用户名: 密码: 验证码:
红豆杉悬浮细胞反应器深层培养的过程工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇为红豆杉的二萜类次级代谢物,是一种有效的抗癌药物,红豆杉细胞培养生产紫杉醇被认为是获取紫杉醇最有效的途径之一。目前,虽然红豆杉细胞培养生产紫杉醇研究取得了很大进展,但红豆杉细胞反应器培养的过程工程研究甚少,已成为限制其产业化水平进一步提高的因素之一。本论文将细胞培养和过程工程理论结合起来,研究生物反应器内的流体流动、传递规律和细胞生长及生化反应,建立细胞如何适应各种环境变化的数学模型,为指导反应器设计、放大和操作优化提供理论依据。主要研究结果如下:
     (1)在基质充分条件下,细胞中基质的消耗不能有效地调整到与细胞外底物水平相适合,过量的基质通过形成代谢物和能量用于细胞生长、维持、形成产物和能量损益,如膜电位损耗、ATP水解作用、无效的循环、形成储存的化合物或胞外产品、代谢解耦、呼吸链的改变等等,因此建立了适用于基质充分条件下15L搅拌生物反应器中红豆杉细胞悬浮培养整合了能量损益的基质消耗动力学模型、产物合成动力学模型和系统流变特性变化动力学模型,同时发现logistic方程能更好地描述细胞生长过程。
     内部交叉验证和外部验证表明:所建立的细胞生长模型、基质消耗模型和产物合成模型适用于模拟细胞培养的实际过程,模型可以用于指导反应器培养;能量损益是影响基质充分条件下搅拌反应器中红豆杉细胞生长和生化反应的重要因素,红豆杉细胞反应器放大培养应尽量维持限制基质过量的条件下进行。
     (2)研究了反应器初始培养液和反应器培养过程的流变特性。发现:1)当接种量较低时,反应器初始培养液呈现牛顿流体特性;当接种量大于8%时,反应器初始培养液呈现出假塑性流体特性。2)在反应器培养过程中不同时期红豆杉细胞悬浮培养液均为非牛顿流体,细胞浓度是构成培养液表观粘度的主要因素。3)建立了表观粘度及其影响因素的定量关系。结果表明:可以通过测定反应器培养液表观粘度或电导率来表征细胞的生长状况,并实现快速对红豆杉细胞生长进行监测与控制;单位细胞浓度培养液表观粘度主要是受粒径≥1700m(10目)的细胞聚集体影响,其组成比越大,单位浓度细胞悬浮培养液的表观粘度越大;粒径在1700~830m (10~20目)、380~180m(40~80目)的细胞聚集体对表观粘度的影响次之,830~380m(20~40目)的细胞聚集体对表观粘度的影响为零。
     (3)建立了反应器培养流变动力学模型,提出能量损益是影响基质充分条件下搅拌反应器中流变特性的重要因素。
     (4)提出了实际培养过程氧传质系数的测定方法,研究了细胞生物量X、表观粘度以及搅拌器型式、搅拌转速和通气量变化对氧传质系数kLa的影响。结果表明:可以通过在线测定k La来表征细胞生物量和表观粘度,对培养过程实施在线控制;本实验条件下通气量对值的影响大于搅拌转速对kLa的影响。因此,细胞培养的操作优化应优先考虑改变通气量。提高通气量,适当降低搅拌转速,既有利于增加反应器的供氧能力,又有利于减小搅拌对细胞造成的剪切伤害。
     (5)研究了能量损益系数、能量损益速率随细胞生物量变化的规律:能量损益消耗的碳源和能量在细胞指数生长初期较大;与能量损益相关的产物合成速率在细胞浓度和产物浓度之间起着关键的调节作用。要提高产物合成的速率,就要使细胞浓度小于或大于与能量损益相关的产物合成速率最大值对应的细胞浓度,如采用二相培养、培养分离耦合、二阶段培养、补料培养。
     (6)研究了能量损益系数、能量损益速率随细胞生物量变化的规律,提出了限制性分次加入碳源培养策略,与用含蔗糖30g·l-1的培养基进行的曼地亚红豆杉细胞培养相比,限制性分次加入碳源培养所得细胞生物量和紫杉醇产量分别增加了17.64%和14.88%,表明所提出的限制性分次加入碳源培养是减小基质消耗能量损益、提高紫杉醇产量的可行的途径和方法,所建立的模型对指导反应器培养、提高紫杉醇产量具有重要的意义。
Taxol, a diterpenoid secondary metabolite of the Taxus species, is an effectiveanticancer drug. Cell suspension cultures of Taxus media in a bioreactor is an effectivemethod for taxol production. Although signifcant progress on Taxus cell culture forproduction of Paclitaxel has been made recently,commercial applications of cell culturefor paclitaxel production is still limited by the productivity of paclitaxel, kineticsimulation and scale-up for cell culture in a reactor.
