用户名: 密码: 验证码:
基于分子标记辅助选择的玉米导入系群体构建与自交系改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记辅助选择(molecular marker-assisted selection:MAS)是现代生物育种体系的主要领域,完善MAS的理论与技术体系对有效提高玉米遗传改良水平具有重要意义。在回交转育程序中利用MAS技术构建染色体片段代换系或染色体片段导入系群体,不仅可缩短选育年限,提高选育效果,而且可获得覆盖全基因组的、片段衔接的全套近等基因系,直接为基因定位、克隆和理论及应用研究提供基础材料。
     本研究选用强优势杂交组合豫玉22的亲本87-1和Zong3为受体亲本,以糯质、抗病性和抗倒伏性较好的HB522为供体亲本,经杂交和连续3代回至BC3F1后,自交得到BC3F2。从BC1代开始,每个回交世代利用导入片段两侧分子标记进行导入片段的前景选择,利用覆盖全基因组SSR标记进行轮回亲本的背景选择,构建单片段导入系基础群体,并对其遗传背景、导入片段大小、数目和覆盖率及其表型效应等进行评价,对几个重要的产量性状QTL进行初步定位,同时,通过三种选择策略得到了waxy基因和Rf3基因的辅助回交改良系,并对改良系的前景选择效果、背景效应及配合力效应进行评价。取得的初步结果如下:
     1、在87-1×HB522的BC3F1群体中筛选到83个遗传背景回复率高的单株,自交构建成含有40个目标片段的单片段导入系基础群体87-1HBSSILs。在综3×HB522的BC3F1群体中筛选到122个高遗传背景回复率的个体,自交构建成含有78个目标片段的导入系群体,其后经过进一步回交、自交,直到BC4F3,最终构建了98个Z3HBSSILs基础群体。
     2、在87-1HBSSILs群体中,各导入系中所导入的片段数目不等,平均导入4个片段;相对于参考图谱IBM neighbor2005,导入片段长度在0.03~342.8cM之间,平均长度为91.1cM,导入片段覆盖48.96%玉米基因组。Z3HBSSILs导入系群体共导入188个供体亲本的基因组片段,不同导入系含有的供体片段数目1-6个不等,平均每个导入系有导入片段1.92个;相对于参考图谱IBM neighbor2005,导入片段的长度在4.8cM-256cM,平均长度为63.7cM,导入片段共覆盖86.2%的玉米基因组。
     3、在保定和张家口两地,对Z3HBSSILs群体的穗行数、行粒数、百粒重、穗粒重进行鉴定,基于导入系群体的表型,开展QTL鉴定。两个环境下共检测到15个穗行数QTL,单个QTL可解释4.57%~33.06%的表型变异,其中2个QTL在两地均被检测到;6个行粒数QTL,单个QTL可解释的表型变异为4.57%~9.86%;9个百粒重QTL,单个QTL可解释的表型变异为4.24%~19.27%,其中,1个QTL在两地均被检测;以及2个穗粒重QTL,分别解释6.493%和10.131%的表型变异,2个QTL在两个环境均被检测到。
     4、基于三种分子标记辅助选择(MAS)策略,针对Rf3和waxy(wx)基因开展了基于MAS的回交转育,获得了3个改良系。分别对这3个改良系目标性状的改良效果进行分析证实,Rf3基因的导入可使S-Mo17(rf3rf3)育性恢复;导入waxy基因,不仅没有改变总淀粉含量,而且显著提高了支链淀粉含量,降低了直链淀粉含量。
     5、对三种MAS选择策略得到的3个改良系的背景评价发现,(1)回交各世代进行标记背景选择的改良系S-Mo17(Ry3Rf3),背景回复率为96.0%,改良系中供体染色体片段残留仅为4%,分布于第7、8和9染色体的个别区域;(2)在BC3F1进行一次标记辅助的背景选择,所得改良系Z3-wxwx的背景回复率为94.6%,改良系中存在5.4%的遗传累赘和残留,分布在目标基因wx所在的第9染色体以及第3、6、7染色体上;(3)在BC3F1只进行表型选择而不进行标记辅助的背景选择,所得改良系87-1-wxwx的背景回复率仅为82.1%,改良系中存在17.9%的供体残留,除第1、10染色体外,其他8条染色体上均有背景残留。从表型来看,S-Mo17(Rf3Ry3)比S-Mo17(rf3rf3)株高变矮6.0cm,开花期提早3天;87-1-wwx比87-1株高和穗位高分别降低23cm和6.7cm、穗长变短,抽雄期提早3天;Z3-wxwx比Z3株高增加19.3cm、穗位高增加6.7cm,开花期推迟3天,87-1-wwx与87-1间差异较显著。由此表明,背景的回复率越低,改良系与原自交系的性状差异就越大,与表型选择相比,通过SSR标记进行背景选择可有效降低供体非目标片段的导入。
     6、改良前后自交系与多个玉米自交系杂交,组配杂交组合,以检测供体染色体片段残留对自交系的配合力和杂交种性状的影响,结果发现,S-Mo17(rf3rf3)和S-Mo17(Rf3Rf3)、Z3和Z3-wxwx、87-1和87-1-wxwx分别与5个测验种杂交组合的表现型相似,改良前后的自交系表现出相似的一般配合力和特殊配合力,进一步地说明利用回交结合分子标记辅助选择,既可有效地改良目标性状,又不至于改变优良自交系的配合力特性。但由于残留遗传背景的干扰,改良前后自交系与测验种所组配的相似组合间,仍然存在个别性状的差异。
The molecular marker-assisted selection (MAS) is an useful tool in crop breeding program and plays an important role in maize genetic improvement. The chromosome segment substitution lines (CSSLs) or chromosome segment introgression lines (CSILs) population which developed using MAS during backcross program can not only shorten the breeding period and raise the selecting efficiency, but also get the whole set of near-isogenic lines(NILs) with linked segment covering the whole genome which can be used as basic material for gene mapping, gene cloning and other theoretical and practical research.
