用户名: 密码: 验证码:
人工免疫优化与分类算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工免疫系统(AIS:Artificial Immune System)是一类基于生物免疫系统的功能、原理、基本特征以及相关理论免疫学说而建立的用于解决各种复杂问题的计算系统,是继人工神经网络、进化计算之后新的计算智能研究方向。本论文旨在深入探索和研究生物免疫系统中蕴含的进化学习机制,设计高效的人工免疫算法,并用其解决工业中的组合优化问题以及数据挖掘中的分类问题。本论文的主要研究工作包括以下几个方面:
     1.一般克隆选择算法(CSA)求解函数优化问题时,虽然表现出了比遗传算法更好的全局寻优能力,能有效克服遗传算法早熟现象。但是,在解决诸如背包问题等组合优化问题时收敛速度缓慢,解波动较大且难搜到最优解。为此,对一般克隆选择算法进行了改进,提出了带受体编辑的克隆选择算法(RECSA)。该算法受生物免疫系统机理的启发,不仅通过体细胞高频变异还引入了受体编辑操作实现亲和力的成熟,使抗体达到与抗原的高度匹配,同时增加一个历史至当前代最佳个体记忆单元防止种群退化。针对背包问题,采用贪婪策略和宽限边界值相结合的方式,对每代抗体群进行受体编辑操作。在对背包问题的两个算例求解中表明:与一般CSA算法和遗传算法相比,RECSA算法能提高种群质量和算法的收敛速度,在随机搜索期望最优值方面能力更强,而且算法更加稳定可靠,鲁棒性更好。
     2.针对组合优化问题,建立了一般CSA和RECSA算法的有限时齐马尔可夫链模型,定义了种群状态并构造了马尔可夫链的状态转移矩阵,然后采用马尔可夫链理论对两算法的收敛性进行了证明。理论推导表明,当迭代次数趋于无穷大时,马尔可夫链中的任意种群初始态是以概率1收敛到最优态,即至少有一个最优解能被寻到。最后,采用马尔可夫链平均吸收时间定理,证明了RECSA算法的平均收敛代数小于一般的CSA的平均收敛代数,从理论上说明了RECSA算法的收敛速度更快。
     3.为了说明RECSA算法解决组合优化问题的普遍有效性,我们将其用于组播路由问题当中。针对时延受限的组播路由,根据代价最小化原则和延时要求对个体的基因片段进行两次受体编辑,采用RECSA算法对其进行求解表明,在无需先求解备选路径的情况下能快速找到最优解,算法复杂度低且稳定可靠。本文还将RECSA算法用于解决组播路由的QoS问题,在首先满足延时约束的条件下,再综合考虑延时、带宽、代价这三个性能指标,引入了一个参数Q来衡量组播路由综合性能,使算法在这三者之间进行权衡约束,克服了目前传统的组播路由算法的一种性能参数的改善是以另一种或几种性能参数的退化作为代价,过于厚此薄彼的作法。仿真实验表明:该算法收敛速度快,能从整体上把握组播路由的综合性能,大大改善了组播路由的服务质量。将该算法用于长沙移动网的LAC优化中,实现了在不增减LAC区的情况下尽量减小LAC区边界处位置更新次数。
     4.从免疫进化网络理论着手,在研究了aiNET聚类模型和AIRS、AINMC等分类算法基础上,提出了基于免疫进化网络理论的分类器(IENC)。该算法主要采用记忆细胞池间与记忆细胞池内的两次网络抑制操作来改善网络结构,使记忆细胞在特异性与“通用性”之间得到平衡,从而提高分类准确率。对UCI中的Iris、Ionospere、Sonar和Pima的四个标准数据集的测试表明, IENC分类器比AIRS和AINMC更好,分类准确率更高。
     5.最后,将IENC分类器用于DNA序列和电能质量扰动分类中同样得到了比较满意的分类准确率。以上测试中,分类器的亲和力度量均采用常用的欧式距离。而在DNA序列的分类中发现, DNA序列的特征提取和亲和力度量方法对分类性能有较大影响。为此,对算法进行改进,采用离散增量度量亲和力,所获得的分类器泛化性能更好,能更好地衡量序列之间的相似性,将其用于线虫、酵母和拟南芥三类模式生物基因的识别中获得了更好的分类准确率。
Artificial Immune System (AIS) is a computing system that solves various complex problems based on the functions, disciplines, characteristics and other related immune theories of biological immune system. The system is a novel field of intelligent computing research after Artificial Neural Network (ANN) and Evolutionary Computation (EC). The objective of this study is to explore the evolutionary learning mechanisms contained in biological immune system and to apply them to the design of effective artificial immune models and algorithms for solutions of combination optimization problems in industries, and classification problems in Data Mining as well. The study focuses on the following aspects:
     1. The usual Clonal Selection Algorithm (CSA) is better than the Genetic Algorithm (GA) in global searching abilities, overcoming the problem of early-ripeness in function optimization. However, previous research demonstrates that when applying CSA to combination optimization problems such as 0-1 kidnap problems, it is incompetent of searching the best solution, slow of the processing speed of convergence and the solutions may fluctuate in a large scope. A Clonal Selection Algorithm with Receptor Editing (RECSA) is proposed, inspired by the biology immunity system mechanism. It makes use of not only cellular hypermutation but also receptor editing operation to realize affinity mature that will lead to the best match between the antibody and the antigen, Meanwhile a memory cell of the best individual descended is added to the mechanism to avoid population devolution. Aimed at the solution kidnap problems, the algorithm combines greedy strategy with an extended boundary to complete the receptor editing operation of each generation antibodies population. Applying RECSA to two 0-1 Kidnap Problems show that it can improve the population quality and search for the best solution more quickly than CSA. Its efficiency is higher and its stability and robustness is better than CSA and GA.