     The objective of this work was to study fluid flow, mass transfer, cell growth andbiochemical reaction in a bioreactor, to establish the mathematical models suitable forsuspension cultures of Taxus media cells,and to provide a theoretical basis for the reactordesign, amplification and operation optimization by combining the cell culture andprocess engineering theory. The main research conclusions in this paper are as follows:
     (1) This work constituted a set of unstructured kinetic models suitable for suspensioncultures of Taxus media cells in bioreactors under substrate-sufficient conditions,including a logistic model for cell growth and models incorporating energy spilling forsubstrate consumption and product synthesis.
     Results of cross-validation and external validation demonstrated that a set ofunstructured kinetic models constituted.in this paper should be suitable for suspensioncultures of Taxus media cells in a15-L bioreactor under substrate-sufficient conditions,and helpful in the process prediction and operation optimization to guide the productionand amplification of Taxus media cell suspension cultures in bioreactors. Energy spillingwas a key factor that must be considered in a stirred bioreactor under substrate-sufficientconditions. The influences of energy spilling on cell growth and biochemical reactions in astirred bioreactor under substrate-sufficient conditions were so significant that limitingsubstrate excess conditions should be maintained for scaled-up cultures of Taxus cells in abioreactor to reduce energy spilling.
     (2) The determination method of apparent viscosity of Taxus media cell suspensionculture broth was proposed. Results showed that the initial cultures broth of Taxus media suspension cells were rheologically Newtonian fluid when cell inoculum size was equal orless than8%and the initial broth rheology exhibited non-Newtonian behavior when cellinoculum size was more than8%. Results also demonstrated that the suspension culturesbroth of Taxus media cells at different culture time exhibited pseudoplastic non-Newtonianfluid, and the cell concentration was the main factor of apparent viscosity of culture broth.This work established quantitative relation between the apparent viscosity and influencingfactors.
     (3) This work constituted a unstructured kinetic models of rheological behavior,proposed that energy spilling was an important factor which influenced the rheologicalbehavior.
     (4) The determination method of the oxygen transfer coefficient of cell suspensionculture broth was proposed,and the influences of cell biomass, apparent viscosity, agitatortype, stirring speed and ventilation on oxygen transfer coefficient of cell suspensionculture broth were studied.
     (5) The changes of the energy spilling-associated coefficients,the rates of the energyspilling-associated coefficient with culture time were studied,Results showed that carbonand energy consumed by energy spilling were larger during the early stage of theexponential growth phase,the energy spilling-associated rate of taxol synthesis played akey regulatory role between cell biomass and product concentration. To make larger therate of product synthesis and improve product concentration,it was necessary to try toreduce or increase the cell concentration in the culture broth,for example,two phaseculture, culture separation coupling,two stage culture,fed-batch culture.
