用户名: 密码: 验证码:
水稻苗期与耐冷性有关的几个性状的动态基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用以水稻品种IR64和Azucena为亲本的105个DH群体为遗传材料,利用包括175个标记的水稻连锁图谱,采用基于混合线性模型的QTL定位软件QTLMapper1.6(Wang等,1999;朱军,1999),结合Zhu(1995)提出的条件遗传分析方法,将苗期分为5个连续的阶段,研究水稻3叶期进行低温处理后,控制水稻苗期株高、根长、出叶数和苗重的QTL数目、位置和基因效应(包括加性、加性×处理互作、加×加上位性以及加×加上位性与处理互作效应)。主要研究结果如下:
     1.本文通过分析苗期5个阶段4个性状在适温和冷处理条件下的数据,表明在个体发育过程中,一些具有较大显著主效应的QTLs可以使得个体能够在不同环境下保持相同的生长发育模式的同时,另外一些QTLs(具有显著QE互作效应的QTLs)决定了个体在不同环境下所发生的变异。因而在分子标记辅助选择育种中,对加性主效应的选择适用于各种不同的环境条件,而对QE效应的选择则适用于特定的环境条件。并且控制这些性状的增或减效等位基因往往分布在不同的亲本中。本研究中,水稻苗期株高、根长、出叶数和苗重,4个性状检测到的具有条件QE互作效应的QTLs的数目、效应大小及方向都不相同,决定了不同的性状在冷处理过后具有不同的恢复生长的速率。并且,由于控制不同性状的QTLs位于同一个基因位点(一因多效)或者基因间存在紧密连锁的现象,不同性状之间存在相关性。因而,对一个性状的选择会影响到其它的性状。
     2.采用动态基因定位方法,条件和非条件定位方法检测到控制苗高、根长、叶片数和苗重的具有加性和加性×处理互作效应的QTLs分别为23、22、14和23个。但是所有这些与株高、根长、出叶数和苗重4个性状有关的QTLs中,分别只有3个、1个、0个、2个QTLs可以在5个观测时期都检测到显著的加性效应值,并且在不同的时期其效应值大小、作用方式也不相同。其它的QTLs只在1个或几个时期检测到显著的效应值,说明在不同的发育阶段基因是选择性表达的。即使是在几个阶段都表达的QTL,其表达方式也是有所不同的。本研究中采用的条件分析方法可以对特定发育阶段内的净基因表达效应进行有效的估算和检测,从而可以有效的探明基因在不同发育阶段的作用方式,为更清楚地了解各个性状在不同的时期对冷害的反应作用机理提供了一个有力的手段。
     3.上位性是数量性状的重要遗传基础。本研究中条件和非条件定位方法共检测到30对影响苗高、36对影响根长、33对影响叶片数和23对影响苗重的上位性QTLs,但是分
    
    浙江大学硕十学位论文
    摘要
    别有50%、47%、62%和42%的参与上位性的QTLs不具有显著的加性和(或)加性X处理
    互作效应。少1且,一个QTL与多个QTLs同时存在互作是非常普遍的现象,而且存在多位
    点互作时,其效应值方向也多不相同。另外,还发现,许多上位性互作只能用条件方法检
    测到,说明大量的上位性互作只存在很短的一段时间,但是对各个性状的最终建成却起着
    不容忽视的作用,尤其是对叶片数性状来说。
A population of 105 DH lines derived from a cross between irrigated indica variety IR64 and upland japonica variety Azucena was used in the experiments. The genetic linkage map of this population, containing 175 markers distributed among 12 chromosomes. In the present research, the dynamic behavior of four seedling traits including seedling height, root length, leaf number, and seedling weight after 3-leaf stage cold treatment were analyzed for detecting QTLs associated with additive and epistatic effects as well as their QE interaction effects by combining the statistical procedures for analyzing conditional genetic effects (Zhu 1995) and the QTL mapping method based on mixed model approaches (Wang et al. 1999; Zhu 1999). The QTL mapping analysis revealed the following results:
    1. Through analyzing the data of four seedling traits at five measuring stages in two treatments, an important result could be obtained, that is, while a set of QTLs with relatively high magnitude of effects (those QTLs with significant genetic main effects) held the key to growth under different environments (treatments), few QTLs (those detected with significant QE effects) may, however, determine the differential response of the crop to environmental variation which could inversely guide the breeders to formulate an appropriate breeding strategy. In other words, selection on QTLs with additive main effects applied to different environments (treatments), while selection on QTLs with QE interaction could adapt to a special environment. And the alleles contributed to the seedling traits dispersed between two parents. In the study, the numbers ^ magnitude and direction of QTLs with conditional QE effects were different for different stages and traits determined the dissimilar growth resuming rates
    at different stages and for different seedling traits. Furthmore, the phenomenon of pleiotropic effects or close linkage of genes were the main causes for correlations among traits which resulted in selection for one will result in a correlated response with another.