     2. Aimed at combinatorial optimization problems, a homogeneous finite Markov Chain Model using CSA and RECSA is constructed. The population state in Markov Chain is defined and a step transition probability matrix of system state is deduced. Then the convergence properties of the two algorithms are testified by the C-K equation properties in Markov chain theory. The testification process proved that the antibodies’population state can transit from arbitrarily beginning state to the best state when generation number is large enough, which means at least one best solution can be searched out in the final antibodies population. Lastly, testification based on the average absorbability time theorem in Markov Chain proves that the average generation number of convergence in RECSA is smaller than that in CSA, providing theoretical proof for the quicker convergence speed of RECSA in comparison with CSA.
     3. To show its universal validity of solving combined optimization problems, RECSA was further applied in the multicast routing field. In the case of multicast routing with delay constrain, the good gene segment in the immaturity subpopulation was adopted and receptor editing was conducted based on the principle of minimum cost and delay constrain separately. Results show that RECSA can search promptly for optimum solution without a prepared routing set. The process is also featured lower computational complexity and higher stability. RECSA has also been applied to the solution of the QoS problems in multicast routing. After fulfilling the condition of the time delay restraint, a parameter Q, which considers the balance the three performance including time delay, band width and the expense, is defined and introduced to measure the overall performance, maintaining the compromise and balance among the three Indies. This overcomes the problem in traditional solutions to multicast routing, namely the improvement of a performance parameter resulted in serious degeneration of other parameters. The results of simulation tests indicate its high searching efficiency, capable of adjusting the whole performance of the multicast routing and improved service quality of the QoS. At last, RECSA is applied to optimize LAC of Changsha mobile network so that number of times for LAC boundary locations update decrease while LAC sum is not changed.
     4. A classifier based on immune evolutionary network theories (IENC) has been proposed combining findings from studies on algorithms such as aiNET, AIRS and AINMC, and the immune evolutionary network theories. The classifier, based on the two network suppression operations within each memory cell pool and between memory cell pools, improves the network structure. Hence, the memory cellules can reach balance between peculiarity and universality, and eventually, improve the accuracy of classification. The results of tests on the four standard datasets of Iris, Ionosphere, Sonar and Pima in UCI indicate that IENC has better and higher accuracy than AIRS and AINMC .
     5. At last, satisfactory classification accuracy is achieved when applying IENC to DNA sequences and power quality disturbances detection. Euclid-distance was adopted for the affinity measurement of the classifier in all tests mentioned above. However, it was found that the eigenvalue extraction and the affinity measurement can negatively influence the classifier’s characteristics in DNA sequence tests. IENC has therefore been improved as follows: the diversity increment was adopted to measure the affinity measurement, and a group of status parameters of the source of diversity are added to the respective frequency of the 64 codons of a sequence using sliding calculation, the improved classifier had resulted in better performance and higher accuracy. It is also more capable of judging similarities among sequences when applied to DNA sequences discrimination of three model species including C. elegans, S. cerevisiae and A. thaliana .
