用户名: 密码: 验证码:
软性磨粒流近壁区域微切削机理及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具制造过程中常会出现尺寸细微,结构复杂的异型面,可将其称之为模具的结构化表面。传统有工具抛光加工方法难以对模具结构化表面进行全面的精密加工,而现有的流体加工方法受到加工工具及装备结构的限制,在面向模具结构化表面加工时仍存在难以克服的困难。
     针对此问题,本文提出一种基于近壁区理论的软性磨粒流加工分析方法。以这种加工方法为基础,本文首先基于可实现湍动能-耗散率(k-ε)湍流模型对软性磨粒流在流道中的运动进行建模,并分析软性磨粒流在近壁区的运动特性,对可实现k-ε湍流模型进行改进;其次通过计算流体力学方法对软性磨粒流在流道内的流动特性进行数值模拟分析;然后以仿真结果为基础进行了磨粒运动观测实验;最后搭建软性磨粒流加工实验台,进行工件的光整加工实验。本文内容主要从以下几个方面展开:
     (1)针对可实现k-ε湍流模型与标准k-ε湍流模型所应用场合、描述特点的不同,对两者进行分析,前者对描述射流和混合流的自由流动,以及复杂流道中的流动都有着更好的表现,所以本文选择可实现k-ε湍流模型作为软性磨粒流的基本物理模型;对软性磨粒流近壁区的特征进行分析,并对由软性磨粒流加工特性所引起的湍流耗散进行研究,基于研究结果,对可实现k-ε湍流模型中的耗散率方程进行修正,所得到修正后的可实现k-ε湍流模型能够较为完整的对软性磨粒流在加工流道中的特性进行描述;对固体颗粒的受力情况进行分析,进而对软性磨粒流在近壁区的微切削机理进行研究。
     (2)基于可实现k-ε湍流模型,采用离散相模型建立软性磨粒流动力学模型,基于该模型对加工中所涉及到的影响因素进行仿真实验研究。首先以U型流道为例,主要对软性磨粒流的速度、压力、颗粒特性,湍动能、湍流耗散率等湍流参数,以及影响工件加工后表面纹理的颗粒运动轨迹等进行数值模拟分析。通过对上述因素进行研究后得到,软性磨粒流离散相的压力衰减程度与入口速度成反比,且在流道内的运动轨迹呈无序状态;并得到了适用于软性磨粒流加工的最佳颗粒尺寸;然后以汽车模具中的典型结构化表面所构成约束流道进行数值模拟分析,通过对不同体积分数的软性磨粒流在流道中动压力分布、速度矢量分布以及湍流耗散率分布的研究,证明了软性磨粒流加工方法的有效性。
     (3)以数值模拟分析结果为基础,采用不同配比的切削液、分散剂和水,对软性磨粒流溶液进行调配,并设计了软性磨粒流离散颗粒相的观测实验。对软性磨粒流试剂进行调配实验;利用高速摄像机对软性磨粒流在流道中的固体颗粒进行运动轨迹观测运动进行观察;采用粒子图像测速方法对软性磨粒流的流场进行测量,通过区域分析法得到了流场的速度矢量、涡量分布等信息,证明了在此条件下,软性磨粒流的运动形态符合湍流特征,能够实现对模具结构化表面的光整加工。软性磨粒流观测实验结果与数值模拟结果相符,为下一步基于软性磨粒流的加工实验奠定了理论基础。
     (4)基于理论分析、数值模拟及观测实验结果,搭建基于变频调速系统的模具结构化表面光整加工平台,该加工平台能够实现对水泵的精确调速,使软性磨粒流流态过渡更加准确。经过20小时的光整加工后,加工结果表明:软性磨粒流能够在不改变工件原有形貌的基础上,有效改善模具结构化表面的表面质量,并且能够去除原有机械加工的痕迹,使得工件表面更加平整,加工后工件入口处粗糙度为0.312μm,出口处粗糙度为0.556μm,工件整体质量减少0.2g。加工实验结果证明了软性磨粒流加工方法应用在模具结构化表面光整加工上的可行性和有效性。
     (5)基于普林斯顿方程对影响软性磨粒流加工的颗粒硬度、尺寸、颗粒与壁面碰撞角度、加工时间等因素进行分析,并对普林斯顿方程进行改进,得到适用于软性磨粒流光整加工的材料去除模型,使其能够准确的计算出软性磨粒流对工件的去除量。
During the course of mold manufacture, lots of heteromorphous surfaces are involved,which are of complicated structure and tiny scale, and can be defined as structural surface.Owing to special profile of structural surface, its finishing cannot be realized by traditionalmethods. Aiming at the problem, several fluidic finishing methods are put forward, but thefinishing system structure of these finishing methods is the biggest drawback for increasingmachining precision, so the satisfied finishing results cannot be obtained by these methods.