    2. QTL mapping studies using age-specific measures clearly demonstrated distinct age-specific gene action. In our study, using unconditional and conditioanl mapping methods, there were 23 QTLs with additive and additive x treatment effects for seedling height, 22 QTLs for root length, 14 QTLs for leaf number, and 23 QTLs for seedling weight, respectively. But
    
    
    
    only 3, 1,0, and 2 QTLs with significant additive effects at all measuring stages for seedling height, root length, leaf number, and seedling weight, respectively. And other QTLs could be detected only at one or several stages. This suggested that genes controlling these seedling traits expressed selectively at different stages. Conditional mapping method could estimate and detect the net effects of gene expression that were independent of the causal genetic effects in earlier stages. And could reveal the gene expression pattern efficiently at different stage. This technique could serve as an important tool for studying the inheritance of response to stress.
    3. The present study showed the importance of epistasis as a genetic basis of the quantitative traits and revealed several important features of this phenomenon. In the study, with two mapping methods, there were 30 pairs of QTLs involved in epistasis for seedling height, 36 pairs for root length, 33 pairs for leaf number, and 25 pairs for seedling weight with proportion of 50%, 47%, 62%, and 42% for each seedling traits, respectively, without additive and/or additive x treatment interaction effects. Moreover, it was common for several loci to interact with more than one non-allelic locus at the same stage and/or across different stages, and, the interactions often showed differences in the direction of effects. It was indicated that the possibility of multilocus associations existed for trait development. Beside this, a lot of interactions could detected only by conditional mapping method indicated that many epistasis interactions
引文
1. 包劲松,何平,复英武,陈英,朱主煌,1999,不同发育阶段水稻苗高的QTL分析,遗传,21(5):38-40
    2. 曹立勇,赵建根,占小登,李登楼,何立斌,程式华,2003,水稻耐热性的QTL定位及耐热性与光合速率的相关性,中国水稻科学,17(3):223-227