     In this study, Zong3and87-1, parents of an elite maize hybrid Yuyu22, were used as recipient line, respectively, and HB522, an elite waxy inbred with disease resistance and lodging resisitence, was selected as donor line. Two set of link-up single segment introgression line (SSIL) populations were developed through3cycle advanced backcrossing.Foreground selection were conducted using the two SSR markers defined the introgressed segment and background selection of populations were screened using genome-wide SSR markers in each cycle of backcross. The size and number of introgressed segment, coverage of genome and phenotype were evaluated. QTL mapping for yield and yield-association traits were also performed. Additionally, R/3and waxy were used to improve inbred lines using three strategies of MAS, and background in these improved lines were screeded by genome-wide SSR markers, the effects of phenotype and combining ability caused by residual segment of donor were evaluated of improved lines and their hybrids. The results were shown as followling:
     1. The40lines were developed by83individuals derived from BC3F1of crossing87-1×HB522, and98lines were developed by122individuals derived from BC4F3of crossing Zong3×HB522, respectively. The population developed from87-1as recurrent parent was defined as87-1HBSSILs, similarly, the population developed from Zong3as recurrent parent was defined as Z3HBSSILs.
     2. A total of40donor genomic segments were introgressed into the87-1inbred. An average length of single introgressed segment was91.10cM on the basis of reference map IBM neighbor2005, ranged from0.03to342.86cM and covered a48.96%genome of87-1. A total of188donor segments were developed by the Z3HBSSILs. The number of these introgressed segments in each introgressed line varies from1to6, while the average number of them is1.92. The average length of introgressed segments was63.7cM, ranging from4.8cM to256cM on the basis of reference map IBM neighbor2005. The introgressed segment covered86.2%genome of maize.
     3. The QTL for grain yield and yield-association traits were identified using Z3HBSSIL population in Baoding and Zhangjiakou. A total of32QTL were detected across two environments, of which15for row number per ear (RNPE),6for kernel number per row (KPR),9for grain weight (GW) and2for weight per ear (WE), respectively. Each QTL explaining from4.57~33.06%,4.57~9.86%,4.24~19.27%and6.493~10.131%of phenotypic variance of RNPE, RNPE, KW and WE, respectively. The QTL around bnlg1083was identified in two traits across two locations.
     4. Three improved lines were developed based on three MAS strategies for Rf3and waxy gene selecting. Improved effect were evaluated and indicated that the improved line S-Mo17Rf3Rf3was completely fertile because of the introgression of Rf3gene. The total starch content of Z3-wxwx kernel was identical to that of in the Zong3kernel, but the amylopectin content of the former was significantly increased and its amylase content dramatically decreased because of the introgression of wx gene.
     5. Comparison of residual background among3improved lines derived from different MAS strategies indicated that17.9%donor chromosomal fragment was retained in87-1-wxwx which was developed by only selection of phenotype in BC3F1generation, and the residual segment distributed on all8chromosomes except chromosome1and10. While only about4%chromosomal residual was detected and distributed on minor region of chromsome7,8and9in Mo17Rf3Rf3which was developed by screening background using whole genome SSR markers in each generation. The background residual of Z3-wxwx line which was developed by background selection in BC3F1using MAS, was less than that of the line of87-1-wxwx, but more than that of Mo17Rf3Rf3. Phenotype were evaluated and revealed that the day to flowering (DTF) of S-Mo17Rf3Rf3was3days earlier than that of S-Mo17rf3rf3and its plant height (PH) was6.0cm lower than that of S Mo17rf3rf3. The PH and ear height (EH) of87-1-wxwx were both lower than that of87-1and its ear length (EL) and DTF was slightly shorter and3days earlier than that of87-1, respectively. The PH and EH of Z3-wxwx were taller than that of Z3and its DTF was3days later than that of Z3. The significant difference (P<0.05)) between87-1and87-1-wxwx was identified based on performance of multiple traits. Taken together, these results indicated that background selection by MAS could reduce the residual of non-target fragment of donor.