     (6) An optimized operation strategy of limiting added carbon several times culture wasproposed. A17.64%increase in cell growth was obtained,and a14.88%increase in taxolproduction was also obtained, while limiting added carbon several times wasexperimentally implemented in the15-L bioreactor.
引文
[1]牛强,潜伟.过程科学与过程工程.科学学研究,2002,20(2):143-147.
    [2]欧阳藩.生化过程工程的特点和前沿.过程工程学报,2001,1(3):230-238.
    [3] Frazier GC. A simple, leaky cell growth model for plant cell aggregates. Bio-technology and bioengineering,1989,33(3):313-320
    [4] Bailey C, Nicholson H. A new structured model for plant cell culture. Biotechnologyand bioengineering,1989,34(10):1331-1336
    [5] de Gunst M, Harkes P, Val J, Van Zwet W, Libbenga K. Modelling the growth of abatch culture of plant cells: a corpuscular approach. Enzyme and microbialtechnology,1990,12(1):61-71
    [6] Van Gulik W, Ten Hoopen H, Heijnen J. Kinetics and stoichiometry of growth ofplant cell cultures of Catharanthus roseus and Nicotiana tabacum in batch andcontinuous fermentors. Biotechnology and bioengineering,1992,40(8):863-874
    [7] Hooker BS, Lee JM. Application of a new structured model to tobacco cell cultures.Biotechnology and bioengineering,1992,39(7):765-774
    [8]薛莲,孟琴,吕德伟.紫草细胞悬浮培养的结构化动力学模型.化工学报,2000,51(2):248-252
    [9] Li C, Yuan Y-J, Wu J-C, Hu Z-D. A structured kinetic model for suspension culturesof Taxus chinensis var. mairei induced by an oligosaccharide fromFusariumoxysporum. Biotechnology Letters,2003,25(16):1335-1343
    [10] Van Gulik W, Ten Hoopen H, Heijnen J. A structured model describing carbon andphosphate limited growth of Catharanthus roseus plant cell suspensions in batchandchemostat culture. Biotechnology and bioengineering,2004,41(8):771-780
    [11] Curtis W R, Hasegawa P M, Emery A H. Modeling linear and variable growth inphosphate limited suspension cultures of opium poppy. Biotechnology andbioengineering,1991,38(4):371-379
    [12] Bramble JL, Graves DJ, Brodelius P. Calcium and phosphate effects on growth andalkaloid production in Coffea arabica: experimental results and mathematical model.Biotechnology and bioengineering,1991,37(9):859-868
    [13]许建峰,谢健.高山红景天致密愈伤组织颗粒悬浮培养结构化动力学模型.大连理工大学学报,1999,39(1):43-48
    [14] Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption ofmicrobial growth under substrate-sufficient conditions. Biotechnology progress,1995,11(1):71-79
    [15] Luedeking R, Piret E L. A kinetic study of the lactic acid fermentation. batch processat controlled pH. Journal of Biochemical and Microbiological Technology andEngineering,1959,1(4):393-412
    [16] Pirt S. The maintenance energy of bacteria in growing cultures. Proceedings of theRoyal Society of London Series B, Biological Sciences,1965:224-231
    [17] Omar R, Abdullah M, Hasan M, Rosfarizan M, Marziah M. Kinetics and modellingof cell growth and substrate uptake in Centella asiatica cell culture. Biotechnologyand Bioprocess Engineering,2006,11(3):223-229
    [18] Prakash G, Srivastava A K. Modeling of azadirachtin production by Azadirachta in-dica and its use for feed forward optimization studies. Biochemical EngineeringJournal,2006,29(1):62-68
