XJ, Feng YF, Xi GM, et al. PDGF-AA and bFGF mediateB104CM-induced proliferation of oligodendrocyte precursor cells.Int J Mol Med.2012,30(5):1113-8.
    [10] De Nicola AF, Gonzalez SL, Labombarda F, et al.Progesterone treatment of spinalcord injury: Effects on receptors, neurotrophins, and myelination. J Mol Neurosci.2006;28(1):3-15.
    [11] Chen J, Zuo S, Wang J, et al. Aspirin promotes oligodendrocyte precursorcell proliferation and differentiation after white matter lesion. Front Aging Neu-rosci.2014,27:6-7.
    [12] Fogal B, McClaskey C, Yan S, et al. Diazoxide promotes oligodendrocyte precursorcell proliferation and myelination. PLoS One,2010,28;5(5):e10906.
    [13] Zhao M, Dick A, Forrester JV, et al. Electric field-directed cell motility involvesup-regulated expression and asymmetric redistribution of the epidermal growthfactor receptors and is enhanced by fibronectin and laminin. Mol BiolCell.1999,10(4):1259-76.
    [14]潘素颖,张广浩,霍小林,等.振荡电场刺激治疗脊髓损伤的研究进展.国际生物医学工程杂志,2010,33(6):376-379.
    [15] Shapiro S. AReview of Oscillating Field Stimulation to Treat Human Spinal CordInjury. World Neurosurg.2012,S1878-8750(12)01328-90132.
    [16] Sheppard TL. Receptors: Plants pick upATP.Nat Chem Biol.2014,14;10(3):168.
    [17] Kruse R, S ve S, Persson K. Adenosine triphosphate induced P2Y2receptoractivation induces proinflammatory cytokine release in uroepithelial cells. JUrol.2012,188(6):2419-2425.
    [18]王栓科,洪光祥,王秉义,等.非选择性AT P受体拮抗剂对坐骨神经再生轴突诱向作用影响的实验研究.中华显微外科杂志,2003,26:279-28.
    [19]党跃修,王栓科,孙正义,等.腹腔注射ATP对大鼠坐骨神经再生影响的实验研究.中华显微外科杂志,200629(2):114-117.
    [20] Tsuda M,Shigemoto-Mogami Y,Koizumi S,et a1.P2X4receptors induced inspinal microglia gate tactile allodynia after nerve injur.Nature,2003,424(6950):778-783.
    [21] Liu XJ,Salter MW.Purines and pain mechanisms:recent developments.Curt OpinInvestig Drugs,2005,6(1):66-75.
    [22] Bumstock G. Physiology and pathophysiology of purinergic neurotra-nsmission.Physiol Rev,2007,87(2):659-797.
    [23] Eriksson U, Bongenhielm E, Kid D, et al. Distribution of P2X receptors in the rattrigeminal ganglion after inferioral veolar nerve in jury. Neurosci Letters,1998,254:377–401.
    [24] Atkinson L, Shigetomi E, Kato F, et al. Differential increases in P2X receptor levelsin rat vagal efferent neurones following a vagal nerve section. Brain Res,2003,977:112-118.
    [25] Volonte C, Amadio S, Cavaliere F, et al. Extracellular ATP and neurodegeneration.Curr Drug Targets CNS Neurol Disord,2003,2:403–4.
    [26] Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote myelinationin response to electrical impulses. Neuron.2006,49(6):823-32.
    [27] Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator ofastrocytic, microglial and neuronal responses in a low-dose pilocarpine injurymode.Brain Res.2006,23;1075(1):26-35.
    [28] Yamakuni H, Kawaguchi N, Ohtani Y, et al. ATP induces leukemia inhibitory factormRNAin cultured rat astrocytes. J Neuroimmunol.2002,129(1-2):43-50.
    [29]范玉颖,王华.白血病抑制因子与中枢神经系统疾病研究进展.国际儿科学杂志,2012,39(5):507-509
    [30]臧大维,刘娟,Cheema SS.白血病抑制因子对转基冈SODI小鼠内源性神经干细胞分化的调控.中国组织工程研究与临床康复,2008,12(34):6679-6682.
    [31] Hou S, Nicholson L, van Niekerk E, et al. Dependence of regenerated sensory axonson continuous neurotrophin-3delivery. J Neurosci.2012,19;32(38):13206-20.
    [32]白金柱,洪毅,关骅,等.振荡电场对脊髓损伤大鼠运动功能恢复和轴突再生的影响.中国脊柱脊髓杂志,20122(4):352-356.
    [1] Fehlings MG, Tator CH. The effect of direct current field polarity on recovery afteracute experimental spinal cord injury.Brain Res.1992,579(1):32-42.
    [2] Politis MJ, Zanakis MF. Short term efficacy of applied electric fields in the repair of thedamaged rodent spinal cord: behavioral and morphological results.Neurosurgery,1988,23(5):582-588.
    [3] Fehlings MG, Tator CH, Linden RD. The effect of direct-current field on recovery fromexperimental spinal cord injury. J Neurosurg,1988,68(5):781-792.
