用户名: 密码: 验证码:
新型可逆式弯掠组合叶片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正反向可逆式通风对于矿井、隧道等场合的安全生产具有极其重要的意义,具有直接反转特点的可逆式风机由于结构简单、反风响应快等特点,已成为正反向可逆式通风领域的主要研究方向。此外,在轴流风扇/压气机领域,弯掠叶片技术的应用可大幅提高气动效率、降低气动噪声、提高稳定工作范围,亦逐渐成为叶轮机械研究领域的主要研究方向之一。
     本文以直接反转可逆式通风和弯掠叶片技术为研究对象,采用实验、理论和数值模拟等研究手段,首先研究了一种具有直接反转特点完全可逆式组合叶片的轴流风机。其次,在国内首次对具有相同几何参数和弯角大小的周向前弯和周向后弯动叶轮进行了对比研究,探讨了弯掠叶片的气动-声学特性及其内部流动机理,并进一步完善了适用于弯掠叶片气动计算的“双激盘”理论模型。最后,通过将弯掠叶片技术与组合叶片相结合,首次提出并研究了一种新型弯掠组合叶片。本文的主要研究工作包括:
     1.叶轮设计
     本文以目前工业通风领域广泛采用的T35型轴流风机作为设计原型,分别设计制造了周向前弯叶轮、周向后弯叶轮、可逆式组合叶轮和可逆式弯掠组合叶轮等四个叶轮。由于目前弯掠叶片领域尚未建立一套成熟的设计体系,本文首次尝试将逆向工程设计方法应用于弯掠叶片设计领域,建立了一套弯掠叶片逆向工程设计流程;此外,考虑到叶栅稠度沿叶高的变化,引入相对栅距系数T'作为叶片周向最佳组合参数的衡量指标,通过多方案分析成功将平面叶栅实验优化结果应用于可逆式组合叶片和弯掠组合叶片的设计。
     2.实验装置及测试方法
     本文建立了一套风机气动-声学实验装置。采用五孔探针和热线风速仪(CTA)对实验风机出口流场进行了详细测量,探讨了旋转单斜丝热线测量叶轮机械出口三维平均流场的方法,通过采用反射式红外跟踪触发系统,实现了同步触发多点采样平均技术在本文热线测试工作中的应用,通过分析热线单丝斜探头旋转次数和测量时测量数据总体平均次数对测试结果的影响,为热线的准确测量提供了依据。实验结果表明,本文所采用的实验装置和测试方法满足风机总体气动-声学性能及风机出口详细流场测量的要求。
     3.弯掠叶片的理论与实验研究
     弯掠动叶的径向力分量可有效控制通道内部径向压力梯度和叶片表面附面层中低能流体的流动,应用前弯技术有助于减小叶顶处通道二次流损失、减薄叶片表面附面层厚度、减少附面层内低能流体向叶顶处的堆积,极大改善了叶顶流动状况,有助于提高风机总体气动-声学性能;动叶后弯引起叶片下半叶高附面层内低能流体向叶片顶部迁移,增加了叶顶部分通道二次流和端壁损失,而下半叶高通道二次流损失和轮毂附面层损失的减小不足以抵消叶顶附近所增加的损失,从而引起风机总损失增加,效率降低,噪声增大,其应用效果明显不如前弯。弯掠叶片内部流场的数值模拟结果进一步揭示了叶片弯掠后对内部流动参数分布的影响。在理论方面,通过改进损失计算模型和建立出口气流角与升力系数、总损失系数间的修正关系,进一步完善了弯掠叶片“双激盘”气动计算模型。通过对周向弯曲方向和弯曲角度的优化表明,动叶采用前弯技术明显优于后弯,动叶后弯后气动效率随弯曲角度的增大而明显降低;前弯动叶存在一最佳角度范围,主要取决于动叶前弯后上半叶高叶顶处损失的减小与叶片中部、下半叶高损失增加之间的平衡,合适的前弯角度可使叶片前弯后减小总损失,提高气动效率,本文中最佳前弯角度范围在2°~4°(对应叶顶处弯角6.5°~14.2°)为宜,此时风机效率可比径向叶片提高1.5%~2.0%。
     4.可逆式组合叶片及弯掠组合叶片的研究
     本文在现有T35原型叶片的基础上将叶片正反向组合后构成可逆式组合叶片。实验结果表明组合叶片可满足风机直接反转可逆式反风要求,且可保证正反向气动性能完全一致;后排反向叶片的加入在前、后排叶片间形成的加速流道有效改善了前列正向叶片吸力面附面层流动,但反向布置的后排叶片由于常规的平板圆弧叶型曲率方向与正常情况相反,后排叶片产生负压升,恶化了组合叶片的总体气动-声学性能;在组合叶片上引入弯掠技术形成弯掠组合叶片后,叶片径向力有效的减小了叶顶通道二次流和端壁附面层损失,总体气动-声学性能有大幅度提高,其中风机流量系数增加7.97%,全压系数增加9.69%,静压系数增加5.88%,效率增加11.78%,比A声级降低4.97dB,显示出良好的应用前景。
     5.进一步工作展望
     通过对本文的研究工作进行总结,结合目前风扇/压气机领域的研究动向,提出了弯掠叶片、组合叶片和弯掠组合叶片的进一步研究思路。
Reversible ventilation is crucial to the security of mines and tunnels. The inverse ventilation of axial flow fan by simply reverse motor has been proved excellent in the inverse ventilation fields. Designing axial flow turbomachinery such as fans, propellers, propfans, and compressors with skewed blades has several advantages. The noise emission is mostly lower and the aerodynamic performance can be widely improved. In this paper, detailed experimental and computational investigation has been carried on to a reversible fan with combined blades and two other fans with skewed blades. After that, a new-type reversible axial flow fan with skewed and combined blades is firstly invented.