    [19] Guardiola J, Iborra J, Canovas M. A model that links growth and secondary meta-bolite production in plant cell suspension cultures. Biotechnology andbioengineering,1995,46(3):291-297
    [20] Drapeau D, Blanch H, Wilke C. Growth kinetics of Dioscorea deltoidea and Cat-haranthus roseus in batch culture. Biotechnology and bioengineering,1986,28(10):1555-1563
    [21] Schnapp S R, Curtis W R, Bressan R A, Hasegawa P M. Estimation of growth yieldand maintenance coefficient of plant cell suspensions. Biotechnology andbioengineering,1991,38(10):1131-1136
    [22] Shimogawara K,Usuda H.Uptake of inorganic phosphate by suspension-culturedtobacco cells: kinetics and regulation by Pistarvation. Plant and cell physiology,1995,36(2):341-351
    [23]王晓波.用非线性最小二乘法拟合Logistic曲线及其在计算机技术扩散研究中的应用.上海大学学报自然科学版,1995,1(004):369-375
    [24]戚以政,夏杰.生物反应工程.(第一版).北京:化学工业出版社,2004
    [25]徐海霞,任红松,袁继勇,等.用EXCEL及其―规划求解‖功能拟合曲线方程.农业网络信息,2004,2(1):37-37
    [26]汤在祥,高清松,徐辰武.非线性方程的Excel拟合及其应用.中国农学报,2005,21(3):306-310
    [27]王西安,曾志军.非线性回归的一种方法.重庆石油高等专科学校学报,1996,1(1):56-59
    [28]郭德龙,夏慧明,周永权.混合模拟退火-进化策略在非线性参数估计中的应用.数学的实践与认识,2010(022):91-98
    [29]何谐,赵德安,刘星桥,等.发酵过程建模与优化控制的研究.微计算机信息,2008,24(25):313-314
    [30]熊宁波,魏纪平,张国政.基于遗传算法的麦角固醇分批发酵动力学参数估算.生物技术,2003,13(3):29-30
    [31]刘京娟.多元线性回归模型检验方法.湖南税务高等专科学校学报,2006,18(5):48-49
    [32] Spiegel MR, Stephens LJ. Schaum's outline of theory and problems of statistics4thed. New York: McGraw-Hill;2008.345–352
    [33] Cheng XG, Nicholson PH, Boonen S,et al. Prediction of vertebral strength in vitroby spinal bone densitometry and calcaneal ultrasound. Journal of Bone and MineralResearch,1997,12(10):1721-1728
    [34]王巧英.回归估计标准误差与可决系数的比较.统计与决策,2007(23):141-141
    [35] Lu P, Wei X, Zhang R S. CoMFA and CoMSIA3D-QSAR studies on quionolonecaroxylic acid derivatives inhibitors of HIV-1integrase. European Journal ofMedicinal Chemistry.2010,45(8):3413-3419
    [36]李加忠. QSAR研究中提高模型预测能力的新方法探讨及其在药物化学中的应用:[博士学位论文]。兰州:兰州大学图书馆,2009.
    [37] Golbraikh A, Tropsha A. Beware of q2! Journal of molecular graphics&modelling2002,20(4):269-276
    [38]张文军,张运陶. QSAR/QSPR模型验证方式与预测能力的关系研究.计算机与应用化学,2010(002):201-205
    [39]戴干策,陈敏恒.化工流体力学.(第二版).北京:化学工业出版社,2005,348-349
    [40] Doran PM. Design of mixing systems for plant cell suspensions in stirred reactors.Biotechnology progress,1999,15(3):319-335
    [41] Kieran P, MacLoughlin P, Malone D. Plant cell suspension cultures: some eng-ineering considerations. Journal of Biotechnology,1997,59(1):39-52
    [42] Rodr guez-Monroy M, Galindo E. Broth rheology, growth and metabolite pro-duction of Beta vulgaris suspension culture: a comparative study between culturesgrown in shake flasks and in a stirred tank. Enzyme and microbial technology,1999,24(10):687-693
    [43] Sánchez MJ, Jiménez Aparicio A, Gutiérrez López G, et al. Broth rheology of Betagaris cultures growing in an air lift bioreactor. Biochemical Engineering Journal,2002,12(1):37-41
    [44] Tanaka H. Oxygen transfer in broths of plant cells at high density. Biotechnologyand bioengineering,1982,24(2):425-442