    [4] Hamid S, Hayek R.Role of electrical stimulation for rehabilitation and regenerationafter spinal cord injury: an overview. Eur Spine J.2008,17(9):1256-69.
    [5] Graves MS, Hassell T, Beier BL,Albors GO, Irazoqui PP McCaig CD. Electricallymediated neuronal guidance with applied alternating current electric fields. AnnBiomed Eng,2011,39(6):1759-1767.
    [6] Hernández-Labrado GR, Polo JL, López-Dolado E, et al.Spinal cord direct currentstimulation: finite element analysis of the electric field and current density. Med BiolEng Comput.2011,49(4):417-29.
    [7] Shapiro S, Borgens R, Pascuzzi R, et al. Oscillating field stimulation for completespinal cord injury in humans:a phase1trial. J Neurosurg Spine,2005,2(1):3-10
    [8] Ramón-Cueto A1, Cordero MI, Santos-Benito FF, et al. Functional recoveryof paraplegic rats and motor axon regeneration in their spinal cords by olfactoryensheathing glia. Neuron.2000,25(2):425-35.
    [9] Shinozaki M, Yasuda A, Nori S, et al.Novel method for analyzing locomotor abilityafter spinal cord injury in rats: technical note. Neurol Med Chir (Tokyo).2013;53(12):907-13.
    [10]沈彬,宋跃明.运动诱发电位研究现状.中国脊柱脊髓杂志,1999,9(3):170-173.
    [11] Bauchet L, Lonjon N, Perrin FE, et al. Strategies for spinal cord repair after injury: areview of the literature and information.Ann Phys Rehabil Med.2009,52(4):330-51.
    [12] Kwon BK, Sekhon LH, Fehlings MG, et al. Emerging repair, regeneration, andtranslational research advances for spinal cord injury. Spine (Phila Pa1976).2010,35(21Suppl):S263-70.
    [13]陈虹,李俊岑,党彦丽,等.电刺激对大鼠脊髓损伤后神经生长因子表达的影响.中国康复理论与实践,201218(1)33-36.
    [14]卢帆,李典杨拯,等.电刺激对脊髓损伤大鼠巢蛋白与G F A P表达的影响.实用骨科杂志,2012,18(1):32-36.
    [15] Franklin RJ, Gallo V. The translational biology of remyelination: Past, present, andfuture.Glia.2014Jan20.
    [16]白金柱,洪毅,关骅,等.振荡电场对脊髓损伤大鼠运动功能恢复和轴突再生的影响.中国脊柱脊髓杂志,2012,22(4)352-356.
    [17] Keirstead HS, Blakemore WF.The role of oligodendrocytes and oligodendrocyteprogenitors in CNS remyelination.Adv Exp Med Biol.1999,468:183-97.
    [18]邵阳,王永堂,高洁,等.外加电场对实验性大鼠脊髓损伤作用的研究.中国医学物理学杂志,2007,24(5):360-362.
    [19]何丽娜,袁章,陈炜.电刺激治疗脊髓损伤的实验及临床研究进展.中国康复理论与实践,2009,15(8):720-722
    [20] Heida T. Electric field-induced effects on neuronal cell biology accompanyingdielectrophoretic trapping.AdvAnat Embryol Cell Biol,2003,173(III-IX):1-77.
    [21]王佐超.犬脊髓横断后选择性电刺激骶神经根对膀胱逼尿肌收缩的影响.天津医药,2007,35(12):932-933.
    [22] Zhao M, Pu J, Forrester JV, et al. Membrane lipids, EGF receptors, and intracellularsignals colocalize and are polarized in epithelial cells moving directionally in aphysiological electric field. FASEB J,2002,16(8):857-859.
    [23] Wang E, Zhao M, Forrester JV, et al. Electric fields and MAP kinase signaling canregulate early wound healing in lens epithelium.Invest Ophthalmol Vis Sci,2003,44(1):244-249.
    [24] Song B, Zhao M, Forrester J, et al. Nerve regeneration and wound healing arestimulated and directed by an endogenous electrical fielding vivo. J Cell Sci.2004,15117(Pt20):4681-4690.
    [25] ZhaoM, SongB, PuJ,et al. Electrical signals control wound healing throughphosphatidylinositol-3-OH kinase-gamma and PTEN. Nature,2006,442(7101):457-460.
    [26] Tederko P, Krasuski M, Kiwerski J, et al. Repair therapies in spinal cord injuries.Ortop Traumatol Rehabil.2009,11(3):199-208.
    [27] Beaumont E, Guevara E, Dubeau S, et al.Functional electrical stimulation post-spinalcord injury improves locomotion and increases afferent input into the central nervoussystem in rats.J Spinal Cord Med.2014,37(1):93-100.
    [28] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scalefor open field testing in rats. J Neurotrauma.1995,12(1):1-21.
    [29] Basso DM1, Fisher LC, Anderson AJ, et al. Basso Mouse Scale for locomotion detectsdifferences in recovery after spinal cord injury in five common mouse strains.JNeurotrauma.2006,23(5):635-59.
    [30] Black P, Markowitz RS, Cooper V, et al. Models of spinal cord injury: Part1. Staticload technique. Neurosurgery.1986,19(5):752-62.