     Detail contents are listed as bellows,
     1. Impeller design
     In this paper, four different impellers, namely forward skewed impeller, backward skewed impeller, reversible combined impeller, and reversible combined&skewed impeller respectively, are designed and investigated. So far, to the best of our knowledge, no design method of skewed blade is available. This paper has developed a reverse engineering design (RED) process of skewed blade. In order to apply the optimal circumferential combine parameters from plain cascade experiment to actual impeller designation, a non-dimensional coefficient named relative pitch T'is defined and used as a criterion of combine parameters.
     2. The test rig and measurement method
     An aerodynamic&aeroacoustic test rig is designed and constructed in this thesis. Five hole probe and hot-wire (CTA) is employed to measure the three-dimensional velocity and pressure distribution downstream of each impeller. A rotating single slanted hot-wire technique and a periodic multi-sampling measurement system has been developed, with the use of a infrared probe as pulse generator. Typical experimental results of different rotating times and mass-average times are presented to investigate the measurement accuracy.
     3. Study on the impellers with skewed blades
     Experimental and computational results show that the aerodynamic and aeroacoustic perfonnance of the impellers with skewed blades can be widely influenced due to the transformation of passage vortex and the movement of low energy fluids in blade boudery layer. Performance of impeller with forward skewed blades is improved because of the lower passage vortex loss and the weaken boundary layer thickness at the impeller tip region. On the contrary, performances of impeller with backward skewed blades become worsen. Numerical flow simulation results give some details on the distributions of fluid field parameters. In the theory aspect, the so called Diactuator Disc Theory (DDT) is finally consummated and adopted to optimize the skew angle. It shows that appropriate forward skew angle may decrease the total pressure loss, improve aerodynamic efficiency, lower the aerodynamic noise, and enlarge the steady flow range. In this paper, impeller with forward-skew angle from2to4degree may get the best performance. The efficiency may be improved by1.5%-2.0%compared to impeller with straight blades.
     4. Study on the reversible impellers with combined and skewed blades
     First, a so called combined-impeller is investigated, which is composed of two rows of T35archetype blades, namely normal and reverse blades respectively. It shows the merits of fully reversible ventilation and direct re-rotating. However, the aerodynamic and aeroacoustic performance is not satisfied due to the negative pressure induced by the reverse blade. With the use of skewed blade technique, the new type reversible impeller with combined and skewed blades shows a great performance improvement. The flow rate coefficient is increased of7.97%, the total pressure coefficient is increased of9.69%, the static pressure coefficient is increased of5.88%, the efficiency is increased of11.78%, and the sound pressure level is decreased of4.97dB.
     5. Conclusion and expectation
     At the end of this thesis, research conclusions are presented and farther research expectations on skewed blade technique and the combined blade technique is also listed for reference.