     6. Combining ability performed sililar between the MAS-derived lines and their corresponding recurrent lines. It was indicated that combining MAS and backcross could both improve the target traits and keep the combining ability of inbred line. However, there were still differences in few traits between the combinations of improved and unimproved inbred line with testers due to the interference of the residual background genome from the donor.
引文
1. 曹永国,王国英,王守才,魏艳玲,卢江,谢友菊,戴景瑞. 玉米RFLP遗传图谱的构建及矮生基因定位. 科学通报,1999,44(20):2178-2182.
    2. 陈庆全,穆俊祥,周红菊,余四斌. 利用基础导入系分析粳稻基因的遗传效应.中国农业科学,2007,40(11):2387-2394.
    3. 陈翠霞,邢全华,梁春阳,于元杰,梁凤山,王洪刚,王振林,王斌. 南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003,30(4):341-344.
    4. 慈晓科,张世煌,谢振江,徐家舜,卢振宇,茹高林,张德贵,李新海,谢传晓,白丽,李明顺,董树亭.1970—2000年代玉米单交种的遗传产量增益分析方法的比较. 作物学报,2010,36(12):2185-2190.
    5. 戴景瑞. 我国玉米生产发展的前景及对策.作物杂志,1998(5):6-11.
    6. 戴景瑞.我国玉米遗传育种的回顾与展望——21世纪玉米遗传育种展望. 玉米遗传育种国际学术讨论会文集,2000,1-7.
    7. 戴景瑞,鄂立柱.我国玉米育种科技创新问题的几点思考.玉米科学,2010,18(1):1-5.
    8. 方明镜,丁冬,杨文鹏,徐尚忠,郑用琏. 两个玉米回交一代群体中opaque2基因单侧连锁累赘的SSR分析.作物学报,2005,31(10):1359-1364.
    9. 郝伟,金健,孙世勇,朱美珍,林鸿宣.覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定.植物生理与分子生物学学报,2006,32(3):354-362.
    10.何风华,席章营,曾瑞珍,Akshay Talukdar,张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报,2005,32(8):825-831.
    11.何照范.粮油籽粒品质及其分析技术, 北京:农业出版社,1985:275-297
    12.胡彦民,吴欣,李翠香,付志远,刘宗华,汤继华.玉米制种花期相关性状的QTL分析.南京农业大学学报,2008,31(1):11-16
    13.李新海,袁力行,李晓辉,张世煌,李明顺,李文华.利用SSR标记划分70份我国玉米自交系的杂种优势群.中国农业科学,2003,36(6):622-627
    14.兰进好,褚栋.玉米株高和穗位高遗传基础的QTL分析.遗传,2005,27(6):925-934
    15.刘冠明,李文涛,曾瑞珍,张泽民,张桂权.水稻单片段代换系代换片段的QTL鉴定.遗传学报,2004,31(12):1395-1400.
    16.刘纪麟.玉米育种学(第二版).北京:中国农业出版社,2002.
    17.刘士平,李信,汪朝阳,李香花,何予卿.利用分子标记辅助选择改良珍汕97的稻瘟病抗性.植物学报,2003,45(11):1346-1350.
    18.刘章雄,王守才,戴景瑞,黄烈健,曹海河.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003,30(8):706-710.
    19.刘宗华,谢惠玲,王春丽,田国伟,卫晓轶,胡彦民,崔党群. 氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析.植物营养与肥料学报,2008,14(5):845-851.
    20.刘宗华,汤继华,卫晓轶,王春丽,田国伟,胡彦民,陈伟程.氮胁迫和正常条件下玉米穗部性状QTL分析.中国农业科学,2007,40(11):2409-241.
    21.龙萍,杨华,余四斌,梅捍卫,黎志康,罗利军.水稻导入系群体的构建和保存.植物遗传资源学报,2009,10(1):51-54.
    22.卢秉生,丰光,李妍妍,娄志东.我国玉米育种的发展进程及对未来育种目标的初探.杂粮作物,2010,30(2):68-71
    23.卢振宇,李明顺,谢振江,谢传晓,李新海,李炳华,张世煌.我国玉米杂交种产量性状变化趋势研究.玉米科学,2010,18(4):13-17
    24.罗彦长,王守海,李成荃,王德正,吴爽,杜士云.应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系3418S.作物学报,2003,29:402-407.
    25.彭勃,王阳,李永祥,刘成,刘志斋,王迪,谭巍巍,张岩,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624-1633.
    26.汤华,严建兵,黄益勤,郑用琏,李建生.玉米5个农艺性状的QTL定位.遗传学报,2005,32(2):203-209.
    27.汤继华,刘宗华,陈伟程,胡彦民,季洪强,季良越.玉米C型胞质不育恢复主基因SSR标记. 中国农业科学,2001,34(6):592-596.