    [31] Battistuzzo CR, Callister RJ, Callister R, et al. A systematic review of exercisetraining to promote locomotor recovery in animal models of spinal cord injury. JNeurotrauma.2012,20;29(8):1600-13.
    [32]马文静,张玲莉.TMS-MEP评价大鼠脊髓损伤后运动功能障碍程度的研究.华中科技大学硕士论文,2013,8:10-11.
    [33] Rivlin AS,Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. Neurosurg,1977,47:577-581.
    [34] Fehlings MG,Tator CH.The relationship among the severity of spinal cord Injury,residual neurological function,axon counts,and counts of retrogradely labeledneurons after experimental spinal cord injury.Exp Neurol,1995,134(5):220-228.
    [35] Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of humanmotor cortes.Lancet,1985,11:1106-1107.
    [1] Cancilla PA, Breedy J, Breliner J, et al. Expression of mRNA for glial fibrilary acidicprotein after experimental cerebral injury. Neuropath Exp Ncurol.1992,51(5):560-565
    [2] Ward RE, Huang W, Kostusiak M, et al. A characterization of whitematter pathology following spinal cord compression injury in the rat.Neuroscience.2014Feb28;260:227-39.
    [3] Song Yueming,Mao Fangmin, Luo Zuming et al. Pathomorphological Changes ofTraction Injury of Spinal Cord in Rabbit. Chin J Orthop,1997,17(5):304-306
    [4] Haylock-Jacobs S,Keough MB,Lau L,et al.Chondroitin sulphate proteoglycans:Extracellular matrix proteins that regulate immunity of the central nervous system.Autoimmun Rev.2011;10(12):766-772.
    [5] Bunge RP, Puckett WR, Hiester ED, et al. Observations on the pathology of severaltypes of human spinal cord injury, with emphasison the astrocyte response topenetrating injuries.Adv Neurol,1997,72:305-315.
    [6] Feng Yaping, Zhu Hui, Liu yansheng, et al. Clinical study of pathological changes ofthe chronic spinal cord injury. Chin J Neurosurg Dis Res,2008,6(6):530-533.
    [7] Nishi RA, Liu H,Chu Y, et al. Behavioral, histological,and ex vivo magnetic resonanceimaging assessment of graded contusion spinal cord injury in mice. Neurotrauma,2007,24(4):674-689.
    [8] Koyanagi I, Tator C, Lea PJ. Three-dimensional analysis of the vascular system in therat spinal cord with scanning electron microscopy of vascular corrosion casts. Part2:Acute spinal cord injury. Neurosurgery,1993,33(2):285-292.
    [9] Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due tomechanical trauma. Journal of neurotrauma,2007,24(3):492-507.
    [10] Bartanusz V, Jezova D, Alajajian B, et al. The blood–spinal cord barrier: morphologyand clinical implications.Annals of neurology,2011,70(2):194-206.
    [11] Shechter R, Raposo C, London A, et al.The Glial Scar-Monocyte Interplay: A PivotalResolution Phase in Spinal CordRepair. PLoS One,2011;6(12): e27969.
    [12] Eng LF,Ghirn ikar RS. GFAP and astrogliosis.Brain Pathol.1994;4(3):229-237.
    [13] Hinzman JM, Thomas TC, Burmeister JJ, et al. Diffuse brain injury elevates tonicglutamate levels and potassium-evoked glutamate release in discrete brain regions attwo days post-injury: an enzyme-based microelectrode array study. Journal ofneurotrauma,2010,27(5):889-899.
    [14] Kilbaugh TJ, Bhandare S, Lorom DH, et al. Cyclosporin A preserves mitochondrialfunction after traumatic brain injury in the immature rat and piglet. Journal ofneurotrauma,2011,28(5):763-774.
    [15] Liu X, Xu X, Hu R, et al. Neuronal and glial apoptosis after traumatic spinal cordinjury. The Journal of neuroscience,1997,17(14):5395-5406.
    [16] Uchida K, Nakajima H, Watanabe S, et al.Apoptosis of neurons and oligoden-drocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): possiblepathomechanism of human cervical compressive myelopathy. European spine journal,2012,21(3):490-497.
    [17] Han B, Xu D, Choi J, et al. Selective and reversible caspase-3inhibitor isneuroprotective and reveals distinct pathways of cell death after neonatalhypoxic-ischemic brain injury. Journal of Biological Chemistry,2002,277(33):30128-30136.
    [18] Andres D, Appell A, Benton B, et al. Targeting The Fas Receptor (cd-95) As APotential Therapeutic In Sulfur Mustard Exposed Human Airway Epithelial Cells. Am JRespir Crit Care Med,2011,183:A3253.
    [19] Hermeking H. MicroRNAs in the p53network: micromanagement of tumoursuppression. Nature Reviews Cancer,2012,12(9):613-626.
    [20] Xiao Q, Ford AL, Xu J, et al. Bcl-x pre-mRNA splicing regulates brain injury afterneonatal hypoxia-ischemia. The Journal of Neuroscience,2012,32(39):13587-13596.