引文
[1] Jerne N K. Towards a Network Theory of the Immune System. Annual Immunology, 1974, 125(C): 373-389
    [2] Perelson A S. Immune Network Theory. Immunological review, 1986, (10): 5-36
    [3] Famer J D, Packard N H, Perelson A S. The Immune System, Adaptation and Machine Learning. Physic, 1986, 22(D): 187-204
    [4] Varela F J, Stewart J. Dynamics of a Class of Immune Network Global Stability of Idiotype Interactions. Theoretical Biology, 1990, (144): 93-101
    [5]丁永生,任立红.人工免疫系统:理论与应用.模式识别与人工智能, 2000, 13(1): 52-59
    [6] Dasgupta D. Artificial Neural Networks and Artificial Immune Systems: Similarities and Differences. In: Proceedings of the IEEE SMC, 1997, (1): 873-878
    [7]靳蕃等.神经网络与神经计算机原理应用.成都:西南交通大学出版社, 1991
    [8]莫宏伟.人工免疫系统原理及其应用.哈尔滨:哈尔滨工业大学出版社, 2002 ,10- 27
    [9] Glenn W .Rowe.The Theoretical Models in Biology.Oxford University Press, first edition, 1994
    [10] Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems , 2000,55(1-3):143-150
    [11] Dasgupta D, Attoh Okine N. Immunity based systems: A survey. In: Proc IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, 1997. 369- 374
    [12] Timmis, J. 2000.Artificial Immune System: A Novel Data Analysis Technique Inspired by the Immune Network Theory, Ph. D. Dissertation, Department of Computer Science, University of Wales
    [13] De Castro L N, Von Zuben F J. Artificial immune system: Part I: basic theory and application.School of Electrical and Computer Engineering,State University of Campinas, Ca mpinas SR, Brazil: Technical ReportRT-DCA01,1999
    [14]王耀南.智能控制系统.长沙:湖南大学出版社, 2006
    [15]焦李成,杜海峰,刘芳,公茂果.免疫优化计算学习与识别.北京:科学出版社, 2006
    [16] Jerne N K .The immune system. Scientific American,1973, 229(1):51-60
    [17] Ishiguro A, Shirai Y, KondoT etal. Immunoid: An architecture for behavior arbitration based on the immune networks.In: Proc IEEE/RSJ International Confe rence on Intelligent Robots and Systems, Osaka, Japan, 1996,1730 -1738
    [18] Tang Z, Yamaguchi T, Tashima K et al. Multiple-valued immune network model and its simulations. In: Proc27th International Symposiumon Multiple–Valued Logic, Antigonish, Nova Scotia, Canada, 1997: 519-524
    [19] Timmis J, Neal M. A resource limited artificial immune system for data analysis. Knowledge Based Systems, 2001, 14(3-4):121-130
    [20]王磊,潘进,焦李成.免疫规划.计算机学报.2000, 23(8):806-812
    [21] Ishiguro A , Shirai Y ,Kondo T etal. An architecture for behavior arbitration based on the immune networks. In: Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan,1996: 1730 - 1738
    [22] Ishiguro A, Kuboshiki S, Ichikawa S. Gait coordination of hex a pod walking robots using mutual coupled immune networks. In: Proc IEEE International Conference on Evolutionary Computation, Perth, Australia, 1995: 672-677
    [23] Mitsumoto N, Fukuda T. Shimojima K etal. Autonomous robotic system and biologically inspired immune swarm strategy as a multiagent robotic system. In: Proc IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, USA, 1995.2187-2192
    [24] Renders J M, Hanus R. Biological learning metaphors for adaptive process control: A general strategy. In: Proc IEEE International Symposium on Intelligent Control, Glasgow, Scotland, 1992:469-474
    [25] Ishiguro A, Watanabe Y, Uchikawa Y. Fault diagnosis of plant systems using immune networks. In: Proc IEEE International Conference on Multi Sensor Fusion and Integration for Intelligent Systems, Las Vegas, NV: 1994.34-42
    [26] Ishida Y, Adachi N. An immune network model and its application to process diagnosis. Systems and Computers in Japan, 1993, 24 (6):38 -45