    28.汤继华,马西青,滕文涛,严建兵,吴为人,戴景瑞,李建生.利用“永久F2”群体定位玉米株高的QTL与杂种优势位点.科学通报,2006,51(24):2864-2869.
    29. 万建民.作物分子设计育种.作物学报,2006,32(3):455-462.
    30.万向元,刘世家,王春明,江玲,翟虎渠,吉村醇,万建民.利用CSSLs群体研究稻米粒型QTL的表达稳定性.遗传学报,2004,31(11):1275-1283.
    31.王迪,李永祥,王阳,刘成.基于两个相关群体的玉米花期相关性状QTL定位.中国农业科学,2010,43(13):2633-2644.
    32.王立秋,赵永锋,薛亚东,张祖新,郑用琏,陈景堂.玉米衔接式单片段导入系群体的构建和评价.作物学报,2007,33(4):663-668.
    33.王鹏,丁业掌, 陆琼娴, 郭旺珍, 张天真.陆地棉遗传标准系TM-1背景的海岛棉染色体片段置换系的培育.科学通报,2008,53(9):1065-1069.
    34.王志敏,王树安.集约多熟超高产-21世纪我国粮食生产发展的重要途径.农业现代化研究,2000,21(4):193-196.
    35.翁建峰,万向元,郭涛,江玲,翟虎渠,万建民一用CSSL群体研究稻米加工品质相关QTL表达的稳定性.中国农业科学,2007,40(10):2128-2135.
    36.翁建峰,万向元,吴秀菊,王海莲,翟虎渠,万建民.利用CSSL群体研究稻米AC和PC相关QTL表达稳定性.作物学报,2006,32(1):14.-19.
    37.徐华山,孙永建,周红菊,余四斌.构建水稻优良恢复系背景的重叠片段代换系及其效应分析.作物学报,2007,33(6):979-986.
    38.杨德卫,张业东,朱镇,赵凌.基于CSSL的水稻抽穗期QTL定位及遗传分析.植物学报,2010,45(2):189-197.
    39.杨德卫,朱镇,张亚东,林静,陈涛,赵凌,朱文银,王才林.基于CSSL的水稻穗颈长度QTL的代换作图.遗传,2009,31(7):741-747.
    40.杨华,杨俊品,荣廷昭,谭君,邱正高.玉米抗纹枯病QTL分子标记定位.科学通报,2005,8:772-776.
    41.杨俊品,荣廷昭,向道权,唐海涛,黄烈健,戴景瑞.玉米数量性状基因定位.作物学报,2005,31(2):188-196.
    42.杨晓军,路明,张世煌,周芳,曲延英,谢传晓.玉米株高和穗位高的QTL定位.遗传,2008,30(11):1477-1486.
    43.余传元,万建民,翟虎渠,王春明,江玲,肖应辉,刘裕强.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势.科学通报,2005,8(1):35-37.
    44.余四斌,穆俊祥,赵胜杰,周红菊,谭友斌,徐才国,罗利军,张启发.以珍汕97B和9311为背景的导入系构建及其筛选鉴定.分子植物育种,2005,3(5):629-636.
    45.张帆,万雪琴,潘光堂.玉米抗穗粒腐病QTL定位.作物学报,2007,33(3):491-496.
    46.张桂权.基于单片段代换系的水稻分子设计育种.全国植物分子育种研讨会摘要集,2009.
    47.张世煌,田清震,李新海,李明顺,谢传晓.玉米种质改良与相关理论研究进展.玉米科学,2006,14(1):1-6.
    48.张志明,赵茂俊,荣廷昭,潘光堂.玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,2007,33(2):341-344.
    49.章元明.作物QTL定位方法研究进展.科学通报,2006,51(19):2223-2231.
    50.赵芳明,朱海涛,丁效华,曾瑞珍,张泽民,李文涛,张桂权.基于SSSL的水稻重要性状QTL的鉴定及稳定性分析.中国农业科学,2007,40(3):447-456.
    51.赵芳明,张桂权,曾瑞珍.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应.作物学报,2009,35(1):48-56.
    52.庄杰云,朱玉君,屠国庆,应杰政,樊叶杨.多基因聚合育成优质高产杂交稻新组合中优161.杂交水稻,2010,25(5):12-14.
    53. 曾瑞珍,施军琼,黄朝锋,张泽民,丁效华,李文涛,张桂权.籼稻背景的单片段代换系群体构建.作物学报,2006,32(1):88-95.
    54. Ajmone-Marsan P,Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet,1995, 90:415-424.
    55. Ajmone Marsan P, Gorni C, ChittoA, Redaelli R, van Vijk R, Stam P and Motto M. Identification of QTLs for grain yield and grain related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet, 2001,102 (2-3):230-243.
    56. Allard R W. Principles of Plant Breeding, New York:John wiley and Sons,1960.
    57. Alpert K B, Grandillo S and Tanksley S D. fw2.2:a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theor Appl Genet, 1995,91(6-7):994-1000.