    [21] Kigerl KA, McGaughy VM, Popovich PG. Comparative analysis of lesiondevelopment and intraspinal inflammation in four strains of mice following spinalcontusion injury.Comp Neurol.2006;494:578-594.
    [22] Torres BB, Caldeira FM, Gomes MG, et al. Effects of dantrolene on apoptosis andimmunohistochemical expression of NeuN in the spinal cord after traumatic injury inrats. Int J Exp Pathol.2010,91(6):530-6.
    [23] Shields LB, Zhang YP, Burke DA, et al. Benefit of chondroitinase ABC on sensoryaxon regeneration in a lacerationmodel of spinal cord injury in the rat.Surg Neurol.2008;69(6):568-577.
    [24] Boyer LA, Lee TI, Cole MF, et al. Core transcriptional circuitry in human embryonicstem cells.Cell.2005;122:947-956.
    [25] Buss A, Pech K, Kakulas BA, et al. NG2and phosphacan are present in the astroglialscar after human traumatic spinal cord injury. BMC Neurol.2009;9:32.
    [26] Zhao Dongming, Liu Shiqing, Chen Liang, et al. Expression of COX-2in acutespinal cord injury of rats. Journal of Medical Postgraduates,2004,17(11):980-982.
    [27] Carmel JB, Galante A, Soteropoulos P, et al. Gene expression profiling of acute spinalcord injury reveals spreading inflammatory signals and neuron loss.Physiol Genomics.2001;7:201-213.
    [28] Brnes KR, Garay J, Di Giovanni S, et al. Expression of two temporally distinctmicroglia-related gene clusters after spinal cord injury.Glia.2006;53:420-433
    [29] Parolini O, Alviano F, Bagnara GP,et al. Isolation and characterization of cells fromhuman term placenta: Outcome of the First International Workshop on PlacentaDerived Stem Cells.Stem Cells.2008;26:300-311.
    [30] Parr AM, Kulbatski I, Zahir T,et al. Transplanted adult spinal cord-derived neuralstem/progenitor cells promote early functional recovery after rat spinal cordinjury.Neuroscience.2008;155:760-770.
    [31] Shechter R, Raposo C, London A, et al. The Glial Scar-Monocyte Interplay: A PivotalResolution Phase in Spinal Cord Repair. PLoS One.2011;6(12): e27969.
    [32] Cuff L, Fann JR, Bombardier CH, et al. Depression, Pain Intensity, and Interference inAcute Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation,2014,20(1):32-39.
    [33] Ditunno JF, Cardenas DD, Formal C, et al. Advances in the rehabilitation managementof acute spinal cord injury. Handb Clin Neurol,2012,109:181-195.
    [34] Lin Bin, He Yongzhi, Guo Zhiming et al. Clinical analysis on early surgery for actuecervical spinal cord injury with incomplete paralysis in45cases. Journal of ClinicalOrthopaedics,2011,14(3):241-243.
    [35] Sharma A. Pharmacological management of acute spinal cord injury. J AssocPhysicians India,2012,60(Suppl):13-18.
    [36]邱志杰,杨惠林,魏立.甲基强的松龙冲击治疗脊髓损伤疗效及并发症分析.山东医药,2010,50(14):52-53.
    [37] Lee BH, Lee KH, Yoon DH, et al. Effects of methylprednisolone on the neuralconduction of the motor evoked potentials in spinal cord injured rats. Journal of Koreanmedical science,2005,20(1):132-138.
    [38] McIntosh TK, Saatman KE, Raghupathi R, et al. Review. The Dorothy RussellMemorial Lecture. The molecular and cellular sequelae of experimental traumatic braininjury: pathogenetic mechanisms. Neuropathology and applied neurobiology,1998,24(4):251-267.
    [39] Jain KK. Ethical and regulatory aspects of embryonic stem cell research.Exper40Opin Biol Ther,2002,2(8):819-26
    [40] Cusimano M, Biziato D, Pluchino S, et a1. Transplanted neural stem/precursor cellsinstruct phagocytes and reduce secondary tissue damage in the injured spinal cord.Brain,2012,135(Pt2):447-60
    [41] Gao J, Coggeshall RE, Tarasenko YI, et al. Human neural stem cell-derivedcholinergic neurons innervate muscle in motoneuron deficient adult rats.Neuroscience,2005,131(2):257-62
    [42] Nakamura M, Okada S, Toyama Y, et al. Role of IL-6in spinal cord injury in amouse mdoel. Clin RevAllergy Immunol,2005,28(3):197-204
    [43] Mothe AJ, Bozkurt G, Tator CH, et a1. Intrathecal transplantation of stem cellsby lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord,2011,49(9):967-73
    [44] Osaka M, Honmou O, Kocsis JD,et al. Intravenous administration of mesenchymalstem cells derived from bone marrow after contusive spinal cord injury improvesfunctional outcome. Brain Res,2010,1343:226-35
    [45] Takeuchi H, Natsume A, Yoshida J, et a. Intravenously transplanted human neuralstem cells migrate to the injured spinal cord in adult mice in an SDF-1-andHGF-dependent manner. Neurosci Lett,2007,426(2):69-74
    [46] Neuhuber B, Barshinger AL, Paul C, et a1. Stem cell delivery by lumbar puncture as atherapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine,2008,9(4):390-9
    [47] Windus LC, Lineburg KE, Scott SE. et al. Lamellipodia mediate the heterogeneity ofcentral olfactory ensheathing cell interactions. Cell Mol Life Sci,2010,67(10):1735-1750
    [48] Ekberg JA, Amaya D, Mackay-Sim A, et al. The migration of olfactory ensheathingcells during development and regeneration. Neurosignals,2012,20(3):147-158.