引文
1.李庆宜.通风机.北京:机械工业出版社,1985
    2.聂能光,李福忠.风机节能与降噪.北京:科学出版社,1990
    3. B.Eck. Fans. Pergamon Press. Australia,1973
    4. R.A.Wallis. Axial flow fans and ducts. A Wiley Inter-science Publication,1983
    5. C.Santolaria, Aerodynamic design of a reversible jet fan. Informacion Tecnologica.1996,7(4):133-140
    6.胡亚非.直接反转反风轴流风机在我国煤矿的应用前景.湘潭矿业学院学报.1989,89(1):34-38
    7. Landolfa. A., et al. The application of jet fans to longitudinal tunnel ventilation. Proc. Of 6th international symposium on the aerodynamics and ventilation of vehicle tunnels. 1988:443-462
    8. R.O. Carvel, A.N. Beard, P.W. Jowitt. The influence of longitudinal ventilation systems on fires in tunnels. Tunneling and underground space technology.2001 (16): 3-21
    9. Chow, W.K., On smoke control for tunnels by longitudinal ventilation. Tunneling and underground space technology.1998 (13):272-275
    10. Yasushi Oka, and Adkinson, G.T., Control of smoke flow on tunnel fires. Fire safety journal.1995 (25):305-322
    11. Chen, T.Y., Lee, Y.T., and Hsu, C.C., Investigations of piston-effect and jet fan-effect in model vehicle tunnels. Journal of wind engineering and industrial aerodynamics. 1998 (73):99-110
    12.李泰勋,韩方强.轴流风机与对旋风机矿井主扇型式浅析.煤矿设计.2000(2):17-18
    13.陈韶章,邓先平编泽.在道路隧道纵向通风中采用射流风机.隧道译丛.1990(2):58-63
    14.冯炼.新龙门隧道射流通风与污染物浓度的数值分析.西南交通大学学报.Vo1.32,No.2,
    15.孙一坚,杨昌智.铁路双线隧道中有害气体分布规律的研究.暖通空调.Vo1.24,No.4,1999:12-14
    16.杨昌智,孙一坚.铁路双线隧道通风的空气动力特性研究.湖南大学学报.Vo1.24,No.2,1997:86-91
    17.高孟理.隧道射流通风与防灾.中国公路学报.Vo1.11,No.1,1998:1-5
    18.叶英,戴韧,薛雷.隧道射流风机的气动设计方法.流体机械.Vo1.28,No.5,2000:17-18
    19.杨洪海,崔新华.公路隧道纵向通风系统射流风机选型计算.风机技术.2000(2): 17-20
    20.李茂淦.单线铁路隧道射流通风的研究.铁道建筑.1995(2):2-6
    21.吴秉礼.隧道射流风机的设计与选型.风机技术.2001(4):14-15
    22.蒋欣中.射流通风技术在铁路隧道中的应用.铁道工程学报.1996(3):106-109
    23.陈矛章.风扇/压气机技术发展和对今后工作的建议.航空动力学报.Vol.17,No.1,2002:1-15
    24.胡亚非,王家澎.不同叶型拱度轴流风机的反风性能分析.煤矿机电.1991(6):9-13
    25.胡亚非,王家澎.可直接反转反风矿用轴流风机的研究.江苏煤炭.1990(1):33-37
    26.李隆华.矿井轴流风机的理论反转反风量.中国矿业大学学报.1984,84(3):48-55
    27.李隆华.提高矿井轴流风机实际反风量的可能途径.中国矿业大学学报.1984,84(4):31-40
    28.陈更林.K型轴流风机叶栅阻力系数与反风量系数的实验研究.流体机械.Vol.23,No.8,pp.11-13,1995
    29. Li Longhua. Feasibility Study of Inverse Ventilation in Chinese Coal-mines by Simply Reversing the Axial Fan. The 2nd China-Japan Joint Conference on Fluid Machinery, Xi'an China,1987
    30.宁宣绥.紧急通风用可逆式通风机的研制.风机技术.1990(3):27-33,
    31. R.Ramachandran, H.C.Radha Krishna. Cascade experiments over 'S' blade profiles. Journal of energy engineering.1986,112 (1):38-46
    32.李超俊,魏百锁.一种用于可逆轴流风机的新翼型:双圆弧S型翼型的研究.机械工程学报.Vol.28,No.4,1992:37-41
    33.李景银,魏百锁,李超俊.可用于木材干燥轴流风机的新型翼型实验研究.林产工业.Vol.24,No.4,1997:9-11
    34.李超俊,魏百锁.直接反转反风轴流风机的理论与实验研究.西安交通大学学报.Vol.25,No.3,1991:9-13
    35.魏百锁.摆线S型可反向轴流风机翼型的研究.流体工程.Vol.21,No.1,1993:9-12
    36.李景银,徐忠,魏百锁.新型双头反向对称翼型的性能实验研究.流体机械.Vol.30,No.6,2002:4-7
    37.席德科,张仲寅,陆森林等.可逆风机叶片的翼型研究.机械科学与技术.1999,18(4):628-630
    38.刘昌安.GAF系列矿山轴流风机的返风启动与调试(上).煤矿设计.1990(5):16-21
    39.刘昌安.GAF系列矿山轴流风机的返风启动与调试(下).煤矿设计.1990(6):7-10,
    40.姜韻竹.2K60矿井轴流通风机模型的反风性能试验研究.风机技术.1986,86(5)
    41.N.B.克列帕科夫.通风设备的转换式反风装置.世界煤炭技术.1996(5):46-47
    42.钟芳源,杨波,欧阳华.可逆式轴流风机叶片设计新方案的探讨.流体机械.2000,28(12)
    43.杨波.可逆式轴流风机叶片设计新方案一组合叶栅性能的研究.[博士学位论文].上海交通大学,2001
    44.杨波,欧阳华,钟芳源等.组合叶栅的实验研究(一).空气动力学报.2002,20(3)
    45.杨波,欧阳华,钟芳源等.组合叶栅的定义及应用研究.航空动力学报.2002,17(3):309-313
    46.舒士甄,朱力,柯玄龄等,叶轮机械原理.北京:清华大学出版社,1991
    47.吴国钏著.串列叶栅理论.北京:国防工业出版社.1996
    48.周正贵,吴国钏,郭秉衡等.WZ8A轴流压气机静子叶栅性能特点.航空学报,Vol.14,No.10,1993.pp.532-535
    49.苗厚武,高金满,郭捷.串列叶片的应用研究.航空动力学报,Vol.6,No.3,1991.pp.203-206
    50.苗厚武,高金满,郭捷.串列叶片在航空发动机上的应用研究.沈阳航空发动机研究所建所三十周年科技论文选编,1991.pp.46-52
    51.郑世琴,黄虹宾,刘淑艳.串列叶栅的轴流式冷却风扇流场计算.北京理工大学学报.Vol.19,No.5,1999.pp.569-572
    52.周正贵,吴国钏.串列叶栅尾迹特性的实验研究.南京航空航天大学学报.Vol.26,No.4,pp.555-559,1994
    53.周正贵,吴国钏.自由流紊流度对串列叶栅性能的影响.航空动力学报.Vol.11,No.1,PP.1-3,1996
    54. Saha, U.K., and Roy, B., Experimental investigations on tandem compressor cascade performance at low speeds. Experimental thermal and fluid science. Vol.14,263-276, 1997