    58. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA,1996,93:15503-15507.
    59. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309(5735):741-745.
    60. Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet,1996,92 (7):817-826.
    61. Azanza F, Tadmor Y, Klein B P, Rocheford T R, Juvik J A. Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. Genome,1995,39:40-50.
    62. Babu R, Nair S K, Kumar A, Venkatesh S, Sekhar J C, Singh N N, Srinivasan G, Gupta H S.Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM).Theor Appl Genet,2005,111: 888-897.
    63. Bai W, Zhang h, Zhang Z, Teng F, Wang L, Taq Y and Zheng Y. The evidence for non-additive effect as the main genetic component of plant heightand ear height in maize using introgression line populations. Plant Breeding,2010,129,376-384.
    64. Balint-Kurti, Peter J Wisser, Randall Zwonitzer, John C. Use of an Advanced Intercross Line Population for Precise Mapping of Quantitative Trait Loci for Gray Leaf Spot Resistance in Maize.Crop Science,2008,48(5):1696-1704.
    65. Beavis W D, Grant D, Albertsen D, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci.Theor Appl Genet,1991,83:141-145.
    66. Beavis W D, Smith OS, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Science,1994, 34:882-896
    67. Bertin P. Physiological and genetic basis of nitrogen use efficiency in maize:I Agrophysiological results. Maydica,2000,45:53-66.
    68. Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics,2002,162:1945-1959.
    69. Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA,2008,105(32):11436-11441.
    70. Chen Y, Chao Q, Tan G, Zhao J, Zhang M, Ji Q, Xu M. Identification and fine mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet,2008,117:1241-1252.
    71. Chu Z, Meng Y, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development,2006,20(10):1250-1255.
    72. Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell,1998,93:593-603.
    73. Darvasi A and Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics,1997,27(3):125-132.
    74. Dingerdissen A L, Geriger H H, Lee M, Schechert A and Welz H G. Interval mapping of genes for quantitative resistance of maizet to Setosphaeria turcica, cause of northern leaf blight in a tropical enviornment. Molecular Breeding,1996,2: 143-156.
    75. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, A type response regulator in rice,confers short day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes & Development,2004,18:926-936.
    76. Duvick D N. Genetic contribution to yield gains of five major crop plants. CAAS Special Publication,1981,7:10-54.
    77. Duvick D N. Genetic Contributions to Yield Gains of U S Hybrid Maize,1930 to 1980. American CSSA Special Publication,1984,7:15-47.
    78. Duvick D N. Genetic contributions to advances in yield of U S maize. Maydica, 1992,37:69-79.
    79. Duvick D N. The contribution of breeding to yield advances in maize. Adv Agron, 2005,86:83-145.
    80. Edwards M D, Helentiaris T, Wright S, Stuber C W. Molecular-marker-facilitated investigations of quantitative trait loci in maize. Theor Appl Genet,1992,83: 765-774
    81. Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in Lesculentum:a tool for fine mapping of genes. Euphytica,1994,79:175-179.
    82. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics,1995,141:1147-1162.
    83. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTLfor grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112(6):1164-1171.
    84. Fisher R A. The correlation between relatives on the Supposition of Mendelian inheritance. Tans Roy Soe Edinb,1918,52:399-433
    85. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2 a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    86. Freymark P J, Lee M, Woodman W L, Martinson C A. Quantitative and qualitative trait loci affecting host plant response to Exserohilum tureieum in maize (Zea mays L). Theor Appl Genet,1993,87:537-544.
    87. Freymark P J, Lee M, Woodman W L,Martinson C A, Molecular marker facilitated investigation of host plant response to Exserohilum tureieum in maize. Theor Appl Genet,1994,88:305-313.
    88. Frova C, SariG M. Quantitative expression of maize HSPs:genetic dissection and association with thermo tolerance. Theor Appl Genet,1993,86:213-220.
    89. Gallais A. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot,2004,55(396):295-306.
    90. Godfrey Asea, Bindiganavile S. Vivek, Patrick E. Lipps and Richard C. Pratt. Genetic gain and cost efficiency of marker-assisted selection of maize for improved resistance to multiple foliar pathogens. Mol Breeding,2011,3(10.1007/s 11032-011-9568-8)
    91. Goldman I L, Rocheford T R, Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein Illinois low protein cross. Crop Science,1994,34:908-915.
    92. Goldman I L, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains. Theor Appl Genet,1993,87:217-224.
    93. Gupta H S, Agrawal P K, Mahajan V, Bisht G S, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant M CMani V P. Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci,2009,96:230-237.