     In allusion to the problem, a new no-tool precision finishing method based onsolid-liquid two phase softness abrasive flow (SAF) is brought forward in this paper. Basedon this method, realizable k-ε model is used to describe the flow field of SAF, and therealizable k-ε model is modified by analyzing the motion characteristics of SAF in the nearwall area. The flow characteristic of SAF is numerically simulated by CFD, and based on thesimulation results, observational experiment of particles motion has been carried out. Finally,SAF experimental platform is constructed, and the finishing experiment which oriented tomold structural surface can be realized. Main work of this dissertation is shown as follows:
     (1) Realizable k-ε model has been chosen to describe SAF compared to standard k-εmodel, because the former model can be better reflect the characteristics of jet flow, free flowand the flow in complex passage. Analyzed the flowing features of SAF in near wall area, anddissipation rate equation of realizable k-ε model is modified based on the analyzing results;the new model can reflect the turbulence dissipation which caused by the finishing in the nearwall area previously, so that the finishing characteristics of SAF can be accurate described bythe model. Based on an analysis of the forces acted on the particles, micro-cutting mechanismof SAF finishing method has been studied.
     (2) Based on realizable k-ε model, discrete phase model (DPM) is used to establish thekinetic model of SAF, and influencing factors which effect the finishing are simulated. TakingU-shaped restrained flow passage as instance, the variation trends of SAF turbulentparameters and flow passage pressure distribution with different inlet velocities are studied,and motion trails of particles are also simulated. Numerical simulation results derive that pressure decrement of solid phase in flow passage is inversely proportion to inlet velocity, andmotion trails of particles are disorderly and stochastic, which are the sufficient conditions ofSAF finishing. The automobile mold is simulated as a typical structural surface, and SAFdynamic pressure, velocity and turbulent dissipation distribution with different volumefraction are acquired, effectiveness of SAF finishing method has been proved by thesesimulation results.
     (3) Based on the simulation results, SAF has been mixed with different proportioncutting fluid, dispersing agent and water, and observational experiment of particles has beendesigned. High-speed camera is used to observe the motion trails of solid phase, and velocityvector and vorticity of SAF flow field are obtained by PIV. Particles observational experimentshows that particle motion satisfied requirements of SAF finishing, and feasibility of SAFshould be proved theoretically.
     (4) Finishing platform which oriented to mold structural surface has been constructed,this platform can make water pump speed governing accurately, so exact transition of SAFflow regime can be realized. Experiment results show that SAF method can improve surfacequality of mold structural surface without change the morphology, and the trace of machiningcan be eliminated. After finishing, Ra of inlet is0.312μm, Ra of outlet is0.556μm and theweight of workpiece reduced0.2g. Experimental results have demonstrated the effectivenessof SAF finishing method.
     (5) Hardness and size of particles, collision angles between particle and surface, andfinishing time are analyzed based on Preston equation; and the equation has been improved tosuit for SAF finishing. Removal model of SAF finishing is derived based on the improvedequation, and material removal by this finishing method can be obtained.
引文
[1]李德群,张宜生.模具企业数字制造技术的现状与发展[J]. CAD/CAM与制造业信息化,2003,7(1):10-15.
    [2]谢蔚,许珞萍,吴晓春,等.用高新技术进一步提升模具钢质量[J].上海金属,2006,28(3):1-5.
    [3]周永泰.模具工业在国民经济中的重要地位及其发展趋势[J].模具商情,2003,62(6):2-4.
    [4]计时鸣,金明生,张宪,等.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报,2007,43(8):2-6.
    [5] Brinksmeier E. Polishing of structured molds[J]. CIRP Annals-Manufacturing Technology,2004,53(1):247-250.
    [6] Brinksmeier E. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering,2006,30(3):325-336.