    [49] Kalincik T, Choi EA, Feron F, et al. Olfactory ensheathing cells reduce duration ofautonomic dysreflexia in rats with high spinal cord injury. Auton Neurosci,20010,154(1):20-29
    [50] Ziegler M D, Hsu D, Takeoka A, et al. Further evidence of olfactory ensheathing gliafacilitating axonal regeneration after a complete spinal cord transection. Experimentalneurology,2011,229(1):109-119.
    [51] Sasaki M, Lankford KL, Radtke C, et al. Remyelination after olfactory ensheathingcell transplantation into diverse demyelinating environments. Experimental neurology,2011,229(1):88-98.
    [52] Barnett S C, Riddell J S. Olfactory ensheathing cell transplantation as a strategy forspinal cord repair-what can it achieve? Nature Clinical Practice Neurology,2007,3(3):152-161.
    [53] Au E, Richter MW, Vincent AJ, et al. Sparc from olfactory ensheathing cellsstimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair.The Journal of neuroscience,2007,27(27):7208-7221.
    [54] Dasari VR, Spomar DG, Cady C,et al. Mesenchymal stem cells from rat bone marrowdownregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats.Neuro-chem Res,2007,32(12):2080-2093.
    [55] Zhang X, Du F, Yang D,et al. Transplanted bone marrow stem cells relocate to infarctpenumbra and co-express endogenous proliferative and immature neuronal markers ina mouse model of is chemic cerebral stroke. BMC Neurosci,2010,11:138.
    [56] Chamberlain G, Fox J, Ashton B,et al. Concise review: mesenchymal stem cells: theirphenotype, differentiation capacity, immunological features, and potential for homing.Stem Cells,2007,25(11):2739-2749.
    [57] Chiba Y, Kuroda S, Maruichi K, et al. Transplanted bone marrow stromal cellspromote axonal regeneration and improve motor function in a rat spinal cord injurymodel. Neurosurgery,2009,64(5):991-1000.
    [58] Citron B A, Arnold P M, Sebastian C, et al. Rapid upregulation of caspase-3in ratspinal cord after injury: mRNA, protein, and cellular localization correlates withapoptotic cell death. Experimental neurology,2000,166(2):213-226.
    [59] Sharma H S. Neurotrophic factors in combination: a possible new therapeutic strategyto influence pathophysiology of spinal cord injury and repair mechanisms. Currentpharmaceutical design,2007,13(18):1841-1874.
    [60]吴军发,胡永善,吴毅.脊髓损伤的康复治疗进展[J].中国康复医学杂志,2001,16(6):377-379.
    [61]何成奇,韩梅,关骅.脊髓损伤的康复治疗[J].国外医学:物理医学与康复学分册,2003,23(3):105-108.
    [62] He lina, Yuan Zhang, Chen Wei,ea al. Advance in Empirical and Clinical Research ofElectrical Stimulation for Spinal Cord Injury. Chin J Rehabil Theory Pract,2009,15(8):720-722.
    [63] Totoiu M O, Keirstead H S. Spinal cord injury is accompanied by chronic progressivedemyelination. Journal of Comparative Neurology,2005,486(4):373-383.
    [64] Bramlett H M, Dietrich W D. Progressive damage after brain and spinal cord injury:pathomechanisms and treatment strategies. Progress in brain research,2007,161:125-141.
    [65] James N D, Bartus K, Grist J, et al. Conduction failure following spinal cord injury:functional and anatomical changes from acute to chronic stages. The Journal ofNeuroscience,2011,31(50):18543-18555.
    [66] Jiang S, Khan M I, Lu Y, et al. Guanosine promotes myelination and functionalrecovery in chronic spinal injury. Neuroreport,2003,14(18):2463-2467.
    [67] Wu B, Ren X. Promoting axonal myelination for improving neurological recovery inspinal cord injury. Journal of neurotrauma,2009,26(10):1847-1856.
    [68] Azari M F, Profyris C, Karnezis T, et al. Leukemia inhibitory factor arrestsoligodendrocyte death and demyelination in spinal cord injury. Journal ofNeuropathology&Experimental Neurology,2006,65(9):914-929.
    [69] Saganová K, Gálik J, Bla ko J, et al. Immunosuppressant FK506: focusing onneuroprotective effects following brain and spinal cord injury. Life sciences,2012,91(3):77-82.
    [70] Ji B, Li M, Wu W, et al. Lingo-1antagonist promotes functional recovery and axonalsprouting after spinal cord injury. Molecular and Cellular Neuroscience,2006,33(3):311-320.