    [27] De CASTRO L N. Artificial immune system as a novel soft computing paradigm. Soft computing journal.2003, 7( 7):121-129
    [28] Forrest S, Smith R E. Using Genetic Algorithms to Explore Pattern Recognition in the Immune System. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press, 1994
    [29]杨海东.人工免疫模型集成与应用研究.华南理工大学博士学位论文,20050401
    [30] D’haeseleer P, Forrest S, Helman P. An immunological approach to change detection algorithms: Analysis and implications. In : Proc IEEE Symposium onSecurity and Privacy, L Alamitos.CA,USA,1996:110-119
    [31] Timmis J, Knight T. Artificial immunes system: Using the immune system as inspiration for data mining. In: Abbass H A, Sarker R A, Newton C Seds. Data Mining: A Heuristic Approach. Hershey: Idea Publishing Group,2001.209- 230
    [32]王磊.免疫进化计算理论及应用.西安电子科技大学博士研究生学位论文,2001
    [33]张军,刘克胜,王煦法.一种基于免疫调节算法的BP网络设计.安徽大学学报(自然科学版) 1999, 23(1):63-66
    [34] Chun J S, Jung H K, Hahn S Y.A study on comparison of optimization performance between immune algorithm and other heuristic algorithms. Magnetics, 1998, 34(5):2972-2975
    [35] Endoh S, Toma N, Yamada K. Immune algorithm for n-TSP.IEEE International Conference on System, Man, and Cybernetics,1998,4:3844-3849
    [36]曹先彬,刘克胜,王煦法.基于免疫遗传算法的装箱问题求解.小型微型计算机系统,2000,21(4):361-363
    [37]孟繁桢,杨则,胡云昌,徐慧.具有免疫体亲近性的遗传算法及其应用.天津大学学报, 1997,30(5): 624-630
    [38]焦李成,杜海峰.人工免疫系统进展与展望.电子学报, 2003,31(10): 1540-1548
    [39] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning.Physical, 1986, 22: 187-204
    [40] Hunt J E ,Cooke D E .Learning using an artificial immune system.Journal of Network and Computer Applications,1996,19(2):189-212
    [41] Krishna Kumar K,Neidhoefer J.Immunized adaptive critics for level intelligent control.1997 IEEE International Conference on Computational Cybernetics and Simulation .Institute of Electrical and Electronics Engineering, Incorporated, 1997, 856-861
    [42] Sasaki M,Kawafuku M, Takahashi K. An immune feedback mechanism based adaptive learing of neural network controller. ICONIP’99.6th.International Confeence on Neural Information Processing.IEEE Computer Society Press, 1999, 502-507
    [43]李亭鹤,阎超.一种新的分区重叠洞点搜索方法-感染免疫法.空气动力学报, 2001, 19(2) :156-160
    [44] Forrest S, Hofmeyr S A, Somayaji A. Computer immunology. Communications of the ACM,1997,40 (10):88 -96
    [45]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统.控制与决策, 2000, 15(4): 443-446
    [46] A Ishguro,Kondo T, Watanabe Y , ShiraiY ,etal.Emergent construction of artificial immune network for autonomous mobile robots[A]. IEEE international conference on systems,man,and cybernetics [C].Orlando . Fr,USA, 1997,(2): 1222-1228
    [47]LEE D W, SIM K B.Artificial immune network based cooperative control in collective autonomous mobile robots [A].6th IEEE International Workshop on Robot and Human Communication [C].Sendai, Japan , 1997:58-63
    [48]牛志强,刘峥嵘,吴新余.基于免疫算法的智能多用户检测技术在CDMA中的应用.江苏通信技术,2001,17(2):6-9
    [49]刘芳,杨海潮.一种基于克隆策略的多播路由算法.电子与信息学报, 2004. 26(11): 1825-1829
    [50]刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005.16(1):145-150
    [51]刘芳,谢银祥.基于克隆策略的重构动态组播路由算法.计算机学报, 2004, 27(6): 833-837
    [52] Dasgupta D, Artificial Neural Network and Artificial Immune Network: Similarities and Differences. In: 1997 IEEE International Conference on System, Man and Cybernetics, Oct. 12th-19th, Orlando Florida, USA: 873-878
    [53]Dasgupta D, Forrest S, Artificial Immune Systems in Industrial Applications. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, July, 10th-15th , 1999,(1):25 7-267