    [7]李诚,刘传绍.表面光整加工技术及其发展趋势[J].矿山机械,2007,35(11):143-145.
    [8]袁哲俊,王先逵.精密和超精密加工技术[M],第二版.北京:机械工业出版社,2007.
    [9]刘增文,黄传真,朱洪涛.高压磨料水射流加工中材料去除机理研究[J].金刚石与磨粒磨具工程,2010,30(4):21-29.
    [10] Kamal K K, Ravikumar N L, Piyushumar B T, et al. Performance evaluation and rheologicalcharacterization of newly developed butyl rubber based media for abrasive flow machiningprocess[J]. Journal of Material Processing Technology,2009,209(4):2212-2221.
    [11] Prokhorov I V, Kordonski W I. New high-precision magnetorheological instruments-based method ofpolishing optics[J]. QSA OF&T Workshop Digest,1992,24:134-136.
    [12] Seok J W, Kim Y J, Jang K I, et al. A study on the fabrication of curved surfaces usingmagnetorheological fluid finishing[J]. International Journal of Machine Tools&Manufacture.2007,47(14):2077-2090.
    [13] Jung B, Jang K I, Min B K, et al. Magnetorheological finishing process for hard materials usingsintered Iron-CNT compound abrasives[J]. International Journal of Machine Tools&Manufacture2009,49(5):407-418.
    [14]张峰,潘守甫,张学军.磁流变抛光材料去除的研究[J].光学技术,2001,27(6):522-525.
    [15]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):67-70.
    [16]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术,2006,42(1):12-15.
    [17] Mahabalesh P. A study of taper angles and material removal rates of drilled holes in the abrasivewater jet machining process[J]. Journal of Materials Processing Technology,2007,189(1-3):292-295.
    [18]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术,2004,30(2):248-250.
    [19]方慧,郭培基,余景池.液体喷射抛光时各工艺参数对材料去除量的影响[J].光学技术,2004,30(4):440-442.
    [20]李长河,修世超,李琦,等.磨料喷射光整加工机理及在机械领域中的应用[J].机械制造,2004,42(8):18-21.
    [21] Tom K. Surface finishing with abrasive flaw machining[J]. ASME technical paper.1989:35-43.
    [22] Gorana V K, Jain V K, Lal G K. Experimental investigation into cutting forces and active graindensity during abrasive flow machining[J]. International Journal of Machine Tools&Manufacture,2004,44(2-3):201-211.
    [23] Gorana V K, Jain V K, Lal G K. Forces prediction during material deformation in abrasive flowmachining[J]. Wear,2006,260(1):128-139.
    [24] Williams H E, Hajurkar K P. Stochastic modeling and analysis of abrasive flow machining[J].Journal of Engineering for Industry-Transactions of the ASME,1992,114(1):74-81.
    [25] Loveless T K, Williams K E, Kajurker K P. A study of the effects of abrasive flow machining onvarious machined surfaces[J]. Journal of Materials Processing Technology.1994,47(17):133-151.
    [26] Jain V K, Adsul S G. Experimental investigations into abrasive flow machining (AFM)[J].International Journal of Machine Tools&Manufacture,2000,40(7):1003-1021.
    [27]计时鸣,唐波,谭大鹏.基于VOF的模具结构化表面软性磨粒流数值模拟[J].中国机械工程,2011,22(3):334-339.
    [28] Singh S, Shan H S. Development of magneto abrasive flow machining process[J]. InternationalJournal of Machine Tools&Manufacture,2002,42(8):953-959.
    [29]潘艳.基于“软性”液-固两相磨粒流的模具结构化表面光整加工的工艺研究[D].浙江工业大学,2009.
    [30]宫斌.基于“游离态”的液固两相软性磨粒流的加工理论研究及数值模拟分析[D].浙江工业大学,2010.
    [31]计时鸣,唐波,谭大鹏,等.结构化表面软性磨粒流精密光整技工方法及其磨粒流动力学数值分析[J].机械工程学报,2010,46(15):178-184.
    [32] Ji S M, Xiao F Q, Tan D P. Analytical method for softness abrasive flow field based on discrete phasemodel[J]. Science China: Technological Sciences,2010,53(10):2867-2877.