    3. 曹立勇,朱军,任立飞,赵松涛,颜启传,2002,水稻幼苗活力相关性状的QTLs定位和上位性分析,作物学报,28(6):809-815
    4. 陈翠莲,马平福,1989,抗冷性不同的小麦水稻品种脯氨酸含量的比较试验,华中农业大学学报,8(2):176-179
    5. 陈洪,朱立煌,徐吉臣,陈美玲,1995,RAPD标记构建水稻分子标记连锁图,植物学报,37:677-684
    6. 陈青,朱军,吴吉祥,1999,陆地棉(Gossypium hirsutum L,)不同铃期单株成铃数和籽棉产量的遗传动态分析,浙江农业大学学报,25(2):155-160。
    7. 董国军,藤本宽,滕胜,胡兴明,2003,水稻剑叶角度的QTL分析,中国水稻科学,17(3):219-222
    8. 方宣钧,吴为人,唐纪良,2001,作物DNA标记辅助育种,科学出版社
    9. 高用明,2001,复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究,浙江大学博士学位论文
    10.高用明和朱军,2000,植物QTL定位方法的研究进展,遗传,22(3):175-179
    11.龚继明,何平,钱前,沈利爽,朱立煌.陈受益,1998,水稻耐盐性QTL的定位,科学通报,43(17):1847-1850
    12.韩龙植,乔永利,高熙宗,朴钟泽,元容在,2002,水稻幼苗期耐冷性选择对主要农艺性状的影响中国水稻科学,16(4):315-320
    13.何慈信,朱军,严菊强,Mebrouk Benmoussa,吴平,2000b,水稻叶挺长发育动态的QTL分析。中国水稻科学,14(4):193-198
    14.何慈信,朱军,严菊强,Mebrouk Benmoussa,吴平,2000a,水稻穗部干物质重的QTL动态遗传效应研究,中国农业科学,33(1):24-32
    15.何光华,郑家奎,1994,不同发育时期水稻主茎增叶速度的双列分析,遗传,16(6):27-30
    16.何平.李晶昭,朱立煌,1999,影响水稻花药培养力的数量性状基因座位间的互作,遗传学报,26(5):524-528
    17.金润洲,1990,日本关于水稻耐冷性鉴定及其遗传的研究,水稻文摘,9(3):1-5
    18.李健雄,余四斌,徐才国等,2000,以性状和分子标记为基础的水稻近等基因系的分离,作物学报,26(2):627-630
    
    
    19.李仕贵,马玉清,何平,王玉平,周开达,朱立煌,2002,不同环境条件下水稻生育期和株高的QTL分析,作物学报,28(4):546-550
    20.林鸿宣,闵绍楷,熊振民,钱惠荣,庄杰云,陆军,郑康乐,1995,应用RFLP图谱定何分析籼稻粒形数量性状基因座位,中国农业科学,28(4):1-7
    21.刘鸿先,王以柔,郭俊彦,1989,低温对植物细胞系统伤害机理的研究,中国科学院华南植物研究所集刊,5:1
    22.刘来福,毛盛贤,黄远樟,1984,作物数量遗传,农业出版社
    23.楼向阳,1997,Opaque-2及其修饰基因对玉米籽粒品质性状影响的遗传研究,浙江农业大学博士论文
    24.闵绍楷,申宗坦,熊振民,1996,水稻育种学,中国农业出版社
    25.潘学彪,邹军煌,陈宗祥,陆驹飞,于恒秀,李海涛,王子斌,Rush M C,朱立煌,1999,水稻品种Jasmine85抗纹枯病主效QTLs的分子标记定位,科学通报,44(15):1639-1635
    26.钱前,何平,滕胜,曾大力,朱立煌,2001,水稻分蘖角度的QTL分析,遗传学报,28(1):29-32
    27.钱前,曾大力,何平,郑先武,陈英,朱立煌,1999,水稻籼粳交DH群体苗期的耐冷性QTLs分析,科学通报,44(22):2402-2407
    28.屈婷婷,陈立艳,章志宏,胡中立,李平,朱立煌,朱英国,2003,水稻籼粳交DH群体苗期耐冷性基因的分子标记定位,武汉植物学研究,21(5):385-389
    29.滕胜,钱前,曾大力,国广泰史,藤本宽,黄大年,朱立煌,2002,水稻苗期耐旱性基因位点及其互作的分析,遗传学报,29(3):235-240
    30.王春明,安井秀,古村醇,万建民,翟虎渠,2002,水稻F2不育和抽穗期QTL分析,遗传学报,29(4):339-342
    31.吴为人,李维明,卢浩然,1997,建立一个重组自交系群体所需的自交代数(英文),福建农业大学学报,26(2):129-132
    32.吴为人,李维明,2000,基于性状-标记回归的QTL区间测验方法,全国动植物数量遗传与育种学术研讨会文集,中国遗传学会、扬州大学编,13-18
    33.膝胜,曾大力,钱前,国广泰史,黄大年,朱立煌,2001,低温条件下水稻发芽力QTL的定位分析,科学通报,46(13):1104-1108