    55.严明,陈懋章.大小叶片轴流压气机转子流动特性分析.推进技术.Vol.23 No.4,2002.pp.280-282
    56. Godwin W.R. Effect of sweep on performance of compressor blade sections as indicated by swept-blade rotor, unswept-blade rotor and cascade tests. NACA TN 4062
    57. Smith L.H., and Yeh H. Sweep and dihedral effect in axial flow turbomachinery. ASME Journal of basic engineering. Vol.85, No.2,1963:401-416
    58. Smith L.H. The radial equilibrium equation of turbomachinery. ASME Journal of energy for power. Vol.88, No.1,1966:1-13
    59. Hourmouziadis, J. Aerodynamic design of low pressure turbines. AGARD Lecture Series No.167,1989
    60. Breugelmans F.A.E., Carels Y., and Demuth M. Influence of dihedral on the secondary flow in a two-dimensional compressor cascade. ASME Journal of engineering for gas turbine and power.1984 (106) 3:578-584
    61. Breugelmans F.A.E. Influence of incidence angle on the secondary flow in compressor cascade with different dihedral distribution. ISABE paper 85-7078, Beijing, China,1985:663-668
    62. Breugelmans F.A.E. Experimental investigation of sweep and dihedral in compressors. Von Karman Institute for Fluid Dynamics. Belgium,1999
    63. Sasaki, T. and Breugelmans F.A.E. Comparison of sweep and dihedral effect on compressor cascade performance. ASME Paper 97-GT-2,1997
    64. Bogod, A.B. et al. Direct and inverted calculation of 2D axisymmetric and 3D flows in axial compressor blade rows. TSAGI, Moskow, Russia,1992
    65. Tweedt D.L, Okiishi T.H, and Hathaway M.D. Stator endwall leading edge sweep and hub shroud influence on compressor performance. ASME paper 86-GT-197,1986
    66. Behlke R.F. The development of a secondary-generation of controlled diffusion airfoils for multistage compressors. ASME Journal of turbomachinery. Vol.108, pp.32-40,1986
    67. Weingold H.D., Neubert R.J., Behlke R.F. Bowed stator:an example of CFD applied to improve multistage compressor efficiency. ASME Journal of turbomachinery. Vol.119, pp.161-167,1997
    68. Mohammed, K.P., Raj, R.D., Investigation on axial flow fan impeller with forward swept blades. ASME Paper 77-FE-1,1977
    69. Yamaguchi, N., Tominaga, T., and Mitsubishi, T. Secondary loss reduction by forward skewing of axial compressor rotor blading. Proceeding of 1991 Yokohama International Gas Turbine Congress. Vol.2,1991:61-68
    70. Yamaguchi, N., Tominaga, T. Performance improvement by forward skewed blading of axial fan moving blades.11th ISABE 93-7055,1993
    71. Carolus T.H., Beiler M.G., Skewed blades in low pressure fans:a survey of noise reduction mechanisms. AIAA-97-1591-CP,1997
    72. Carolus T.H., Stremel M., Sichelschaufeln bei axialventilatoren. Luftungstechnik. Bd.51,pp.33-39,2000
    73. Beiler M.G., Carolus T.H. Computational and measurement of the flow in axial flow fans with skewed blades. ASME Journal of turbomachinery. Vol.121, pp.59-65,1999
    74. Grummer V., Wenger U. The impact of sweep and dihedral on axial compressor endwall aerodynamics. ISROMAC-8th,2000
    75. Grummer V., Wenger U. Using sweep and dihedral to control three-dimensional flow in transonic stator of axial compressor. ASME Journal of turbomachinery. Vol.123, pp.40-48,2001
    76. Wennerstrom, A.J. Experimental study of a high-through-flow transonic axial compressor stage.6th ISABE 83-7052,1983
    77. Wennerstrom, A.J. Supersonic compressors. Transonic compressors. VKI-LS 1988
    78. Wadia, A.R., Szucs, P.N. and Crall, D.W. Inner working of aerodynamic sweep. ASME Journal of turbomachinery. Vol.120, pp.671-682,1998
    79.欧阳华,钟芳源.叶轮机械气动噪声及周向前弯动叶降噪技术的研究.风机技术.2002(5):11-15
    80. Mikkelson D C., Mitchell G A, Bober L J., Summary of Recent NASA Propeller Research. NASA TM83733,1984
    81. Stutz W., Einfluss der Sichetung auf das aerodynamische und akustische Verhalten von Axialventilatoren. Stromungsmechanik und Stromungschinen 44/92, Mitt.des Institute fur Stromungslehre und Stromungsmachinen, Universitat Karisruhe(TH), 1992.