    [33]池永为.约束模块在软性磨粒流精整加工中的应用及其设计方法[D].浙江工业大学,2011.
    [34]刘小兵.水涡轮机械中的湍流固-液两相流动及磨损研究[J].水动力学研究与进展A辑,1996,11(6):606-609.
    [35]刘小兵,程良骏.固液两相湍流和颗粒磨损的数值模拟[J].水利学报,1996,11:20-27.
    [36]李琳琳,余锡平.分汊河道分沙的三维数值模拟[J].清华大学学报(自然科学版),2009,49(9):1492-1497.
    [37] El-Amin M F, Sun S, Heidemann W, et al. Analysis of a turbulent buoyant confined jet modeledusing realizable k-ε model[J]. Heat and Mass Transfer,2010,46(8):943-960.
    [38] O'Shea N, Fletcher C A J. Prediction of turbulent delta wing vortex flows using an RNG k-εmodel[J]. Lecture Notes in Physics,1995,43(5):496-501.
    [39]周恒,陆利蓬.压力梯度对湍流边界层相干结构的影响[J].中国科学,1997,27(2):173-179.
    [40]陆利蓬,陈矛章.近壁区理论耗散率k-ε模型的研究[J].工程热物理学报,2000,21(4):434-436.
    [41]崔桂香,张兆顺.圆管湍流的近壁涡结构[J].空气动力学学报,2000,增刊:10-14.
    [42] Maurizio P, Cristian M, Alfredo S. Characterization of near-wall accumulation regions for inertialparticles in turbulent boundary layers[J]. Physics of Fluids,2005,17(9):1-4.
    [43] Marusic I, Mathis R, Hutchins N. High Reynolds number effects in wall turbulence[J]. InternationalJournal of Heat and Fluid Flow,2010,31(3):418-428.
    [44]冯宝富,赵恒华,蔡光起,等.高速单颗磨粒磨削机理的研究[J].东北大学学报(自然科学版),2002,23(5):470-473.
    [45]杨晓京,陈子辰,樊瑜瑾,等.磨粒磨损中微观切削过程分子动力学模拟[J].农业机械学报,2007,38(5):161-164.
    [46]董刚,张九渊.固体粒子冲蚀磨损进展研究[J].材料科学与工程学报,2003,21(2):307-312.
    [47] Hashish M. A model for abrasive-waterjet (AWJ) machining[J]. Journal of Engineering Materials andTechnology ASME,1989,111(2):154-162.
    [48] Ramulu M. Dynamic photoelastic investigation on them echanics of waterjet and abrasive waterjetmachining[J]. Optics and Lasers in Engineering,1993,19(1/3):43-65.
    [49]王波,张捷字. LDV用于搅拌槽流场测量的实验研究[J].包头钢铁学院学报,2004,23(3):211-213.
    [50]周国忠.搅拌槽内流动与混合过程实验研究及数值模拟[D].北京:北京化工大学,2002.
    [51] Gailetti C, Brunazzi E, Pintus S, et al. A study of Reynolds stresses triple products and turbulencestates in a radically stirred tank with3-D laser anemometry[J]. Chemical Engineering Research&Design,2004.82(A9):1214-1228.
    [52]袁锋,竺晓程,杜朝辉.气冷涡轮环形叶栅三维流场的实验与数值研究[J].工程热物理学报,2007,28(5):775-777.
    [53]李广年,张军,陆林章,等. PIV,LDV在螺旋桨尾流测试中的比对应用[J].航空动力学报,2010,25(9):2083-2090.
    [54] Marx D, Aurégan Y, Bailliet H, et al. PIV and LDV evidence of hydrodynamic instability over a linerin a duct with flow[J]. Journal of Sound and Vibration,2010,329(18):3798-3812.
    [55]许联锋,陈刚,李建中,等.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-540.
    [56]刘心红.搅拌槽内湍流特性的实验研究[D].北京:北京化工大学,2010.
    [57] Kashyap M, Chalermsinsuwan B, Gidaspow D. Measuring turbulence in a circulating fluidized bedusing PIV techniques[J]. Particuology,2011,9(6):572-588.
    [58] Unadkat H, Rielly C D, Nagy Z K. PIV study of the flow field generated by a saw tooth impeller[J].Chemical Engineering Science,2011,66(21):5374-5387.