    34.熊振民,闵绍楷,王国梁,程式华,曹立勇,1990,早籼稻品种苗期耐冷性的遗传研究,中国水稻科学,4(2):75-78
    35.熊振民,朱旭东,邵达夫等,1984,水稻耐冷性早期鉴定技术的研究,浙江农业科学,6:276-280
    36.徐吉臣,李晶昭,郑先武,邹亮星,朱立煌,2001,苗期水稻根部性状的QTL定位,遗传学报,28(5):433-438
    
    
    37.徐建龙,薛庆中,罗利军,黎志康,2002,水稻粒重及其相关性状的遗传解析,中国水稻科学,16(1):6-10
    38.徐云碧,申宗坦,1989,籼粳间苗期耐冷性的遗传研究,中国农业科学,22(5):14-18
    39.徐云碧,申宗坦,1990,水稻苗期耐冷性鉴定技术的研究,浙江农业大学学报5(2):26-30
    40.徐云碧,申宗坦,朱立煌,李英,1994,水稻形态性状与分子标记的相互关联及其检测,浙江农业学报,6(1):1-6
    41.徐云碧,朱立煌,1994,分子数量遗传学,中国农业出版社
    42.叶子弘,朱军,2000,陆地棉开花成铃性状的遗传研究:Ⅱ不同果枝节位的遗传研究,遗传学报,27(9):800-809
    43.叶子弘,朱军,2001,陆地棉开花成铃性状的遗传研究:Ⅲ不同果枝节位的遗传研究,作物学报,27(2):243-252
    44.袁玲,祝莉莉,何光存,2002,稻米品质性状基因的SSR标记定位,武汉大学学报,48(4):507-510
    45.张卫萍,吴平,沈晓莹,吴运荣,2001,不同供水条件下水稻幼苗根系形成的遗传分析,植物学报,43(10):1024-1030
    46.朱军,1992,Mixed model approaches for estimating genetic variances and covariances,生物数学学报,7(1):1-11
    47.朱军,1998,复杂数量性状基因定位的混合线性模型方法,王连铮、戴景瑞(主编),全国作物育种学术讨论会文集,中国农业科技出版社,北京,19-20
    48.朱军,1999,运用混合线性模型定位复杂数量性状基因的方法,浙江大学学报(自然科学版),33(3):327-344
    49.朱军等,1992,陆地棉(Gossypium hirsutum L,)花铃动态的遗传分析,北京国际棉花学术讨论会论文集
    50.朱立煌,徐吉臣,陈英,凌忠专,陆朝福,徐云碧,1994,用分子标记定位一个未知的抗稻瘟病基因,中国科学(B辑),24(10):1048-1052
    51. Ali ML, Pathan MS, Zhang J, Bai G, Sakarung S, Nguyen HT. 2000. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor. Appl. Genet. 101:756-766
    52. Andaya VC, Machill DJ. 2003. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica×indica cross. Theor. Appl. Genet. 106: 1084-1090
    53. Apuya NR, Frazier BL, Keim P. 1998. Restriction fragment length polymorphisms as genetic markers in soybean. Theor. Appl. Genet. 75:889-901
    54. Arumuganathan K, Earle DE. 1991. Nuclear DNA content of some important plant species.
    
    Plant Mol. Biol. Rep. 9:208-218
    55. Atchley WR. 1984. Ontogeny, timing of development and genetic variance-covariance structure. Am.Nat. 124:519-540
    56. Atchley WR. 1994. Development quantitative genetic models of evolutionary change. Develop. Genet. 15:92-103
    57. Atchley WR, Zhu J.1997.Developmental Quantitative Genetics, Conditional Epigenetic Variability and growth in mice. Genet. 147:765-776