    94. Hao Z F, Li X H, Xie C X, Li M S, Zhang D G, Bai L, Zhang S H. Two consensus quantitative trait loci clusters controlling anthesis silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol,2008, 153:73-83
    95. He G M, Luo X J, Tian F, Li K G, Zhu Z F, Su W, Qian XY,Fu Y C, Wang X K, Sun C Q, Yang J S. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res,2006,16(5):618-626
    96. Hesham A S Agrama and Mounir E Moussa, Mapping QTLs in breeding for drought tolerance in maize (Zea mays L). Euphytica,1996,91:89-97.
    97. Hirel B. Towards a better understanding of the genetic and physiological basis for nitrogen use effi ciency in maize. Plant Physiol,2001,125:1258-1270.
    98. Hospital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics,1992,132(4):1199-1210.
    99. Hospital F. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics,2001, 158:1363-1379.
    100. Hovenkamp-Hermelink J H M, de Vries J N, Adamse P, Jacobsen E, Witholt B, Feenstra W J. Rapid estimation of amylose/amylopectin ratio in small amount s of tuber and leaf tissue oft he potato. Potato Research,1988,31:241-246.
    101. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,103(35):12987-12992.
    102. Jiang C, Edmeades G O, Armstead I, Lafitte H R, Hayward M D, Hoisington D. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet,1999,99:1106-1119.
    103. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics,2010,42 (6):541-544.
    104. Johal G S and Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science,1992,258:985-987.
    105. Kearsey M J, Farquhar A G. QTL analysis in plants:where are we now? Heredity, 1998,80:137-142.
    106. Khavkin E, Coe E H. Mapping genomic location for developmental functions and QTLs reflect concerted groups in maize (Zea mays L). Theor Appl Genet,1997,95: 343-352.
    107. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short day conditions. Plant Cell Physiol,2002,43 (10): 1096-1105
    108. Kraja A T and Dudley J W. QTL analysis of two maize inbred line crosses. Maydica,2000,45:1-12.
    109. Kristen L Kump,Peter J Bradbury, Randall J Wisser,Edward S Buckler etal, Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population, Nature Genetics,2011,43(2): 163-168.
    110. Kuntze L, Fuchs E, Grue nztig M, Schulz B, Klein D, Melchinger A E. Resistance of early-maturing European maize germplasm to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). Plant Breeding,1997,116:499-501.
    111. Lander E S, Botslein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,21:185-199.
    112. Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarde S A, Identification of QaX for drought response in maize and their use in testing causal relationships between traits. Journal of Experimental Botany,1995,46:853-865
    113. Li H H,Ye G Y,Wang J K, A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175(1):361-374.
    114. Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol,2005,59(1):33-52.
    115. Lin H X, Ashikar I M, Ymamoto T, Sasaki T, Yano M. Identification and charaeterization of a quantitative trait locus Hd9, was controlling heading date in rice. Breeding Science,2002,52:35-41.
    116. Lin H X, Liang Z W, Sasak T, Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Seience,2003,53:51-59.
    117. Lin Y R, Schertz K F and Paterson A. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics,1995,141:391-411.
    118. LiuJianchao, Jiansheng Li,Fanjun Chen, Fusuo Zhang, Tianheng Ren, Zhongjuan Zhuang, Guohua Mi. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L). Plant Soil,2008,305:253-265
    119. Liu S B, Zhou R H, Dong Y C, Jia J. Development, utilization of introgression lines using a synthetie wheat as donor. TheorAppl Genet,2006,12(7):1360-1373.
    120. Liu X, Zheng Z, Tan Z, Li Z, He C, Liu D, Zhang G,Luo Y. QTL mapping for controlling anthesis-silking interval based on RIL population in maize. African Journal of Biotechnology,2010,9(7):950-955.
    121. Louie R, Findley W R, Knoke J K, McMullen M D. Genetic basis of resistance in maize to five maize dwarf mosaic virus strains. Crop Sci,1991,31:14-18.
    122. Lu M, Xie C X, Li X H, Hao Z F, Li M S, Weng J F, Zhang D G, Bai L, Zhang S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breeding,2011,28:143-153.
    123. Luan M, GuoX, Zhang Y,Yao J, Chen W. QTL mapping for agronomic and fiber traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breeding,2009,10:1-9.
    124. Lubberstedt T, Melchinger A E, Schon C C, Utz H F, Klein D. QTL mapping in testcrosses of European flint lines of maize I:Comparison of different testers for forage yield traits. Crop Science,1999,37:921-931.
    125. McMullen D M, Louie R. The linkage of molecular markers to a gene controlling the symptom response in maize dwarf mosaic virus. Mol Plant-Microbe Interact, 1989,6:09-314.
    126. Meeley R B, Johal G S, Briggs S P, Walton J D. A biochemical phenotype for a disease resistance gene of maize. Plant Cell,1992,4:71-77.
    127. Melchinger A E, Kuntze L, Gumber R K, Lue bberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet,1998,96:1151-1161.
    128. Milena de Luna Alves Lima M, de Souza Jr C, Bento D A V, de Souza A P, Carlini-Garcia L A. Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breeding,2006,17:227-239.