    [59] Sanjuan C, Sánchez M N, Heras M R, et al. Experimental analysis of natural convection in open jointventilated fa ades with2D PIV[J]. Building and Environment,2011,46(11):2314-2325.
    [60] Deen G N, Hjertager B H. Particle image velocimetry measurements in an aerated stirred tank[J].Chemical Engineering Communications,2002,189(9):1208-1221.
    [61]李茂义,袁巍,李志平,等.风力机翼型尾迹干扰的PIV研究[J].航空动力学报,2011,26(2):281-288.
    [62]栗晶,王汉封,柳朝晖,等.气固两相槽道湍流拟序结构变动的PIV测量[J].工程热物理学报,2011,32(7):1157-1160.
    [63] Castilla R, Wojciechowski J, Gamez-Montero P J, et al. Analysis of the turbulence in the suctionchamber of an external gear pump using Time Resolved Particle Image Velocimetry[J]. FlowMeasurement and Instrumentation,2008,19(6):377-384.
    [64] Perrin R. Coherent and turbulent process analysis in the flow past a circular cylinder at highReynolds number[J]. Journal of Fluid and Structures,2008,24(3):1313-1325.
    [65]翟树成,张军,洪方文,等.机翼湍流尾流Tr-PIV测量分析[J].舰船科学技术,2011,33(2):18-23.
    [66]杨绍琼,姜楠.湍流边界层空间特征尺度的层析TRPIV测量[J].实验力学,2011,26(4):369-376.
    [67] Li Z R, Jaberi F A. A high-order finite difference method for numerical simulations of supersonicturbulent flows[J]. International Journal for Numerical Methods in Fluids,2012,68(6):740-766.
    [68] Shao X M, Wu T H, Yu Z S. Fully resolved numerical simulation of particle-laden turbulent flow in ahorizontal channel at a low Reynolds number[J]. Journal of Fluid Mechanics,2012,693:319-344.
    [69] Launder B E, Spalding D B. Lecture in Mathematical Models of Turbulence[M]. London: AcademicPress,1972.
    [70]尹俊连,焦磊,仇性启,等.旋流喷嘴内部流场的数值模拟和实验研究[J].浙江大学学报(工学版),2009,43(5):968-972.
    [71] Shin T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds numberturbulent flows[J]. Computers Fluids,1995,24(3):227-238.
    [72] Hreiz R, Gentric C, Midoux N. Numerical investigation of swirling flow in cylindrical cyclones[J].Chemical Engineering Research&Design,2012,88(12A):2521-2539.
    [73]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2005.
    [74] Luís M P, Pierpaolo C, René V A. Oliemans. Numerical study of the near-wall behavior of particlesin turbulent pipe flows[J]. Powder Technol.,2002,125:149-157.
    [75]梁冰,朱玉才.固液两相流泵的边界层理论及其应用[M].北京:科学出版社,2003.
    [76]朱玉才.离心式固液两相流泵的边界层理论及其在叶轮设计中的应用[D].辽宁工程技术大学,2002.
    [77] Nikuradse J. Laws for Flows in Rough Pipes[M]. Berlin: Vereins Deutscher Ingenieure,1933.
    [78] Finnemore J E, Franzini J B. Fluid Mechanics with Engineering Applications[M]. China MachinePress, Beijing:2006.
    [79] Bagnold R A. Experiments on a gravity free dispersion of water flow[J]. Project Royal Society,Series A,1954,225.
    [80] Jia X, Ling R F. Two-body free-abrasive wear of polyethylene, nylon1010, expoxy and polyurethanecoatings[J]. Tribology International,2007,40(8):1276-1283.
    [81] Bitter J G A. A study of erosion phenomena―Part I[J]. Wear,1963,6(1):5-21.
    [82] Bitter J G A. A study of erosion phenomena―Part II[J]. Wear,1963,6(3):169-190.
    [83] Gandhi B K, Singh S N, Seshadri V. Study of the parametric dependence of erosion wear for theparallel flow of solid-liquid mixtures[J]. Tribology International,1999,32(5):275-282.
    [84]刘家浚.材料磨损原理及其耐磨性[M],第一版.北京:清华大学出版社,1993.
    [85]林福严,曲敬信,陈华辉.磨损理论与抗磨技术[M],第一版.北京:科学出版社,1993.