    58. Bateson W. 1909. Mendel's Principles of Heredity. Cambridage Univ.Press,Cambriage,UK.
    59. Bernacchi D, Tanksley SD. 1997. An interspecific backcross of Lycopersicon esculentum x L-hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genet. 147:861-877
    60. Bink MCAM, Janss LLG, Quaas RL. 2000. Markov chain Monte Carlo for mapping a quantitative trait locus in outbred populations. Genet.Res. 75:231-241
    61. Bohnert HJ, Nelson DE, Jensen RG .1995.Adaptation to environmental stresses. Plant Cell 7: 1099-1111
    62. Botstein B, White RL, Skolnick M. 1980. Construction of genetic linkage map using Restriction Fragment length polymorphisms. Am J Hum Genet. 32:314-333
    63. Browse J, Xin Z. 2001. Temperature sensing and cold acclimation. Curr Opin Plant Biol. 4: 241-246
    64. Burr D, Burr FA, Thomposom KH. 1988. Gene mapping with recombinant inbred in maize. Genet. 118:519-536
    65. Cao G, Zhu J, He C, GaoY,Yan J, Wu P. 2001. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice (Oryza sativaL.). Theor. Appl. Genet. 103:153-160
    66. Cardle I, Ramsay L, Milboume D, Macaulay M, Marshall D, Waugh R. 2000. Computation and experimental characterization of physically clustered simple sequence repeats in plants. Genet. 156:847-854
    67. Causse MA, Fulton TM, Cho YG. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genet. 138:1251-1274
    68. Jiang CJ, Zeng ZB. 1995. Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci. Genet. 140:1111-1127
    69. Chase K. 1997. Epistat: a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet. 94:724-730
    70. Chen TH, Murata N. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 5:250-257
    
    
    71. Chittenden LM, Schertz KZ, Lin Y. 1994. RFLP mapping of a cross between Sorghum bicolor and S.propinquum, suitable for high density mapping, suggests ancestral duplicatin of Sorghum chromosomes. Theor. Appl. Genet. 87:925-930
    72. Cho YG, Eun MY, McCouch SR, Chae YA. 1994..The semidwarf gene, sd-1, of rice (Oryza sativa L.). Ⅱ. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89: 54-59
    73. Cockerham CC. 1954. An extension of the concept of partioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genet. 39:859-882
    74. Cockerham CC, Zeng ZB. 1996. Design Ⅲ with marker loci. Genet. 143: 1437-1456.
    75. Corander J, Sillanp MJ. 2002. A unified approach to joint modeling of multiple quantitative and qualitative traits in gene mapping.Theor. Biol. 218 (4): 435-446
    76. Doebley J, Stec A, Gustus C. 1995, Teosinte branched1 and the Origin of Maize: Evidence for Epistasis and the Evolution of Dominance. Genet. 141:333-346
    77. Edwards MD, Stuber CW, Wendel JF. 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Ⅰ. Numbers, genomic distribution, and types of gene action. Genet. 116:113-125
    78. Ellis RH, Qi A, Summerfeld RJ, Roberts EH. 1993. Rates of leaf appearance and panicle development in rice (Oryza sati.a L.): a comparison at three temperatures. Agricultural and Forest Meteorology. 66:129-138
    79. Eshed Y, Zamir D. 1995. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genet. 141:1147-1162
    80. Falconer DS. 1960. Introduction to Quantitative Genetics. 1st Ed. Oliver and Boyd, Edinburgh.
    81. Fisher R A. 1918. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R.Soc.Edinb. 52:399-433
    82. Fregeau CJ, Fourney RM. 1993. DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Bio Techniques. 15:100-119
    83. Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M. 2003. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor. Appl.Genet. 255-263
    84. Fukuoka S, Iroue T, Miyao A. 1994. Mapping of Sequence-tagged site in rice by Single-strand conformation polymorphic. DNA Res. 1:271-277
    85. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Uhlig J, Zamir D, Tanksley SD. 1997. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated
    
    tomato and comparison of QTLs found in other wild species. Theor. Appl. Genet. 95: 881-894
    86. Haley C, Knott S. 1992. A simple regression method for mapping quantitative trait loci of linked factors. Genet. 8: 299-309.