    129. Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a Lesculentum genetic background:A tool for gene mapping and gene discovery. Genome,2000,43:803-813.
    130. Neuffer M G, Coe E H, Wessler S R. Mutants of maize, Cold Spring Harbor Laboratory Press, Plainview, NY,1997,
    131. Oerke E C. Crop losses to pests. The Journal of Agricultural Science,2005,144: 31-43.
    132. Ottaviano E, Gorla M S, Frova Pe E. Molecular markers (RFLPs and HSPs) for the genetic dissection of thermo tolerance in maize. Theor Appl Genet,1991,81: 713-719.
    133. Paterson A H, Lander E S, Hewitt J D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction frag ment length polymorphisms. Nature,1988,335:721-726.
    134. Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics,1990,124:735-742.
    135. Pe M E, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Molecular and General Genetics,1993,241:11-16.
    136. Phillips R L, Kim T S, Kaeppler S M, Parentoni S N, Shaver D L, Stucker R I, Openshaw S J. Genetic dissection of maturity using RFLPs.Proc Ann Corn and Sorghum Res Conf,1992,47:135-150.
    137. Prasanna BM, Hettiarachchi K, Mahatman K. Molecular marker-assisted pyramiding of genes conferring resistance to Turcicum leaf blight and Polysora rust in maize inbred lines in India. In:Proceedings of 10th Asian regional maize workshop (October 20-23,2008, Makassar, Indonesia). CIMMYT, Mexico DF, 2009.
    138. Prasanna B M, Pixley K, Warburton M L, Xie C X. Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breeding,2010,26:339-356.
    139. Qiu F, Zheng Y, Zhang Z, Xu S. Mapping of QTL Associated with Waterlogging Tolerance during the Seedling Stage in Maize. Annals of Botany,2007,99: 1067-1081.
    140. Reiter R S, Coors J G, Sussman M R. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet,1991,82:561-568.
    141. Ren Z H, Gao J P., Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics,2005,37(10):1141-1146.
    142. Ribaut J M, Hoisington D A, Deutsch J A, Jiang C, Gonzalez-de Leon D. Identification of quantitative trait loci under drought conditions in tropical maize, flowering parameters and the anthesis silking interval. Theor Appl Genet,1996,92: 905-914.
    143. Ribaut J M, Hoisington D. Maker-assisted select ion:new tools and strategies. Trends in plant Sci,1998 (3):236-239.
    144. Ribaut J M, Betrna J. Single large scale marker assisted selection (SLS-MAS). Mol Breeding,1999,5:531-554.
    145. Ribaut J M, Jiang C, Hoisington D. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Science,2002,42:557-565.
    146. Ribaut J M, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breeding,2007a,20:15-29.
    147. Ribaut J M, Ragot M. Marker-assisted selection to improve drought adaptation in maize:the backcross approach, perspectives, limitations, and alternatives. J Exp Bot, 2007b,58:351-360.
    148. Sahai-Maroof MA, Biyashev RM, Yang GP,Extraordinarily polymorphic microsatellite DNA in barley:species diversity, chromosomal location and population dynamics. PNAS,1994,91:5466-5470
    149. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, Van Beuningen L, Isaac P, Edwards K, Phillips R L. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol,2002,48:601-613.
    150. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering time uantitative trait locus in maize. Proc Natl Acad Sci USA,2007,104 (27):11376-11381.
    151. Sari-Gorla M, PeM E, Rossini L. Detection of QTLs controlling pollen germination and growth in maize. Heredity,1994,72:332-335.
    152. Scheffer R P, Ullstrup A J. A host-specific toxic metabolite from Helminthosporium carbonum. Phytopathology,1965,55:1037-1038.
    153. Sim cox K D, McMullen M D, Louie R. Co-segregation of the maize dwarf mosaic virus resistance gene, Mdml, with the nucleolus organizer in maize. Theor Appl Gene,1995,90:341-346.
    154. Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase. Nature Genetics,2007,39(5):623-630.
    155. Stuber C W, Lincoln S E, Wolff, Helentjaris T, Lander E S. Identification of genetic factors contributing to hetersosis in a hybrid from elite maize inbred lines using molecular markers. Genetics,1992,132:823-839.
    156. Sun Q, Zhou D X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci USA,2008, 105(36):13679-13684.
    157. Szalma S J, Hostert B M, Ledeaux J R, Stuber C W, Hollandet J B. QTL mapping with near-isogenic lines in maize. Theor Appl Genet,2007,114:1211-1228.
    158. Tadmor Y, F Azanza, T Han, T R Rocheford and J A Juvik, RFLP mapping of the sugary enhancerl gene in maize. Theor Appl Genet,1995,91(3):489-494.
    159. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantita tive trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA,2001,98 (14):7922-7927.
    160. Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang Z W, Lin H X, Ono N, Uga Y, Yano M. Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar'NonaBokra'and japonica recipient cultivar'Koshihikari. Breeding Science,2007,57:257-261.