    [71] Miron VE, Kuhlmann T, Antel JP. Cells of the oligodendroglial lineage, myelination,and remyelination. Biochimica et biophysica acta.2011,1812:184-93.
    [72] mery B. Regulation of oligodendrocyte differentiation and myelination. Science.2010,330:779-82.
    [73] Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health anddisease. Trends Neurosci.200124:39-47.
    [74] Horner PJ, Power AE, Kempermann G, et al. Proliferation and Differentiation ofProgenitor Cells Throughout the intact adult rat spinal cord. The Journal ofneuroscience:the official journal of the Society for Neuroscience.2000,20:2218-28.
    [75] Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci.2002;3:705-14.
    [76] Wang xin, Wang ninghua. Advance in Mechanisms of Functional Recovery after BrainInjury. Chin J Rehabil Throry Pract,2008,14(9):808-813.
    [77] Baumann N,Pham-DiIlll D. Biology of o]igodendrocyte and myelin in themammalian central nervous system. Physiol Rev,2001,81(2):871-927.
    [78] Spassky N, Goujet-Zalc C, Parmantier E, et al. Multiple Restricted Origin ofOligodendrocytes.The Journal of Neuroscience,1998,18(20):8331-8343.
    [79] Cohen RI, Rottkamp DM, Maric D, et al. A role for semaphorins and neuropilins inoligodendrocyte guidance. J Neurochem,2003,85(5):1262-1278.
    [80] Okada A, Tominaga M, Horiuchi M, et al.Plexin-A4is expressedin oligodendrocyteprecursor cells and acts as a mediator of semaphorinsignals. Biochem Biophys ResCommun,2007,352(1):158-163.
    [81] Spassky N, de Castro F, Le Bras B, et al.Directional guidance of oligodendroglialmigration by class3semaphorins and netrin-1. J Neurosci2002,22:5992-6004.
    [82] Tsai HH, Frost E, et al. The chemokine receptor CXCR2controls positioning ofoligodendrocyte precursorsin developing spinal cord by arresting their migration.Cell,2002,110(3):373-383.
    [83] Fruttiger M, Karlsson L, Hall AC, et al. Defective oligodendrocyte development andsevere hypomyelination in PDGF-A knock out mice. Development,1999,126(5):457-467.
    [84] Zhang H, Vutskits L, Calaora V, et al. A role for the polysialicacidneural celladhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. JCell Sci,2004,117(Pt1):93-103.
    [85] Bribian A, Barallobre MJ, et al. Anosmin-1modulates the FGF-2dependentmigration of oligodendrocyte precursors in the developing optic nerve. Mol CellNeurosci,2006,33(1):2-14.
    [86] Yan H, Rivkees SA. Hepatocyte growth factor stimulates the proliferation andmigration of oligodendrocyte precursor cells. J Neurosci Res,2002,69(5):597-606.
    [87] Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNAmethyltransferase gene DNMT3A in acute monocytic leukemia. Nature genetics,2011,43(4):309-315.
    [88] Boscia F, D'Avanzo C, Pannaccione A, et al. Silencing or knocking out theNa(+)/Ca(2+) exchanger-3(NCX3) impairs oligodendrocyte differentiation. Cell DeathDiffer.2012Apr;19(4):562-72.
    [89] Scorziello A, Savoia C, Sisalli MJ, et al. NCX3regulates mitochondrial Ca2+handling through the AKAP121-anchored signaling complex and preventshypoxia-induced neuronal death. Journal of cell science,2013,126(24):5566-5577.
    [90] Nicolay DJ, Doucette JR, Nazarali AJ.Transcriptional control of oligodendro-genesis.Glia,2007,55(13):1287-99
    [91] Emery B. Regulation of oligodendrocyte differentiation and myelination. Science,2010,330(6005):779-782.
    [92] McTigue D M, Tripathi R B. The life, death, and replacement of oligoden-drocytes inthe adult CNS. Journal of neurochemistry,2008,107(1):1-19.
    [93] Franklin R J M. Remyelination in the CNS: from biology to therapy. Nature ReviewsNeuroscience,2008,9(11):839-855.
    [94]Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Actaneuropathologica,2010,119(1):37-53.
    [95] McCaig CD. Spinal neurite reabsorption and regrowth in vitro depend on the polarityof an applied electric field. Development.1987,100:31-41.
    [96] Borgens RB, Toombs JP, Breur G, et al. An imposed oscillating electrical fieldimproves the recovery of function in neurologically complete paraplegic dogs. JNeurotrauma.1999,16:639-57.
    [97] Borgens RB, Toombs JP, Blight AR, et al. Effects of applied electric-fields on clinicalcases of complete paraplegia in dogs. Restor Neurol Neurosci.1993,5:305-22.
    [98] Strautman AF, Cork RJ, Robinson KR. The distribution of free calcium in transectedspinal axons and its modulation by applied electrical fields. The Journal ofneuroscience: the official journal of the Society for Neuroscience.1990,10:3564-75.