    87. Harushima Y, Yano M, Shomura A, Sato M. 1998. A high density rice genetic map with 2275 markers using a single F_2 population. Genet. 148:479-494
    88. Hoeschele I, Raden PM. 1993. Bayesian analysis of linkage between genetic markers and quantitative trait loci.I.Prior knowledge. Theor.Appl.Genet. 85:953-960
    89. Hoeschele I, Uimari P, Grignola FE, Zhang Q, Gage KM. 1997. Advances in statistical methods to map quantitative trait loci in outbred populations. Genet. 147:1445-1457
    90. Huang N, Angeles ER, Doming J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS. 1997. Pyramiding of bacterial blight resistance genes in rice: Marker-aid selection using RFLP and PCR. Theor.Appl.Genet. 95:313-320
    91. Ikeda K, Nomoto Y, Yoshimrura A. 1998. Quantitative trait loci analysis of the chlorosis Under low temperature condition in rice (Oryza sativa L.).http://www.intl-pag.org/pag/6/abstracts/220.html
    92. IRRI. 1975. Parentage of IRRI crosses IRI-IR 50,000. International Rice Research Institute, Manila, Philippines.
    93. Jansen RC. 1993. Interval mapping of multiple quantitative trait loci. Genet. 135:205-211
    94. Kao CH, Zeng ZB, Robert D. 1999. Multiple Interval Mapping for Quantitative Trait Loci. Genet. Research. 74:279-289
    95. Kearsey MJ. 1998. The principles of QTL analysis (a minimal mathematics approach). J. Exp. Bot. 49:1619-1623
    96. Kheiralla AL, Whittington AJ. 1962. Genetic analysis of growth in tomato: The F1 generation. Ann.Bot. 26(104): 489-504
    97. Kim KM, Sohn JK, Khwon YS, Eun MY, Kato A. 1999. Cloning and sequencing molecular marker associated with cold sensitivith at seedling stage in rice. http://www.intl-pag.org/pag/7/abstracts/pag7161.html
    98. Kurata N, Nagamura Y, Yamamoto K et al. 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet. 8:365-372
    99. Kwack BH, Kim C. 1974. Induction of red discoloration in rice var.Tongil with certain metabolic inhibitors. J Korean Soc Crop Sci. 15:115-121
    100. Lander ES. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181
    101. Lander ES, Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits
    
    using RFLP linkage maps. Genet. 121:185-199
    102. Li CC, Rutger JN. 1980. Inheritance of cool temperature seedling vigor on rice and its relationship with other agronomic characters. Crop Sci. 20:295-298
    103. Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q. 2000. Analyzing quantitative trait loci for yeild using a vegetatively replicated F_2 population from a cross between the parents of an elite rice hybrid. Theor. Appl.Genet. 101:248-254
    104. Li ZK. 1997. Molecular analysis of epistasis affecting complex traits in Molecular Analysis of Complex Traits, edited by AH PATERSON. 119-130
    105. Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW. 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genet, 145:453-465
    106. Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL. 1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor. Appl. Genet. 92 (8): 920-927.
    107. Lu H, Shen L, Tan Z, Xu Y, He P.1996. Comparative mapping of QTL for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93: 1211-1217
    108. Mackill DJ, Zhang Z, Redona ED, Colowit P. 1996. Level of polymorphism and genetic mapping with AFLP markers in rice. Genome. 39:969-977
    109. Martinez O, Curnow RN. 1992. Estimation the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor.Appl.Genet. 85:480-488
    110. McCouch SR, Kochert G, Yu ZH. 1988. Molecular mapping of rice chromosomes. Theor.Appl. Genet. 76:815-829
    111. McCouch SR, Temnykh S, Lukashova A. 2001, Microsatellite markers in rice: abundance, diversity, and application. In: Rice Genetics Ⅳ.Eds: Khush G S, BrarDS, Hardy B. IRRI. 117-136
    112. Misevie D, Gerie Ⅰ, Tadie B. 1990. Allozyme marker loci associated with favorable alleles for grain yield in maize. Theor.Appl. Genet. 80:518-522
    113. Misro B, Richharia R.H, Thakur R. 1966. Linkage studies in rice (Oryza sativa L.) Ⅷ: Identifecation of linkage groups in indica rice (Oryza). 3 (1): 96-105