    82. Cumming R A., Morgan W B, Boswell R J. Hightly Skewed Propellers. Trans.SNME, Vol.80.1972, P98-135
    83. Hayden R E., Some Advances in Design Techniques for Low Noise Operation of Propellers and Fans. Noise-Con77,NASA Langley Research Center,1977
    84. Keschen E J., Noise Generation by a Finite Span Swept Airfoil. AIAA Paper No.83-0768,1983
    85. Envia A. and Kerschen E J., Noise Generated by Convected Gusts Interacting With Swept Airfoil Cascades. AIAA Paper No.86-1872
    86. Envia A. and Kerschen E J., Noise Produced by the Interaction of a Rotor Wake With a Swept Stator Blades. AIAA Paper No.84-2326
    87. Guedel A. and Yazigi N., Influence of Blade Sweep on the Noise of a Low-Speed Tubeaxial Fan. Proc. Of the Internet. INCE Symposium on Fan Noise, CETIM Senlis, P167-178,1992
    88. Wright S E., The Acoustic Spectrum of Axial Fans. Journal of Sound and Vibration, Vol.45,1976, P165-223
    89. Keith W L,Hurdis,D A., Abraham B M. A Comparison to Turbulent Boundary Layer Wall-Pressure Spectra. ASME J.of Fluids Engineering, Vol.114,1992, P338-347
    90. Wright T. and Simmons W E., Blade Sweep for Low-Speed Axial Fans, ASME J. of Turbomachinery, Vol.112,1990, P151-158
    91. Adkins G G. and Smith L H., Span-wise Mixing in Axial Flow Turbomachines, ASME J. of Engineering for Power, Vol.104, P97-110
    92. Ffowcs Williams J E.,Hall L H., Aerodynamic Sound Generation by Turbulent Flow in the Vicinity of a Scattering Half Plane, J. of Fluid Mech.,Vol.40.1979, P657-670
    93. Brown N A., The Use of Skewed Blades for Ship Propellers and Truck Fans, Noise and Fluids Eng.,presented at Winter Annual Meeting of ASME, Atlanta,1977
    94. Fuest Th., Berechnung der Breitbandschalleistung eines Axialventilators mit Hilfe gemessener Schaufeloberflachenwechseldruncks, Dr.-lng.Diss. Universitat-GH Siegen, 1996
    95. Fukano T, Kodama Y, Senoo Y., Noise Generated by Low Pressure Axial Flow Fans I. Modeling of the Turbulent Noise. Journal of Sound and Vibration Vol.50 1977, P63-74
    96. Lichtblau L.,Aerodynamischer und akustischer Entwicklungsstand von Axialgeblasen fur kompakte Motorkuhlsysteme, VDI-Berichte Nr.872,1991, P553-574
    97.宋彦萍.叶片弯曲对环形透平叶栅流场结构与性能影响的实验研究.[博十学位论文],哈尔滨工业大学.1997
    98.钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究.[博士学位论文],哈尔滨工业大学.1995
    99.苏杰先,冯国泰,王仲奇等.弯曲叶片在压气机中的应用.工程热物理学报.Vo1.11,No.4,1990:404-407
    100.钟兢军,苏杰先,王仲奇等.压气机叶栅中应用弯曲叶片的研究.航空动力学报.Vo1.13,No.1,1998:7-12
    101.贾剑波,钟兢军,王仲奇.弯曲叶片压气机叶栅内二次流的数值研究.工程热物理学报.Vo1.20,No.6,1999:685-689
