用户名: 密码: 验证码:
高铝锌基合金的相变与热物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铝锌基合金是近年来在耐磨行业应用日益广泛的一类新型合金。它具有抗拉强度和硬度高,耐磨性好,摩擦温升低,材料成本低廉等优点;同时还具有良好的工艺性能,而且熔化时能耗低无污染,因此引起了许多国家研究人员的关注。
     高铝锌基合金的固态转变对其性能有着重要的影响,这一直是高铝锌基研究的重点。并且以往对于高铝锌基合金的研究主要集中于含铝量小于30%的合金,对于含铝量大于30%的合金研究较少且不系统。本文采用了光学金相分析、高温金相分析、扫描电子显微分析、示差扫描热分析和热膨胀性能等实验方法对含铝量大于30%的合金的固态相变与热物理性能进行了系统的研究,观察到固态相变的一些新现象。
     由实验结果和分析可得出以下结论:
     (1)首次利用高温金相显微镜连续地观察共析转变的动态过程。
     (2)高铝锌基合金的铸态组织由初生白色α枝晶、包围在α枝晶外缘的β相、枝晶间白亮的ε相和黑色的晶间共晶体组成。
     (3)五种合金的共析转变温度基本相同,均在285℃左右,ZA50的共析转变热最小。随着含铝量的增加,共析转变热减小;合金的熔点增加;合金的熔化热也增加,但增幅不大。试验合金的平均熔化热在170
    
     广西大学硕士学位论文高铝锌基合金的相变与热物理性能的研究
    kJ瓜g左右,高铝锌基合金熔化时能耗低。
     (4)随着温度升高,实验合金的热膨胀系数和热容都上升。而随着合
    金中Al含量的增多,组织中a相数量逐渐增多,其膨胀系数逐渐降低。
    ZA45在各实验温度下的热膨胀系数是最小的。ZA40在各实验温度下的
    热容是最大的。
     (5)通过对zA30的100“c等温热处理在不同时间的金相组织的观察,
    推测高铝锌基合金在100”C时效时发生调幅分解和胞状析出。
As a new kind of alloy, high Aluminum Zn-based alloys have found wide use in wear-resisting machinery in recent years. Not only does it feature a high tensile strength, high hardness, wear-resisting etc., but it is also characteristic of excellent processing properties and low energy consumption, no pollution in melting as well. Due to all of these advantages, this type of alloy has drawn many attentions of researchers in many countries.
    Solid transformation of high Aluminum Zn-based alloy has an important influence on its properties; so, the mechnism of the transformation has being investigated by researchers as a key subject. However, most of the researches were focused on alloys with aluminum content lower than 30%. Few researches have dealed with the alloys with aluminum content more than 30%. In the present research, a systematic study on solid transformation and thermophysical properties of alloy with aluminum content higher than 30% has been carried out. By means of metallographic, high temperature metallographic analysis, scanning electron microscope, thermal ananysis and thermal expansion experiment etc., some new phenomena have been observed as for solid transformation of the alloys. The main conclusions are:
    (1) The dymatic process of eutectoid transformation is observed continuously though high-temperature microscope for the first time.
    (2) The as-cast microstructure of high Aluminum Zn-based alloy consists of white a phase which takes on dendrite morphology, B phase which appears around a phase,
    
    
    
    and phase and eutectic.
    (3) The eutectoid transformation temperature of five alloys is identical , being about 285C. And ZA50's heat of eutectoid transformation is the lowest. With the increasing of aluminum content, the heat of eutectoid transformation reduces, while the melting point of alloy rises. The average heat of fusion of five testing alloys remains about 170 kJ/kg, so high Aluminum Zn-based alloy consume less energy in their melting.
    (4) As the temperature rises, the alloy's coefficient of thermal expansion and heat capacity also go up. With the increasing of Aluminum content, the number of a phase increase, and its coefficient of thermal expansion drops. Under every temperature, the coefficient of thermal expansion of ZA45 turns to be the smallest, and the heat capacity of ZA40 turns to be the biggest.
    (5) Through continual observations to different microstructure of ZA30 under isothermal heat treatment at the temperature 100C. It seems that spinnodal and celluar transformation have happened during ageing stage.
引文
[1]杨留栓,王洪敏,陈全德等,高铝锌合金,西安,西北工业大学出版社,1997,(9)
    [2]侯平均,李会强,倪峰,改善高铝锌合金性能的性能,材料开发与应用,2001,(4),30-34
    [3]张伟,国内外高铝锌基合金的研究现状和进展,铸造技术,1993,(2),36-39
    [4]胡海明,ZA27的研究发展,材料导报,1998,12(3),17-20
    [5]舒震,新型高强度铸造锌合金ZA27,铸造,1987,36(1),2-5
    [6]Gervais E, The development of a family of Zinc-base fourdry alloys, AFS Transactions, 1980,(3),47-52
    [7]Ayik O, Solidification and foundry studics of Zn/Al alloys, J Crystal Growth, 1986,79,594
    [8]陈全德,ZA27合金的摩擦特性,洛阳工学院学报,1985(2),1
    [9]刘盛斌,于以蘩,材料导报,锌铝合金的发展与应用,1994,(5),30-32
    [10]Donald R Dreger. Machine Design, 1980, 52(15), 104-108
    [11]封伟进,邢军,新型锌基耐磨合金,机械工程师,1998,(3),59-60
    [12]于柬,新型耐磨材料锌铝合金,金属热处理,1998,(2),25-27
    [13]陈云贵,郭东华,稀土在锌铝铸造合金中的作用,稀土,1994(5),42-46
    [14]Barnhurst R. J., E.Gervais, Gravity casting of Zinc-Aluminum Alloys-Solidification Behavior of ZA-8,ZA-12,ZA-27, AFS Trancsactions,1983, (9),569
    [15]张利明,陈美玲,阎承康等,ZA33-3锌基高强度耐磨合金的组织和性能,热加工工艺,1995,(3),45-47
    [16]张忠明,王锦程,徐东辉,铝、铜、镁对铸态锌基合金组织和阻尼性能的影响,中国有色金属学报,1999,(7),1-6
    [17]骆灼旋,压铸技术的现状及展望,特种铸造及有色合金,1998,(4)
    [18]Barnhurst R.J.,et aI.,AFS Transactions, 1983, 569
    [19]Sahoo M.et al.,AFS transactions,1984, 861
    