    [99] Moriarty LJ, Borgens RB. An oscillating extracellular voltage gradient reduces thedensity and influences the orientation of astrocytes in injured mammalian spinal cord.Journal of Neurocytology.2001,30:45-57.
    [100] Orentas DM, Miller RH. Regulation of oligodendrocyte development. Mol Neurobiol,1998,18(3):247-59.
    [101] Barres BA, Raff MC. Proliferation of oligodendrocyte precursor cells depends onelectrical activity in axons. Nature Protocols.1993,361258-60.
    [102] thman T, Yan H, Rivkees SA. Oligodendrocytes express functional A1adenosinereceptors that stimulate cellular migration. Glia.2003,44:166-72.
    [103] Fields RD, Stevens B. ATP: an extracellular signaling molecule between neurons andglia. Trends Neurosci.2000,23:625-33.
    [104] Stevens B, Porta S, Haak LL, et al. Adenosine A Neuron-Glial TransmitterPromoting Myelination in the CNS in Response to Action Potentials. Neuron.2002,5:855-68.
    [105] Ishibashi T, Dakin KA, Stevens B, et al. Astrocytes promote myelination in responseto electrical impulses. Neuron.2006;49:823-32.
    [106] Hamilton N, Vayro S, Wigley R, et al. Axons and astrocytes release ATP andglutamate to evoke calcium signals in NG2-glia. Glia.2010;58:66-79.
    [107] Li Q, Brus-Ramer M, Martin JH, et al. Electrical stimulation of the medullarypyramid promotes proliferation and differentiation of oligodendrocyte progenitor cellsin the corticospinal tract of the adult rat. Neuroscience letters.2010;479:128-133.
    [108] Bai H, McCaig CD, Forres t er JV, et al. DC electric fields in duce distinctpreangiogenic responses in microvascular and macrovascular cells. Art eriosclerThromb Vasc Biol,2004,24(7):1234-1239.
    [109] Zhang Ying-ying, LI Jun-cen, Rao Ying, et al. Effects of Electrical Stimulation onthe Expression of Glial Fibrillary Acidic Protein and Interleukin-1Alpha in Adult Ratswith Spinal Cord Injury. Chin J Rehabil Theory Pract,2011,17(9):844-847.
    [110]Liel DJ, Huang W, Yong W,et al. Regulation of Trk receptor following conunsion ofthe rut spinal cord. Nerol,2001,167(1):15-26.
    [111] CHEN Hong, LI Jun-cen, DANG Yan-li, et al. Effects of Electrical Stimulation onExpression of Nerve Growth Factor in Adult Rats with Spinal Cord Injury. Chin JRehabil Theory Pract,2012.18(1):33-36.
    [112]时素华,李志刚,宋萌,等.电针对大鼠脊髓损伤后细胞凋亡受体及肿瘤坏死因子-1表达的影响.吉林中医药,2011,31(1):73-77.
    [113]Li X, Wang N. The Effect of Electro-acupancture on PARP-1of Cell Apoptosis afterSpinal Cord Injury of Rats. Journal of Clinical Acupuncture and Moxibustion,2011,5:029.
    [114] Li X, Liu L. The Effect of Electro-acupuncture on Caspase-3of Cell Apoptosis afterSpinal Cord Injury of Rats. Information on Traditional Chinese Medicine,2011,3:052.
    [115]宋琳,李晓宁,王宁,等.电针对大鼠脊髓损伤后细胞凋亡PARP-1裂解片段表达的影响.中医药学报,2011,39(2):86-88.
    [116] Zhao M, Bai H, Wang E, et al. Electrical stimulation directly induces pre-angiogenicresponses in vascular endothelial cells by signaling through VEGF receptors. Journal ofcell science,2004,117(3):397-405.
    [117]Bai H, Forrester J V, Zhao M. DC electric stimulation upregulates angiogenic factorsin endothelial cells through activation of VEGF receptors. Cytokine,2011,55(1):110-115.
    [118]伍亚民,王正国.脊髓缺血再灌流对其血流量变化及其病理改变关系的研究.第三军医大学学报,1999,21(7):475-478.
    [119] Zhang G, Huo X, Wang A, et al. Electrical stimulation modulates injury potentials inrats after spinal cord injury. Neural Regeneration Research,2013,8(27):2531.
    [120] Zhang G, Wang A, Zhang C, et al. Compensation for injury potential by electricalstimulation after acute spinal cord injury in rat. IEEE,2013:3634-3637.
    [121] Hamasaki T, Tanaka N, Kamei N, et al. Magnetically labeled neural progenitor cells,which are localized by magnetic force, promote axon growth in organotypic cocultures.Spine,2007,32(21):2300-2305.
    [122] Kamei N, Tanaka N, Oishi Y, et al. Bone marrow stromal cells promotingcorticospinal axon growth through the release of humoral factors in organotypiccocultures in neonatal rats. Journal of Neurosurgery: Spine,2007,6(5):412-419.
    [123] Faulkner J R, Herrmann J E, Woo M J, et al. Reactive astrocytes protect tissue andpreserve function after spinal cord injury. The Journal of neuroscience,2004,24(9):2143-2155.