    114. Nagamine T. 1991. Genetic control to tolerance to chilling injury in rice (Oryza sativa L.). Japan J.Breed. 41:35-40
    115. Nandi SP, Subudhi K, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N. 1997. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol. Gen. Genet. 255:1-8
    116. Ohno YH, Tanase T, Nabika K, Otsuda T. 2000. Selective genotyping with epistasis can be
    
    utilized for a major quantitative trait locus mapping in hypertension in rats. Genet. 155: 785-792
    117. Orita M, Iwahana H, Kanazana H, Hayashi K, Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. 86:2766-2770
    118. Orvar BL, Sangwan V, Omann F, Dhindsa RS. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 23:785-794
    119. Paterson AH. 1995. Molecular dissection of quantitative traits: progress and prospects. Genome Res. 5:321-333
    120. Paterson AH. 1997. Comparative mapping of plant phenotypes. Plant Breed. Rev. 14:13-37
    121. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD.1991.Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genet. 127:181-197
    122. Paterson AH, De Verna JW, Lanini B, Tanksley SD. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genet. 124:735-742
    123. Paterson AH, Lander ES, Lincoln SH. 1988. Resolution of quantitative traits into Mendelian factors using a complete RFLP linkage map. Nature. 335:721-726
    124. Paterson ML, Jones DB, Rutger JN. 1978. Cool temperature screening of rice lines for seedling vigor. Ⅱ Riso. 27:269-274
    125. Peat WE, Whittington AJ. 1965. Genetic analysis of growth in tomato: segerating generation. Ann.Bot. 29 (116): 735-744
    126. Prasad TK, Anderson MD, Martin BA, Steward CR.1994.Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6: 65-74
    127. Redona ED, Mackill DV. 1996. Molecular mapping of quantitative trait loci in japonica rice. Genome. 39:395-403
    128. Saito A, Yano M, Kisimoto N, 1991. Linkage map of restriction fragment length polymorphism loci in rice. Japan J Breed. 41:665-670
    129. Satagopan JM, Yandell BS, Newton MA, Osborn TC. 1996. Markov chain Monte Carlo approach to detect polygene loci for complex traits. Genet. 144:805-816
    130. Satio K, Miura K, Nagano K, Satio HY, Satio A, Araki H, Kato A. 1995. Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety "Norin-PL8". Breed.Sci. 45:337-340
    131. Sen S, Churchill GA. 2001. A statistical framework for quantitative trait mapping. Genet.
    
    159:371-387
    132. Shahi BB, Khush GS. 1985. Genetic analysis of cold tolerance in rice. Proceedlings of the International Rice Genetic Symposium, May 27.
    133. Soller M, Brody T, Genizi A. 1976. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47:35-39
    134. Soller MJ, Beckmann JS. 1983. Genetic polymorphism in varietal identificarion and genetic improvement. Theor. Appl. Genet. 67:25-33
    135. Stewart AD, Hunt DM. 1982. The Genetic basis of development, Blackie, Glasgrow and London, 81-179
    136. Stuber CW, Moll RH, Goodman MM. 1980. Allozyme frequency changes associated with selection for increased grain yield in maize. Genet. 95:225-235
    137. Takahashi M. 1964. Linkage groups and gene schemes of some striking morphological characters in Japanese rice.In rice genetics and cytogenetics. Elsevier Publishing Company, 215-236
    138. Takeuchi Y, Hayasaka H, Chiba B et al. 2001. Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed.Sci. 51(3): 191-197
    139. Tanksley SD, Ganai MW, Prince JC. 1992. High density molecular linkage maps of the tomato and potamo genomes: biological inferences and practical applications. Genet. 132: 1141-1160
    140. Tanksley SD, Nelson JC. 1995. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92:191-203
    141. Tanksley SD, Young ND, Patterson AH, Bonierale MW. 1989. RFLP mapping in plant breeding: New tools for old science. Biotechnology. 7:257-263
    142. Thaller G, Hoeschele Ⅰ. 1996. A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci: I Methodology. 93: 1161-1166
    143. Thomas DC, Cortessis Ⅴ. 1992. A Gibbs sampling approach to linkage analysis. Hum Hered. 42. 63-76
    144. Thompson EA. 1994. Monte Carlo likelihood in genetic mapping. Statist Sci. 9: 355-366