    [54]刘树林,张嘉钟等.基于免疫系统的旋转机械在线故障诊断.大庆石油学院学报, 2001, 25(4): 96-100。
    [55]杜海峰,王孙安.基于ART-人工免疫网络的多级压缩机故障诊断.机械工程学报, 2002,38(4):88-90
    [56]牛慧峰,姜万录.免疫支持向量机方法在液压泵故障诊断中的应用.中国机械工程, 2008, 19(14):1736-1743
    [57] Forrest S, Hofmeyr S A, Somayaji A, etc, A Sense of Self for Unix Processes, In: 1996 IEEE Symposium Security and Privacy, Oakland, California, May6-8, 1996: 120-128
    [58] Okamoto T, Ishida Y, "A Distributed Approach to Computer Virus Detection and Neutrilization by Autonomous and Heterogeneous Agents". In: Fourth International Symposium Autonomous Decentralized Systems, Tokyo, Japan, March 21th-23th , 1999: 328-331
    [59] McCoy D F, Devarajian V. Artificial immune systems and aerial image segmentation. 1997 IEEE International Conference on Systems, Man, and Cybernetics. Institute of Electrical and Electronics Engineers, Incorporated, 1997, 867-872
    [60]王肇捷,黄文剑.立体匹配的免疫算法.电脑与信息技术,2001,(4):4-6
    [61] Kim J ,Bentley P .The artificial immune model for network intrusion detection. In: Proc 7th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1999: 13-19
    [62] Ester M, Kriegel H P, and Xu X. Knowledge Discovery in Large Spatial Data base: Focusing Techniques for Efficient Class Identification. In Proc.4th Int . Symp. On Large Spatial Databases (SSD'95), Portland, Mane, August 1995:67-82
    [63] Zhang T, Ramakrishnan R, and Livny M. BIRCH: an Efficient Data Clustering Method for Very Large Databases. In Proc.1996ACM-SIGMOD Int . Conf. Management of data, Montreal, Canada, June 1996
    [64] Smith D J, Forrest S, Perelson A S. Immunological memory is associative. In: Artificial Immune Systems and their Applications. Berlin: Springer, 1998.105-112
    [65] Hunt, J E &Cooke D E. Learning Using an Artificial Immune System, Journal of Network and Computer Application. 1996(19):189-212
    [66] Bezerra G B, de Castro L N, Timmis J, etal. Bioinformatics data analysis using an artificial immune network.(Eds.):ICARIS2003,LNCS2787, 2003: 22-33
    [67] Takama Y, Hori T. Application of Immune Network Metaphor to Keyword Map- based Topic Stream Visualization. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan ,2003, July, 16- 20
    [68]李领治,丁秋林.基于遗传算法的QoS选播流路由优化算法.计算机工程, 2008, 6(34): 45-47
    [69]侯立文,蒋馥.一种基于蚂蚁算法的交通分配方法及其应用.上海交通大学学报, 2001, 3(56) : 930- 933
    [70]张雯,樊玮.基于蚁群算法的航班网络座位优化研究.计算机应用, 2008, 10(28): 2645-2647
    [71]申玮.模拟退火算法的改进及其在水环境工程中的应用.杭州:浙江大学, 2004
    [72]蒋加伏,蒋丽峰,唐贤瑛.基于免疫遗传算法的多约束QoS路由选择算法[J].计算机仿真, 2004, 2(1 3) : 51- 54
    [73]曹恒智,余先川.单亲遗传模拟退火及在组合优化问题中的应用.北京邮电大学学报,2008,3(31):11-14
    [74]郇嘉嘉,黄少先.基于免疫原理的蚁群算法在配电网恢复中的应用.电力系统保护与控制,2008,17(36):28-31
    [75]王焱滨,虞厥邦.遗传算法在多用户检测中的应用研究.电路与系统学报,2008,2(13):39-43
    [76]章兢,张小刚.数据挖掘算法及其工程应用.北京:机械工业出版社,2006
    [77] Han Jiawei , Kamber M. DATA MINING-Concepts and Techniques.北京:高等教育出版社,2001
    [78] Rumelhart D E , Hinton G E , Williams R J . Learning internal representations by error propagation. Rumelhart D E, McClelland J L, editors. Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986
    [79] DeJong K A, Spears W M, Gordon D F. Using genetic algorithms for concept learning. Machine Learning, 1993, 13: 161-188
    [80] Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. AAAI(1990) , 1990. 223-228
    [81] Aamodt A, Plazas E. Case2based reasoning: Foundational issues, met homological variations, and system approaches. AI Comm., 1994, 7: 39-52
    [82] Parpinelli R S, Lopes H S, Freitas A A. Data Mining with an Ant Colony Optimization Algorithm. IEEE Trans. on Evolutionary Computation, 2002, special issue on Ant Colony algorithms.