    
    [20]胡赛育.ZA27的研究进展.材料导报,1998,(6),17-20
    [21]闫俊萍,ZA27锌基合金组织与性能及钛的影响,包头钢铁学院学报,1996,(3),63-65
    [22]刘杰,刘智勇,彭日升等,高铝锌基微量元素化的组织和性能,物理测试,1995,(5),5-9
    [23]韩树楷,刘或,施忠良,稀土对高强锌合金耐磨性和耐蚀性的影响,中国稀土学报,1996,(3),47-51
    [24]赵浩峰,张凤林,赵沛廉,稀土化合物增强ZA-27耐磨性的研究,中国稀土学报,1995,(9),227-230
    [25]项宏瑶,稀土对高强度锌基合金耐磨性的影响,机械工程材料,1996,(1)
    [26]高彩桥译,摩擦的金属物理,北京,机械工业出版社,1984
    [27]倪峰,张柯柯,侯平均等,钛、锆变质处理对高铝锌基合金凝固特性的影响,热加工工艺,2001,(4),6-8
    [28]A.F.Skenazi,etal. Metal, 1983, (9), 898-922
    [29]田上道弘,轻金属,1983,33(1),9-15
    [30]苏德煌,添加铁或锰对ZA27合金高温拉伸性能的影响,材料科学与工艺,1998,6(3),52-55
    [31]王灵卉等,铁对ZA27合金性能的影响,铸造设备研究,1998,(6),63-64
    [32]郝远等,微量元素Sb,Te在ZA27合金中的作用,甘肃工业大学学报,1994,(3),20-23
    [33]李安铭,杨全林,吴鑫,硅,稀土元素对ZA27力学性能影响规律的研究,焦作工学院学报,1997,(8),17-22
    [34]成子岩,张恩洪,马家骥,硅对ZA35合金性能的影响,1989,(3),36-40
    [35]王狂飞,李朝晖。热处理工艺对ZA27铸造合金组织及性能的影响。河北理工学院学报,1999,(4),32-37
    [36]李利君,La对ZA27合金组织、机械性能及摩擦磨损特性的影响,铸造技术,1995(3)
    [37]Saboo M. AFS. Transactions. 1985,93,475-480
    [38]张兰英,高铝锌基合金,湛江水产学院学报,1995,(12),93-97
    
    
    [39]张绪强,金航哲,高铝锌基合金实用研究,特种铸造及有色合金,1992,(3),18-21
    [40]王智民,工艺参数对砂型铸造锌基合金(ZA27)组织与性能的影响,铸造技术,1995(3),9-12
    [41]苏等国,徐勇,王建民,ZA23高铝锌基合金的铸造,兰化科技,1996,(9),146-151
    [42]张伟,国内外高铝锌基合金的研究现状和进展,铸造技术,1993,(2),36-39
    [43]刘或,韩树楷,施忠良等,ZA27合金耐蚀性能实验研究,兵器材料科学与工程,1995,(5),15-19
    [44]武素玲,ZA43高铝锌基耐磨合金,特种铸造及有色合金,1991(6),6-9
    [45]Ph. Delneuville.Tribological Behaviour of. ZnAl Alloys(ZA27) Compared with Bronze where Used as a Bearing Material with High Load and at Very Low Speed.Wear, 1985, 105,283-292
    [46]梁梅芬,高强度铸造锌合金在干摩擦条件下摩擦磨损特性之研究,固体润滑,1991,(11),114-119
    [47]谢敬佩,铝、铜对锌基合金磨损性能影响的研究,洛阳工学院学报,1991,(12),10-13
    [48]李元元,罗俊明,高铝锌基合金粉末冶金及其摩擦特性初探,中国有色金属学报,1997,(1),10-13
    [49]张玉平,张琰,李翼等,高强度锌铝合金摩擦磨损特性的试验研究,特种铸造及有色合金,1996,(3),6-9
    [50]商全义,弓金霞,ZA27合金摩擦磨损性能的研究,郑州纺织工学院学报,1997,(8),1-6
    [51]彭日升,稀土变质ZA27合金的组织与性能,热加工工艺,1992,(2),37-40
    [52]皮亚南,傅国清,稀土高铝锌基合金摩擦性能的研究,南昌大学学报,1997,(4),90-93
    [53]张伟,黄积荣,高铝锌合金(30%-43%)耐磨性能的研究,特种铸造及有色合金,1992,(4),6-10
    [54]李元元,张大童,罗俊明,高铝锌基合金粉末冶金及其摩擦特性初探,中国有色金属学报,1997,(1),10-13
    [55]李虎成,李利君,杨通,ZA27合金摩擦磨损特性的研究,特种铸造及有色合金,1993(4),1-6
    