    102.钟兢军,苏杰先,王仲奇等.叶片倾斜和弯曲对扩压叶栅出口流场的影响.工程热物理学报.Vo1.16,No.1,1995:29-34
    103.钟兢军,苏杰先,王仲奇等.从扩压因子看叶片倾斜和弯曲对叶栅出口流场的改善.哈尔滨工业大学学报.Vo1.26,No.5,1994:30-33
    104.王会社,钟兢军,王仲奇.叶片正弯对扩压叶栅气动性能的影响.推进技术.Vo1.23.No.4,2002:321-324
    105.杨科,王会社,钟兢军.叶片周向弯曲角度对扩压叶栅气动性能的影响.哈尔滨工业大学学报.Vo1.34,No.4,2002:459-463
    106.吴继权,吴国钏,钟兢军等.从叶片表面静压分布分析弯曲扩压叶栅的能量损失.航空动力学报.Vo1.13,No.2,1998:118-122
    107.吴继权,吴国钏,钟兢军等.设计工况下反弯叶栅出口流场的实验研究.推进技术.Vo1.19,No.4,1998:83-86
    108.钟兢军,苏杰先,王仲奇等.不同冲角下弯曲扩压叶栅出口流场的实验研究.工程热物理学报.Vo1.16,No.3,1995:284-289
    109.王东,钟兢军,苏杰先等.环型扩压叶栅中应用弯曲叶片的研究.高技术通讯.2000(3):90-94
    110.钟兢军,王苇,苏杰先等.反弯曲扩压叶栅降低二次流损失的实验研究.工程热物理学报.Vo1.18,No.1,1997:53-56
    111.钟兢军,于苇,苏杰先等.稠度对弯叶片压气机叶栅特性的影响.航空动力学报.Vo1.12,No.2,1997:163-166
    112.王会社,袁新,岳国强等.弯曲叶片积叠线对压气机叶栅气动性能的影响.航空 动力学报.Vol.17,No.3,2002:327-331
    113.韩万今,黄洪雁,王仲奇.叶片弯曲对叶顶间隙流动影响的实验研究.航空学报.Vol.20,No.5,1999:399-404
    114.韩万今,黄洪雁,王仲奇.叶片正弯对间隙流动的影响.工程热物理学报.Vol.18,No.4,1997:429-434
    115.陈浮,宋彦萍,冯国泰.掠叶片对压气机流场性能的影响.中国工程热物理年会热机气动热力学年会论文集.2002
    116.王仲奇,苏杰先,钟兢军.弯扭叶片栅内减少能量损失机理研究的新进展.工程热物理学报.Vol.15,No.2,1994:147-152
    117.王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势.中国工程科学.Vol.2,No.6,2000:40-48
    118.陈浮,袁宁,王仲奇.300MW汽轮机末级采用弯曲叶片对其性能影响的数值分析.汽轮机技术.Vo1.41,No.1,1999:4-7
    119.周正贵,吴国钏,胡兵.端弯叶片通道出口二次流的研究.航空动力学报.Vol.11,No.3,1996:303-305
    120.邢秀清,单鹏,周盛.风扇转子前缘曲线相对掠对性能的影响.航空动力学报.Vo1.15,No.1,2000:39-43
    121.李秋实,李玲,陆亚钧.民用通风机气动设计中弯掠长叶片的数值模拟.北京航空航天大学学报.Vo1.27,No.1,2001;44-47
    122.魏兵海,吴克启.高性能弯掠叶片及其对内流影响的研究概况.流体机械.Vol.29,No.1,2001:31-34
    123.谢军龙,E.E.Elhadi,吴克启.前缘掠轴流转子设计方法及其与常规转子的初步比较.中国工程热物理年会热机气动热力学年会论文集.2002
    124.黄其柏.掠形叶片轴流风机涡流噪声的研究.华中理工大学学报.Vol.26,No.2,1998:1-3
    125.于清.弯曲叶片涡轮叶栅二次流损失计算经验模型.热能动力工程.1998(3):189-192
    126.杨爱玲,陈康民.轴向掠叶片对涡轮静叶栅流场气动及声学特性的影响.流体机械.Vo1.28,No.3,2000:25-29
    127.周亚峰,胡国荣.压气机转子叶片弯曲对其气动性能的影响.航空发动机.1996(2):42-45
    128.钟芳源.节能低噪轴流/离心风机(理论、计算、设计、实验研究)论文集.北京:机械工业出版社.1994
    129.王建民.低速轴流风机气动热力学和气动声学优化设计方法探讨及其实验研究.[硕士学位论文],上海交通大学,1984
    130.钟芳源,王建民.轴流压气机和风机气动损失模型的改进.交通大学90周年学术报告会论文.84081[2-001],1986
    131.韦俊.前弯动叶在轴流风机和压气机中应用的机理研究.[硕士学位论文],上海交 通大学,1987
    132.王建民.周向前弯动叶气动力学和气动声学研究.[博士学位论文],上海交通大学,1989
    133.Zhong Fangyuan, Wei Jun and Wang jianming. Prediction of unsteady force distribution along the span of rotor blades of axial flow fans and compressors. First international symposium on experimental and computational aero-thermodynamic of internal flow. Beijing, China,1990
    134.钟芳源,王建民,蔡娜等.双激盘理论及其在轴流式弯掠动叶栅气动计算中的应用.航空动力学报.Vo1.9,No.4,1994:394-398
    135.李中.前弯动叶栅理论与实验研究.[硕士学位论文],上海交通大学,1992