    [83] Parpinelli R S , Lopes H S , Freitas A A. Mining Comprehensible Rules f rom Data with an Ant Colony Algorit hm. In :Bittencourt G, Ramalho, eds. SBIA 2002 , LNAI 2507 , 2002, 259-269
    [84] Yao Y Y, Yao J T. Induction of classification rules by granularcomputing. In: Proceedings of The Third International Conferenceon Rough Set s and Current Trends in Computing , 2002
    [85] Zhao Yan. Coarsening classification rules on basis of granular computing. In : Taw A Y, Goodwin S D. Eds. Canadian AI 2004 , LNAI 3060 , 2004,578-579
    [86] Guo Gongde , Wang Hui , Bell D A , et al . KNN Model-Based Approach in Classification. In: Coop IS/ DOA/ ODBASE 2003, 2003, 986-996
    [87] Guo Gongde , Wang Hui , Bell D A , et al . A kNN Model-Based Approach and Its Application in Text Categorization. In: CICLing 2004 , 2004, 559-570
    [88] Schohn G,Cohn D. Less : Active learning with support vector machines. In: Proc.17th Int. Conf . Machine Learning , Stanford ,CA , 2000
    [89] Tong S, Koller D. Support vector machine active learning with applications to text classification. In: Proc. 17th Int Conf. Machine Learning, Stanford, CA, 2000 [90 ] Balczar O W J L , Dai Y. A random sampling technique for training support vector machines. In: The 2001 IEEE Int Conf. Data Mining, San Jose, CA, 2001
    [91] Lee Y J, Mangasarian O L. RSVM: Reduced support vector machines. First SIAM Int. Conf. Data Mining, Chicago , IL , 2001
    [92] Yu Hwanjo, Yang Jiong, Han Jiawei. Classifying Large Data Sets Using SVMs with Hierarchical Clusters. SIGKDD’03, Washington, DC, USA , Aug. 2003
    [93]. Kepler T B, Perelson A S. Somatic Hypermutation in B cells: An Optional control Treatment. Journal of theoretical Biology, 1993, (164): 37-64
    [94] Berek C, Ziegner M. The maturation of the immune response. Immune Today, 1993, 14(8): 400-402
    [95] George A J T, Gray D. Receptor editing during affinity maturation. Immune Today, 1999, 20(4): 196
    [96] Perelson, A.S. &Oster, G.F. Theoretical Studies of Clonal Selection: Minimal Antibody Repertorire Size and Reliability of Self-Nonself Discrimination, J.theor. Biol., 1979, 81: 645-670
    [97] Hajela P., Lee J. Constrained Genetic Search via Schema Adaptation: An Immune Network Solution,Structural Optimization, 1996,12 (l):11 -15
    [98] Perelson A.S. Immune Network Theory, Imm.Rev., 1989, 110: 5-36
    [99]何珍梅,徐雪松.人工免疫系统研究综述.华东交通大学学报, 2007(8), Vol 24(4):79-83
    [100]张泽明,人工免疫算法及其应用研究[中国科学技术大学博士论文],合肥:中国科学技术大学, 2007
    [101]Cooper K D,Hall M W,Kennedy K.Procedure cloning. Proceeding of the 1992 International Conference on Computer Languages, 1992, 96-105
    [102] Balazinska M, Merlo E, Dagenais M et al. Advanced clone-analysis to support object-orientedd system refactoring. Proceedings of the Seventh Working Conference on Reverse Engineering ,2000,98-107
    [103] Esmaili N, Sammut C, Shirazi G M. Behavioural cloning in control of a dynamic system. IEEE International Conference on Systems, Man and Cybernetics Intelligent Systems for the 21st Century , 1995, 2904-2909
    [104] Hyinette M, Fujimoto R. Cloning: a novel method for interactive parallelsimulation. Proceedings of the 1997 Winter Simulation Conference, 1997, 444-451
    [105] de Castro L N, Von Zuben F J. The clonal selection algorithm with engineering application . Proc. of GECCO’00, Workshop on Artificial Immune Systems and Their Application ,2000,36-37