    
    [56]舒震,刘金水,新型高铝锌合金挤压铸造的研究,湖南大学学报,1994,(6),47-59
    [57]Skenazi A F, et al.Some recent developments in the improvement of the mechanical properties of zinc foundry alloys. Metal,1983,(9), 898-902
    [58]齐丕骧,挤压铸造,北京,国防工业出版社,1984.
    [59]Clegg A. Squeeze Casting-New Process Technology for the Engineer. Foundry Trade J. 1993, 166(3458): 484-495
    [60]于海朋,张富强,挤压铸造ZA27合金的组织与性能,特种铸造及有色合金,1997,(4)
    [61]于海朋,张富强,尹井田,挤压铸造ZA27合金,特种铸造及有色合金,1996(6),14-18
    [62]shuzhen .imperoving the mechanical properties and wear resistance of high aluminium zinc alloys. Journal of hunan University. 1995.Feb,98-102
    [63]舒震,刘金水,袁斌,新型高铝锌合金挤压铸造的研究,湖南大学学报,1994,(6),47-59
    [64]刘金水,舒震,蒋冰等,挤压铸造ZA43组织及性能的研究,热加工工艺,1997,(5),26-28
    [65]John Rutherford D, ZA Casting Alloys Conference Proceedings, ZA Alloy Die Casting, 1985, (5), 33-36
    [66]于海朋,李荣德,压铸ZA35合金的研究,沈阳工业大学学报,1997,(2),26-32
    [67]蒋鹏,半固态成形在工业生产中的应用现状与前景,模具技术,1998(5):15-23.
    [68]吴炳尧,半固态金属铸造工艺的研究现状及发展前景,铸造技术,1999(3),45-52
    [69]刘永长,杨根仓,吕衣礼,喷雾沉积Ce变质高硅ZA27合金组织与性能,铸造技术,1997,(4),37-39
    [70]Gervais E., Barnhust R.J.Loong C.A.,J.Metals, 1985, (11),43
    [71]Cornie J A. Guerriero R, Meregalli L,Tangerini I. Microstructures and properties of zine-alloy matrix composite materials. In, Fishman S G ed. Cast Reinforced Metal composites, Proc of the International Symposium on Advances in Cast Reinforced Metal Composites, USA ASM/TMS Metal Matrix Composites Committee. 1988, 155-165
    [72]Wang C.F., Ying M.E, TaoJ. ,Composites Structure, 1987,(2),98
    
    
    [73]隋贤栋,罗承萍,骆灼旋,陶瓷粒子增强的锌铝基复合材料的摩擦学特性,华南理工大学学报(自然科学版),1996(7),17-22
    [74]王俊,黄裕杰等,SiC颗粒增强锌基复合材料的制备及其性能,复合材料学报,1995,(12),56-59
    [75]刘金水,舒震,项品峰等,TiCP/ZA43复合材料的制备及拉伸性能,中国有色金属学报,1998,(12),585-589,
    [76]朱和祥,刘世楷,锌基复合材料研究进展,1994,(1),62-69
    [77]谢敬佩,祝要民,王晓颖等,高耐磨、高阻尼锌铝合金研究,特种铸造及有色合金,1999,(2),10-13
    [77]袁杰,用锌基合金制造铸模,铸造技术,1994,(4),46-47
    [78]郭伟,[La,Sb,Ti,Mn对高铝锌基合金力学性能影响的探索],广西大学,2002
    [79]曾健华,锌基合金模具设计制造与应用,北京,机械工业出版社,1994
    [80]刘洪军,樊目田,黄乃瑜,塑料模用锌基合金的特点与展望,特种铸造及有色合金,2001,(1),38-40
    [81]刘洪军,樊目田,黄乃瑜,塑料模具的快速制造技术,电加工与模具,2002,(3),54-56
    [82]沈保罗,锌基合金的性能特点及其在冶金行业中的应用,四川冶金,1996,(1)63-65
    [83]黄恢元,铸造手册,第3卷 机械工业出版社,1995
    [84]左演生,材料现代分析方法,北京工业大学出版社,2003,293-295
    [85]中国金属学会,金属材料物理性能手册,冶金工业出版社,1987,254-298
    [86]刘振海,化学分析手册(热分析),化学工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700