    145. Uimari P, Hoeschele Ⅰ. 1997. Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genet. 146:735-743
    146. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP, a new technique for DNA fingerprinting. Nucleic
    
    Acids res. 23:4407-4414
    147. Wang DL, Zhu J, Li ZK, Paterson AH. 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor.Appl.Genet. 99: 1255-1264
    148. Weller JI. 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics. 42:627-641
    149. Williams JKR, Kubelic AR, Livak KJ. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids. Res. 18:6531-6535
    150. Wu RL, Ma CX, Zhu J, Casella G. 2002. Mapping epigenetic quantitative trait loci (QTL) altering a developmental trajectory. Genome. 45:28-33
    151. Wu WR, Li WM. 1994. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor.Appl. Genet. 89:535-539
    152. Wu WR, Li WM, 1996, Model fitting and model testing in the method of joint mapping of quantitative trait loci. Theor. Appl. Genet. 92:477-482
    153. Wu WR, Li WM, Tang DZ et al. 1999. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genet. 151:297-303
    154. Xu YB, Shen ZT, Xu JC, Chen Y, Zhu LH. 1993. Mapping quantitative trait loci via restriction fragment length polymorphism markers in rice. Rice Genetic Newsletter, 10: 135-138
    155. Xu YB. 2001. Global view of QT/QTL:Rice as a model.Proceedings of Quantitatives Genetics and Plant Breeding in the 21st Century-An International Symposium.Baton Rouge, LA, USA. March 26-28:p1-16
    156. Xu YB, Shen ZT. 1991. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.).Theor.Appl.Genet. 83:243-249
    157. Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. 1998. Molecular dissection of developmental behavior of pant height in rice (Oryza sativa L.). Genet. 150: 1257-1265.
    158. Yano M, Sasaki T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35:145-153
    159. Yadav R, Courtois B, Huang N, McLaren G. 1997. Mapping genes controlling root morphology and root distribution in a doubled haploid population of rice. Theor. Appl. Genet. 94: 619-632.
    160. Yoshida S. 1981. Fundamentals of rice crop science. IRRI, Los Ban~os, Philippines.
    161. Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelsom RJ. 1995. Tagging and combining bacterial blight resistance gene rice using RAPD and RFLP markers. Mol.Breeding. 1:375-378
    
    
    162. Yu, SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. 94:9226-9231
    163. Zabeau M, Vos P. 1993. Selective restriction fragment amplification: A general method for DNA fingerprinting. Patent Application World Intellectual Property Organization, WO, 93/06239
    164. Zeng ZB. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. 90:10972-10976
    165. Zeng ZB. 1994. Precision mapping of quantitative trait loci. Genet. 136:1457-1468
    166. Zhang QF, Hua JP, Yu SB, Xong LZ, Xu CG. 2001. Genetics and molecular basis of heterosis in rice. In: Rice genetics Ⅳ, Eds; K.hush GS,Brar DS, Hardy B,IRRI, 173-185
    167. Zhu, J. 1992. Mixed model approaches for estimating genetic variances and covariances. Biomath. 7: 1-11.
    168. Zhu J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genet. 141: 1633-1639
    169. Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ. 1998. AFLP markers for the study of rice diversity. Theor.Appl. Genet. 96:602-611
    170. Zhu J, Weir BS. 1996. Diallel analysis for sex-linked and maternal effects. Theor. Appl. Genet. 92:1-9
    171. Zhu J, Weir BS. 1998. Mixed model approaches for genetic analysis of quantitative traits. In Advanced Topics in Biomathematics: Procceedings of International Conference on Mathematical Biology. pp: 321~330. Edited by Chen LS, Ruan SG, and Zhu J. World Scientific Publishing Co., Singapore.
    172. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. 1997. Analysis of QTL×environment interaction for yield components and plant height in rice.Theor.Appl.Genet. 95: 799-808
    173. Zou J H, Pan XB, Chen ZX, Xu JY, Lu JF, Zhai WX, Zhu LH. 2000. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor.Appl.Genet. 101: 569-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700