    [106] Kim J, Bently P J. Towards an artificial immune system for network intrusion detection : an investigation of dynamic clonal selection. Proceedings of Congress on Evolutionary Computation,2002,1015-1020
    [107] H. Kellerer, U. Pferschy and D. Pisinger. Knapsack problems, Springer, Berlin ,2004
    [108] Fariborz Jolai, M.J. Rezaee, M. Rabbani, J. Razmiand Pariviz Fattahi.Exact algorithm for bi-objective 0-1 knapsack problem. Mathematics and Computation, 2007, 194(2):544-551
    [109]盛红波,孙娟,孙小玲.0-1多项式背包问题的一种精确算法.上海大学学报(自然科学版),2006,12(4):389-393
    [110] CAPRARAA,PISINGERD,TOTHP. Exact solution of the quadratic knapsack problem[J].INFORMS Journal on Computing,1999,11:125-139
    [111]张晓琴,黄玉清.基于禁忌搜索的启发式求解背包问题算法.电子科技大学学报,2005,34(3): 359-362
    [112]曾智,杨小帆,陈静等.求解多维0-1背包问题的一种改进的遗传算法.计算机科学,2006,33(7): 220-223
    [113]胡小兵,黄席樾.基于蚁群优化算法的0-1背包问题求解.系统工程学报, 2005, 20 (5) : 520-529
    [114]卢长先,陆一平,查建中.求解0-1背包问题的交叉熵方法.计算机仿真, 2007, 24(7): 183-186
    [115]杜海峰,刘若辰,焦李成,王孙安.求解0-1背包问题的人工免疫抗体修正克隆算法[J].控制理论与应用,2005,22(3):348-352
    [116]李肯立,姚凤娟,李仁发,许进.基于分治的背包问题DNA计算机算法.计算机研究与发展,2007,44(6):1063-1070
    [117] M. Caserta E,Quinez Rico, A. Márquez Uribe. A cross entropy algorithm for the Knapsack problem with setups, Computers & Operations Research ,35 (2008) :241– 252
    [118] VOSE M D, LIEPINS G E.Punctuated equilibrium in genetic search[J]. Complex Systems, 1991,5:31-44
    [119] HORN J. Finite Markov chain analysis of genetic algorithms withniching:Proc.of the 5th Intel Conf.on Genetic Algorithms, 1993[C].San Mateo:Morgan Kaufmann, 1993: 110-117
    [120] MAHFOUD S W. Finite Markov chain models of analternative selection strategy for the genetic algorithm[J]. Complex Systems,1993, 7:155-170
    [121]徐宗本,聂赞坎,张文修.关于遗传算法公理化模型的进一步结果.工程数学学报, 2001, 18(1):1-11
    [122] GOLDBERG D E. Real-coded genetic algorithms,virtual alphabets,and blocking[J]. Complex Systems, 1991, 5: 139-167
    [123]刘次华.随机过程.武昌:华中科技大学出版社, 2001
    [124] Huang F,Richards D.Steiner Tree Problems. Networks,1992,22(1):55-89
    [125]石文孝.通信网理论基础.吉林:吉林大学出版社, 2001
    [126] Kou L, Markowsky G, Berman L. A fast algorithm for steiner trees.Acta Information,1981,15(2):141-145
    [127]孙力娟,王汝传.基于蚁群算法和遗传算法融合的QoS组播路由问题求解[J].电子学报, 2006,34(8):1391-1395
    [128]潘达儒,杜明辉.基于粒子群优化的QoS组播路由算法.计算机工程与应用, 2006,1:138-140
    [129] M. Hamdan M.E. El-Hawary. Multicast Routing with Delay and Delay Variation Constraints Using Genetic Algorithm. Electrical and Computer Engineering, 2004. Canadian Conference , May 2004 ,Vol.4:2363 - 2366
    [130]王新红,王光兴.基于遗传算法的时延受限最小组播路由选择方法.通信学报, 2002, 23(3): 112-117
    [131]石坚,邹玲等.遗传算法在组播路由选择中的应用.电子学报, 2000,28(5):88-89
    [132]杜海峰,公茂果,焦李成,刘若成.用于高维函数优化的免疫记忆克隆规划算法[J].自然科学进展,2004,14(8):925-933
    [133] De Castro L N, Timmis J. An aitificial immune network for multimodal function optimization. The 2002 IEEE World Congr. Congress on Compute Computational Tional Intelligence, 2002: 699-704
    [134]刘芳,杨海潮.参数可调的克隆多播路由算法.软件学报,2005.16(1):145-150
    [135]刘芳,杨海潮.一种基于克隆策略的多播路由算法.电子与信息学报, 2004. 26(11): 1825-1829
    [136] WANG B, HOU J C. Multicast routing and its QoS extesion: problems, algorithms, and Protocols. IEEE Network, 2000, 14(1):23-36
    [137]张灵,陈晓宏,翁毅,王兆礼.克隆选择算法在遥感影像分类中的应用.中山大学学报(自然科学版),2008,3(47):920-924
    [138]莫宏伟,唐娜,金鸿章,徐立芳,吕淑萍,管凤旭.免疫阴性选择分类器在信息恢复中的应用.计算机学报,2005,8(28):1314-1319
    [139]钟燕飞,张良培,龚健雅,李平湘.基于克隆选择的多光谱遥感影像分类算法.中国图象图形学报, 2005,1(10):18-24
    [140]莫宏伟.人工免疫网络记忆分类器原理与应用研究.哈尔滨工程大学博士学位论文,20050101.