    [124] Myer DJ, Gurkoff GG, Lee SM, et al. Essential protective roles of reactive astrocytesin traumatic brain injury. Brain,2006,129(10):2761-2772.
    [125] Zhao Y, Chen X, Ma L, et al. Electroacupuncture pretreatment induces toleranceagainst focal cerebral ischemia through activation of canonical Notch pathway. BMCNeurosci.2012,19;13:111.
    [126]禺金海,袁章,杨拯.电针对脊髓损伤后蛋白质表达影响的研究.实用医学杂志,2009,25(24):4242.
    [127] Zeng yi, Xiong Li-ze, Chen Shao-yang et al. Effect of Pretreatment with RepeaterElectroacupuncyure on HSP90Expression of Lumbar Spinal Cord afterIschemia-reperfusion Injury in Rabbits.Acupuncture Research,2005,29(4):261-265.
    [128] Li Qun. Electrical Stimulation Promote Proliferation and Dif ferentiation ofEndogenous Neural Stem Cells in Normal and Injured Spinal Cord. AcupunctureResearch,2008,33(1):34-40.
    [129] Sun Z, Li X, Su Z, et al. Electroacupuncture-enhanced differentiation of bone marrow stromalcells into neuronal cells. J Sport Rehabil.2009,18(3):398-406.
    [130] Becker D, Gary DS, Rosenzweig ES, et al. Functional electrical stimulation helpsreplenish progenitor cells in the injured spinal cord of adult rats. Experimentalneurology,2010,222(2):211-218.
    [131] Sun Y, Li J, Gao L, et al. Effect of Electrical Stimulation on Expression of GrowthAssociated Protrin-43,basic Fibroblast Growth Factr of Insulin-like Growth Factor inSpinal Cord Injury Rats after Human Umbilical Cord Blood Stem cells Transplantion.Chin F Rehabil Theory Pract,2009,15(8):717-719
    [132] Shibuya S, Yamamoto T, Itano T. Glial and axonal regeneration following spinal cordinjury. Cell Adh Migr,2009,3(1):99-106.
    [133] Dong K, Wang R, Wang X, et al. Tumor-specific RNAi targeting eIF4E suppressestumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breastcarcinoma cells.Breast Cancer Res Treat.2009,113(3):443-56.
    [134]卢帆,李典,杨拯,等.电刺激对脊髓损伤大鼠巢蛋白与GFAP表达的影响.实用骨科杂志,2012,18(1):32-36.
    [135] Kremer D, Aktas O, Hartung HP, et al. The complex world of oligodendroglialdifferentiation inhibitors.Annals of neurology,2011,69(4):602-618.
    [136] Miron V E, Kuhlmann T, Antel J P. Cells of the oligodendroglial lineage, myelination,and remyelination. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2011,1812(2):184-193.
    [137] Zhang Y, Argaw AT, Gurfein B T, et al. Notch1signaling plays a role in regulatingprecursor differentiation during CNS remyelination. Proceedings of the NationalAcademy of Sciences,2009,106(45):19162-19167.
    [138] Ashburner B P, Westerheide S D, Baldwin A S. The p65(RelA) subunit of NF-κBinteracts with the histone deacetylase (HDAC) corepressors HDAC1and HDAC2tonegatively regulate gene expression. Molecular and cellular biology,2001,21(20):7065-7077.
    [139] Mielcarek M, Benn CL, Franklin SA, et al. SAHAdecreases HDAC2and4levels invivo and improves molecular phenotypes in the R6/2mouse model of Huntington'sdisease. PLoS One,2011,6(11): e27746.
    [140] Xing L, Zhengrong L, Yong C, et al. Role of HDAC11in induction of immunetolerance in rats after liver transplantation. Journal of Third Military MedicalUniversity,2011,33(4):372-376.
    [141] Francia S, Michelini F, Saxena A, et al. Site-specific DICER and DROSHA RNAproducts control the DNA-damage response. Nature,2012,488(7410):231-235.
    [142] Stiver SI, Tan X, Brown LF, et al. VEGF-A angiogenesis induces a stableneovasculature in adult murine brain. J Neuropathol Exp Neurol,2004,63(8):841-855.
    [143] Qadir AS, Woo KM, Ryoo HM, et al. Insulin suppresses distal-less homeobox5expression through the up-regulation of microRNA-124in3T3-L1cells. Exp CellRes.2013,319(14):2125-34.
    [144] Sun J, Sha B. VEGF-mediated angiogenesis stimulates neural stem cell proliferationand differentiation in the premature brain.Biochem Biophys Res Commun,2010.394(1):p.146-52.
    [145] Argando a EG, Bengoetxea H, Bulnes S, et al. Effect of intracortical vascularendothelial growth factor infusion and blockade during the critical period in the ratvisual cortex. Brain research,2012,1473:141-154.
    [146] Greenberg DA, Jin K. Vascular endothelial growth factors (VEGFs) and stroke.Cellular and Molecular Life Sciences,2013,70(10):1753-1761.
    [147] Ma Y, Zechariah A, Qu Y, et al. Effects of vascular endothelial growth factor inischemic stroke. Journal of neuroscience research,2012,90(10):1873-1882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700