    [86] Clark H M. The influence of the flow field in slurry erosion[J]. Wear,1992,152(2):223-240.
    [87] Walker C I, Bodkin G C. Empirical wear relationships for centrifugal slurry pumps part1:side-liners[J]. Wear,2000,242(1-2):140-146.
    [88] Fan S F, Zhang L T, Cheng L F, et al. Wear mechanisms of the C/SiC brake materials[J]. TribologyInternational,2011,44(1):25-28.
    [89]唐学林,唐宏芬,吴玉林,等.水轮机转轮内固液两相紊流场数值模拟及磨蚀预估[J].工程热物理学报,2001,22(1):51-54.
    [90] Yabuki A, Matsumura M. Theoretical equation of the critical impact velocity in solid particles impacterosion[J]. Wear,1999,233-235:476-483.
    [91] Finnie I. Some reflections on the past and future of erosion[J]. Wear,1995,186-187:1-10.
    [92] Finnie I, Kabil Y H. On the formation of surface ripples during erosion[J]. Wear,1965,8(1):60-69.
    [93] Finnie I, Stevick G R, Ridgely J R. The influence of impingement angle on the erosion of ductilemetals by angular abrasive particles[J]. Wear,1992,152(1):91-98.
    [94] Svahn F, Kassman-Rudolphi A, Wallen E. The influence of surface roughness on the friction andwear of machine element coatings[J]. Wear,2003,254(11):1092-1098.
    [95] Li J. Euler-lagrange simulation of flow structure formation and evolution in dense gas-solidflows[D]. Netherlands: Twente University,2002.
    [96] Stamou A, Katsiris I. Verification of a CFD model for indoor airflow and heat transfer[J]. Buildingand Environment,2006,41(9):1171-1181.
    [97] Kobayashi T, Kazunobu S, Yamanaka T. Experimental investigation and accuracy study of CFDanalysis for flow field around cross-ventilated building[J]. Journal of Environmental Engineering,2009,74(638):481-488.
    [98]王福军.计算流体动力学分析—CFD原理及应用[M],第一版.北京:清华大学出版社,2004.
    [99]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M],第一版.北京:北京理工大学出版社,2008.
    [100]计时鸣,李琛,谭大鹏,等.基于Preston方程的软性磨粒流加工特性[J].机械工程学报,2011,47(17):156-163.
    [101] Yin S H, Wang Y, Shinmura T. Material removal mechanism in vibration-assisted magnetic abrasivefinishing[J]. Advanced Materials Research,2008,53-54:57-63.
    [102] Krams R, Bambi G, Guidi F, et al. Effect of vessel curvature on Doppler derived velocity profiles andfluid flow[J]. Ultrasound in Medicine&Biology,2005,31(5):663-671.
    [103]盛森芝.近十年来流体测量的技术新发展[J].力学与实践,2002,4(5):1-13.
    [104] Zhang W, Sarkar P P. Near-ground tornado-like vortex structure resolved by particle imagevelocimetry (PIV)[J]. Experiments in Fluids,2012,52(2):479-493.
    [105]郑水华.气固两相圆湍射流拟序结构的PIV测试及研究[D].杭州:浙江大学,2004.
    [106] Virdung T, Rasmuson A. Measurements of continuous phase velocities in solid-liquid flow atelevated concentrations in a stirred vessel using LDV[J]. Chemical Engineering Research&Design,2007,85(A2):193-200.
    [107] Adrian R. Particle-image velocimetry for experimental fluid mechanics[J]. Annual Review of FluidMechanics,1991,123(3):261304.
    [108]李少华,袁斌,刘利献,等.多孔横向紊动射流涡量场的数值分析[J].中国电机工程学报,2007,27(23):100-104.
    [109]吴晓晶,吴玉林,张乐福,等.混流式水轮机转轮的涡量场分析[J].水力发电学报,2008,27(3):132-136.
    [110]刘志军,刘凤霞,王旭,等.涡旋波流场的涡量测试与计算及特征参数的影响[J].应用力学学报,2007,24(1):6-10.
    [111] Preston F W. Glass Technology[J] Journal of the Society of Glass Technology,1927,11:277-281.
    [112] Rabinweicz E, Russel P G. A study of abrasive wear under three body conditions[J]. Wear,1961,4(2):345-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700