    136.蔡娜.轴流弯掠动叶的气动-声学性能计算及设计方法的研究.[博士学位论文],上海交通大学,1994
    137.蔡娜,钟芳源.弯掠动叶扩大稳定工作范围的实验研究.航空动力学报.Vo1.11.No.3,1996:229-232
    138.王玮.轴流式弯掠动叶栅的优化设计.[硕士学位论文],上海交通大学,1996
    139.蔡娜,李地,钟芳源.弯掠动叶气动-声学优化设计及实验研究.上海交通大学学报.Vo1.31,No.2,1997:81-85
    140.蔡娜,李地,钟芳源.弯掠动叶叶尖径向间隙对气动——声学性能的影响.航空动力学报.Vo1.12,No.1,1997:21-25
    141.蔡娜,钟芳源.弯掠动叶旋转失速工况下气动声学的实验分析与计算.空气动力学报.Vo1.15,No.4,1997:479-483
    142.蔡娜,钟芳源.轴流式弯掠动叶变工况气动一声学性能的实验研究.工程热物理学报.Vo1.17,No.3,1996:280-285
    143.刘富斌.轴流式弯掠动叶变工况性能研究.[博士学位论文],上海交通大学,1999
    144.刘富斌,杜朝辉,钟芳源.轴流通风机动叶前弯对扩大稳定工况的试验研究.风机技术.1999(6):5-9
    145.刘富斌,钟芳源,杜朝辉.前弯动叶片变工况性能的估计方法.航空动力学报.Vo1.15,No.2,2000:147-150
    146.刘富斌,杜朝辉,钟芳源.动叶周向前弯对附面层的影响.航空动力学报.Vo1.15,No.3,2000:233-236
    147.蔡娜,徐建中.计及Re数影响的气动—声学性能实验及优化设计.工程热物理学报.Vo1.21,No.6,2000:691-693
    148.Stanley W. Kandebo. GE公司试验前掠风扇技术(General Electric Tests Forward Swept Fan Technology).国际航空,1997,1
    149.Mikkelson, D. C., Mithell, G A. and Bober, L. J. Summary of Recent NASA Propeller Research. NASA TM-83733,1984.
    150.Garrent Turbine Co. Makers Lead in Compressor Uses. Aviation Week and Space Technology.1983,215-218
    151.肖柳.系列化发展的PW4084型发动机.国际航空.1992,(6):50-52
    152.Ashley S. Forward-sweep fan move ahead. Mechanical engineering.1996 (11)
    153.鲍秀珍.端弯技术在压气机上的应用.中国航空学会第七届学术会议.CSAA94-PT-42.1994
    154.高金满.倾斜叶片在某型发动机上的初步应用研究.航空动力学报.1990,5(2):113-117
    155.蔡运金,钟玉玲等.应用端弯叶片增加压气机喘振裕度.航空动力学报.1988,3(3):215-218
    156.商景泰,通风机手册.北京:机械工业出版社,1996
    157.T35—11轴流通风机说明书.石家庄市风机厂,1999
    158.林清安,Pro/Engineer 2000i2零件设计实务.北京:北京大学出版社,2001
    159.许志钦,孙长库.3D逆向工程技术.北京:中国计量出版社,2002
    160.T35—11轴流通风机叶片设计图纸.石家庄市风机厂,1999
    161.杨波.可逆式轴流风机叶片设计新方案一组合叶栅性能的研究.[博士学位论文].上海交通大学,2001
    162.OUYang Hua, Yang Bo, Zhong Fangyuan,et al. Research on a fully reversible combined cascade. Chinese Journal of Mechanical Engineering.2002,15 (4)
    163.欧阳华,杨波,钟芳源等.直接反转完全可逆式组合叶栅的实验研究.流体力学实验与测量.2002,No.4
    164.宋德耀,罗次申,顾大伟.气动声学测量室设计方案探讨.节能低噪(轴流、离心)风机论文集.北京:机械工业出版社.1994
    165.通风机空气动力性能试验方法.GB1236-85.中华人民共和国国家标准
    166.风机和罗茨鼓风机噪声测量方法.GB2888-91.中华人民共和国国家标准
    167.陈克诚.流体力学实验技术.北京:机械工业出版社.1983
    168.Treaster,A.L., and Yocum,A.M., The Calibration and Application of Five-Hole Probes. ISA Transaction. Vol.18, No.3, pp23-34,1979
    169.姜桐,吴克启.叶轮机械内部流动实验分析方法.北京:机械工业出版社.1989
    170.钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究.哈尔滨工业大学博士学位论文.1995
    171.戴昌晖.流体流动测量.北京:航空工业出版社.1991
    172.盛森芝,沈熊,舒玮.流速测量技术.北京:北京大学出版社.1989
    173.李德贵.自由旋转射流湍流流场的实验研究和数值模拟.[上海交通大学博士学位论文].1999
    174.DANTEC Streamline热线风速仪使用说明书.