    161. Tang J, Teng W, Yan J, Ma X, Meng Y, Dai J, Li J. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica,2007,155:117-124.
    162. Tanksley S D, Young N D, Paterson A H, RFLP mapping in plant breeding:new tools for old sciences. Biotechnology,1989 (7):257-264.
    163. The Complex trait consortium. The nature and identification of quantitative trait loci:A community's view. Nature Reviews Genetics,2003,4:911-916.
    164. Tie S, Xia J, Qiu F, Zheng Y. Genome-wide analysis of maize S-CMS instable sterility based on QTLs mapping. Plant Mol Biol Rep,2006,24:71-80.
    165. Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field crops research,2002,75:161-169.
    166. Tuberosa R, Salvi S, Sanguineti M C, Landi P, Conti S, Frascar oli E and Noli E. Identification of QTLs for leaf abscisic acid concentration and agronomic traits in droughtstressed maize. Plant and Animal Genome Conference, San Diego, USA, W5,1997.
    167. Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L). Theor Appl Genet,1998,97:744-755.
    168. Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol,2002,48:697-712
    169. Ueda T, Sato T, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics,2005,171(4): 1941-1950.
    170. Van Berloo R. GGT 2.0:versatile software for visualization and analysis of genetic data. Journal of Heredity,2008,99(2):232-236.
    171. Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments 2:Plant height and flowering. Crop Science,1996, 36(5):1320-1327.
    172. Veldboom L, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population:1 Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet,1994a,88(1):7-16.
    173. Veldboom L, Lee M. Molecular-marker-facilitated studies of morphological traits in maize:2 Determination of QTLs for grain yield and yield components. Theor Appl Genet,1994b,89(4):451-458.
    174. Vladutu C, McLaughlin J, Phillips R L. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics,1999,153:993-1007.
    175. Welz H G, Xia X C, Bassetti P, Melchinger A E, Lubberstedt T. QTLs for resistance to Setosphaeria turcica in an early maturing Dentx Flint maize population. Theor Appl Genet,1999,99:649-655.
    176. Wisser R J, Balint-Kurti P J, Nelson R J. The genetic architecture of disease resistance in maize:A synthesis of published studies. Phytopathology,2006,96: 120-129.
    177. Wu C, You C, Li C, Long T, Chen G, Byrneand M E, Zhang Q. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a aster switch from vegetative to floral development in rice. Proc Natl Acad Sci USA,2008, 105(35):12915-12920.
    178. Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single segment substitution lines in the genetic background of an elite Cultivar of rice (Oryza sativa L). Genome, 2006,49:476-484.
    179. Xiao Y N, Li X H, George, M L Li M S, Zhang S H, Zheng Y L. Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep,2005,23(2):155-165.
    180. Xu M L, Melchinger A E, Liibberstedt T. Origin of Scml and Scm2 two loci conferring resistance to sugarcane mosaic virus (SCMV) in maize. Theor Appl Genet,2000,100:934-941.
    181. Xu M L, Melchinger A E, Xia X C, Lubberstedt T. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR and AFLP markers. Mol Gen Genet,1999,261:574-581.
    182. Xue W, Xing Y, Weng X, Zhao Y, Tang,L,,Wang W, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics,2008,40:761-767.
    183. Yamamoto T, Kubok I Y, Lin S Y, Yano M. Fine mapping of quantitative trait loci Hd-I,Hd-2, and Hd-3 controlling heading date of rice, as single mendelian factors.Theor Appl Genet,1998,97:37-44.
    184. Yamamoto T, Kubok I Y, Lin S Y, Yano M. Charaeterization and detection of epistatic interactions of 3 QTL, Hdl, Hd2, and Hd3, controlling heading date in rice using nearly isogonic lines.Theor Appl Genet,2000,101:1021-1028
    185. Yang D E, Zhang C L, Zhang D S, Jin D M, Weng M L, Chen S J, Nguyen H and Wang B. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfgl. Theor Appl Genet,2004,108:706-711.
    186. Yano M, Katayose Y, Ashikar I M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd-1, a major Photoperiod sensitivity quantitative trait locus rice, is closely related to the Arabidopsis flowering time gene constans. Plant Cell,2000,12:473-2483.
    187. Young N D, Tanlaley S D. Restriction fragment polymorphism maps and the concept of graphical genotypes.Theor Appl Genet,1989,77:95-101.
    188. Zehr B E, Dudley J W, Chojecki J, Saghai Maroof M A, Mowers R P. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid. Theor Appl Genet,1992,83:903-911.
    189. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA,1993,90:10972-10976.
    190. Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    191. Zeng Z, Weir B S. Statistical methods for mapping quantitative trait loci. Acta Agronomica Sinica,1996,22:535-549.
    192. Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rices (Oryza sativa L.). Theor Appl Genet,2006,113(2): 361-368.
    193. Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Gen Genom, 2006,276:162-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700