    [141] Watkins A B. AIRS: A Resource Limited Artificial Immune Classifier.M. Sc. Thes is.Department of Computer Science,Mississippi State Universi ty ,2001
    [142] Watkins A B, Boggess L C. A Resource Limited Artificial Immune Classifier .IEEE World Congress on Computational Intelligence Honolulu , Hawaii,2002
    [143] Xiaobo Zhou, Xiaodong Wang, Edward R. Dougherty. A Bayesian approach to nonlinear probit gene selection and classification. Journal of the Franklin Institute , 2004,341: 137-156
    [144] Cathy H. Wu. Artificial neural networks for molecular sequence analysis. Computer Chem., 1997, 21(4): 237-256
    [145] Jie Liang, Seman Kachalo. Computational analysis of microarray gene expresssion profiles: clustering, classification ,and beyond. Chemometrics and Intelligent Laboratory Systems,2002,62: 199-216
    [146]孙宝法.DNA序列数据的聚类挖掘.河南科学,2004,22(5): 600-604
    [147]由伟等.用人工神经网络模型对DNA序列进行分类.科技信息,2007,25:89-90
    [148]张焕萍,宋晓峰,王惠南.基于离散粒子群和支持向量机的特征基因选择算法.计算机与应用化学,2007,24(9):1159-1162
    [149]李银山,杨春燕,张伟.DNA序列分类的神经网络方法.计算机仿真,2003,20(2):65-68
    [150]徐克学.生物数学.北京:科学出版社, 2001
    [151]吕志清,李前忠.用离散量预测蛋白质的结构型.生物物理学报, 2001, 17 (4) : 703- 711
    [152] CHEN Cuixia etc. The Identification of Exon Intron and Intergenic DNA in the Model Species Genomes. Acta Scientiarum Naturalium Universitatis NeiMongol,2005,7: 166-172
    [153]鲍卫华,李前忠.预测线虫和酵母基因组中内含子.外显子及基因间序列的离散增量方法.内蒙古大学学报(自然科学版),2004,35(1):60-64
    [154]陈翠霞.五种模式生物基因序列的识别研究.内蒙古大学硕士学位论文,20040101
    [155] BursetM , Guigo R. Evaluat ion of gene structure prediction program. Genom ics, 1996, 34: 353- 367.
    [156] Heydt G T,Fjeld P S,Liu C C,et al.Applications of the window FFT to electric power quality assessment. IEEE Trans. on Power Delivery, 1999,14(3): 1411~1416
    [157]徐永海,肖湘宁等.基于dq变换和ANN的电能质量扰动辨识.电力系统自动化, 2001,25(14) :24-28
    [158] Gaouda A M, Salama M M A, Sultan M R, et al. Power quality detection and classification using wavelet-multiresolution signal decomposition. IEEE Transactions on Power Delivery, 1999, 14 (4): 1469-1476
    [159] Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 1992, 38 (2): 617-643Shin Y J, Powers E J, Grady M, et al. Power quality indices for transient disturbances. IEEE Transactions on Power Delivery, 2006, 21 (1): 253-261
    [160] Santoso S, Powers E J, Grady W M, et al. Power quality assessment via wavelet transform analysis. IEEE Transactions on Power Delivery, 1996, 11 (2): 924-930
    [161] Bahoura M, Rouat J. Wavelet speech enhancement based on the Teager energy operator. IEEE Signal Processing Letters, 2001, 8 (1): 10-12
    [162] Chilukuri M V, Dash P K. Time-frequency based pattern recognition technique for detection and classification of power quality disturbances. IEEE Region 10 Annual International Conference, Proceedings/TENCON C, 2004: C260-C263
    [163] Stockwell R G,Mansina L,Lowe R P. Localization of the complex spectrum:the S transform.IEEE Trans.on Siganal Process,1996,44:998-1001
    [164]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位.电工技术学报, 2007, 22(8) , 119-125
    [165] Galil T K Abdel,Saadany E F El,Youssef A ,M,et al.Disturbance classification using hidden Markov models and vector quantization. IEEE Trans.on Power Delivery,2005,20(3):2129-2135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700