    175.Jorgensen,F.E., How to Measure Turbulence with Hot-wire Anemometers. Dantec publish.2002
    176.Motoo KUROUMARU, Masahiro INOUE, Takao HIGAKI, etc., Measurement of Three Dimensional Flow Field behind an Impeller by Means of Periodic Multi-sampling with a Slanted Hot Wire. Bulletin of JSME. Vol.25, No.209, pp1674-1681,1982
    177.Muller,.R., On the accuracy of turbulence measurement with inclined hot wires. Journal of Fluid Mechanics. Vol.119, pp155-172,1982
    178.Russ,S., and Simon, T.W., On the rotating, slanted, hot-wire technique. Experiments in Fluid. Vol.12, pp76-80,1991
    179.Sentker, W.Riess. Experimental investigation of turbulent wake-blade interaction in axial compressors. International Journal of Heat and Fluid Flow.2000(21):285-290
    180.R.T.Johnston, S.Fleeter. High speed rotor wake total temperature measurements using a hot-film anemometer. Experiments in Fluids.1998 (25):337-346
    181.Sieverding,C.H., Arts,T., Measurement techniques for unsteady flows in turbomachines. Experiments in Fluids.2000 (28):285-321
    182.Sentker, W.Riess, Measurement of unsteady flow and turbulence in a low speed axial compressor. Experimental Thermal and Fluid Science.1998 (17):124-131
    183.S.T.Hsu, A.M.Wo, Near-wake measurement in a rotor/stator axial compressor using slanted hotwire technique. Experiments in Fluids.1997 (23):441-444
    184.工凯建.单一倾斜热线探头在三维湍流流场中的应用.力学学报.Vo1.34,No.1,2002:18-28
    185.陈忠基.热线风速仪在紊流流场测量中的应用.宇航计测技术.1990(2):65-70
    186.李超,黄淑娟.单丝热线速度和方向特性的校准方法.甘肃工业大学学报.Vol.23,No.2,pp42-45,1997
    187.李雨春,蒋浩康.单斜热丝测量叶轮机内三维流动.航空动力学报.Vo1.4,No.2,pp145-149,1989
    188.蒋浩康,李雨春,张洪等.研究转子内流动的大尺寸轴流压气机实验装置和动态测量技术.航空动力学报.Vo1.7,No.1,pp.1-8,1992
    189.马宏伟,蒋浩康.单转子压气机设计状态和近失速状态出口三维紊流流场.工程热物理学报.Vo1.18,No.2,PP.153-158,1997
    190.马宏伟,蒋浩康.压气机不同状态下转子出口三维紊流流场.航空动力学报.Vo1.12,No.3,pp.268-272,1997
    191.马宏伟,蒋浩康.压气机转子尾迹三维紊流特性分析.工程热物理学报.Vo1.18,No.4,pp.423-428,1997
    192.蒋浩康,马宏伟.压气机转子三维紊流流场.工程热物理学报.Vo1.19,No.3,pp.287-292,1998
    193.吴克启,蔡兆林,区颖达.流体机械内部流场动态测试系统及其应用.工程热物理学报.Vo1.15,No.1,pp.50-54,1994
    194.郑黎明,姜桐.用单斜热线探针研究离心叶轮出口三维流场的计算机辅助测量系统.西安交通大学学报,Vo1.23,No.3,1989:1-16
    195郭恩民,李志刚,陆亚钧等.叶轮机械中三维周期性非定常流场测量.航空动力 学报.Vo1.13,No.3,pp241-244,1998
    196.宋德耀,罗次申.风机转子出口流场的动态跟踪测试技术的研究.节能低噪(轴流、离心)风机论文集.北京:机械工业出版社.1994
    197.张志涌等.掌握和精通MATLAB.北京:北京航空航天大学出版社.1997
    198.毛英泰.误差理论与精度分析.北京:国防工业出版社.1982
    199.忻孝康,朱士灿,蒋锦良等.叶轮机械三元流动与准正交面法.上海:复旦大学出版社.1988
    200.王仲奇,秦仁.透平机械原理.北京:机械工业出版社,1981
    201.欧阳华.内燃机车新型冷却风扇气动设计与造型.[长沙铁道学院硕士学位论文],1998
    202.Horlock, J.H.,张文清译,轴流式压气机.北京:国防工业出版社,1966
    203.秦鹏译,轴流压气机气动设计.北京:国防工业出版社,1975
    204.钟芳源.燃气轮机设计基础.北京:机械工业出版社.1987
    205.Smith, L.H, Spanwise mixing in axial flow turbomachines. Journal of Engineering for Power. Vol.104,1982
    206.王建明,钟芳源.利用双激盘模型计算周向前弯轴流叶栅的气动性能.上海交通大学内部报告,1989
    207.Schlichting, D.H, Boundary layer theory. Mc Grawhill book company,1979
    208.Lakshminarayana, B. Effects of rotating and blade incidence on properties of turbomachinery rotor wake. AIAA Journal. Vol.20, No.2,1982
    209.Benzakein, M.J, Fan/compressor noise research. FAA-RD-71-85,1971
    210.CFX-Tascflow User Document. AEA Technology.1997
    211.CFX-Turbogrid User Document. AEA Technology.1997
    212.Versteeg, H.K., and Malalasekera, W., An introduction to computational fluid dynamics-the finite volume method. Longman group.1998
    213.苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社.1997
    214.Bradshaw, P., Turbulence modeling with application to turbomachinery. Proc. Aerospace science.1996 (32):575-624
    215.熊鳌魁.湍流模式理论综述.武汉理工大学学报.Vo1.25,No.4,2001:451-455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700