    [45] Curtis WR, Emery AH. Plant cell suspension culture rheology. Biotechnology andbioengineering,1993,42(4):520-526
    [46] Zhong JJ, Seki T, Kinoshita SI, Yoshida T. Rheological characteristics of cell su-spension and cell culture of Perilla frutescens. Biotechnology and bioengineering,1992,40(10):1256-1262
    [47] Trejo-Tapia G, Jiménez-Aparicio A, Villarreal L, Rodríguez-Monroy M. Broth rheo-logy and morphological analysis of Solanum chrysotrichum cultivated in a stirredtank. Biotechnology Letters,2001,23(23):1943-1946
    [48] Akiyama Y, Kato K. An extracellular arabinogalactan-protein from Nicotianatabacum. Phytochemistry,1981,20(11):2507-2510
    [49] KATO A, KAWAZOE S, SOH Y. Viscosity of the broth of Tobacco cells insuspension culture: Biomass Production of Tobacco Cells (Part IV). Journal offermentation technology,1978,56(3):224-228
    [50] Meijer J, Ten Hoopen H, Van Gameren Y,et al. Effects of hydrodynamic stress on thegrowth of plant cells in batch and continuous culture. Enzyme and microbialtechnology,1994,16(6):467-477
    [51] Wongsamuth R, Doran PM. The filtration properties of Atropa belladonna plant cellsuspensions; effects of hydrodynamic shear and elevated carbon dioxide levels onculture and filtration parameters. Journal of Chemical Technology andBiotechnology,1999,69(1):15-26
    [52] Wu Z-y, Shi X-m. Rheological properties of Chlorella pyrenoidosa culture grownheterotrophically in a fermentor. Journal of Applied Phycology,2008,20(3):279-282
    [53]李雅丽,杨英,付春华,余龙江.胀果甘草细胞悬浮培养流变特性分析.食品科技,2011,36(8):60-63
    [54]周少奇,姚汝华.反应器生态系统的两相流变流体动力学数学模型.华南理工大学学报,1998,26(1):60-64
    [55] Kato A, Shimizu Y, Nagai S. Effect of initial KLaon the growth of tobacco cells inbatch culture. Journal of fermentation technology,1975,53(10):744-751
    [56] Leckie F, Scragg A, Cliffe K. An investigation into the role of initial KLaon the gro-wth and alkaloid accumulation by cultures of Catharanthus roseus. Biotechnologyand bioengineering,1991,37(4):364-370
    [57] Phisalaphong M, Linden JC. Kinetic studies of paclitaxel production by Taxus cana-densis cultures in batch and semicontinuous with total cell recycle. Biotechnologyprogress,1999,15(6):1072-1077
    [58]余斐,吴诚德.红豆杉细胞在反应器中培养动力学的研究.华中科技大学学报自然科学版,2001,29(A01):52-54
    [59]鲁明波,余斐.气升式反应器中红豆杉细胞培养动力学的研究.华中理工大学学报,1998,26(11):110-112
    [60] Schlatmann J, Nuutila A, Van Gulik W,et al. Scaleup of ajmalicine production byplant cell cultures of Catharanthus roseus. Biotechnology and bioengineering,1993,41(2):253-262
    [61] Spieler H, Alfermann AW, Reinhard E. Biotransformation of β-methyldigitoxin bycell cultures of Digitalis lanata in airlift and stirred tank reactors. Appliedmicrobiology and biotechnology,1985,23(1):1-4
    [62] Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta,2002,58(1):201-235
    [63] Liu W, Zhu Y, Smith FA, Smith S. Do iron plaque and genotypes affect arsenate up-take and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?Journal of Experimental Botany,2004,55(403):1707-1713
    [64] Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic inBangladesh: a public health emergency. Bulletin of the World Health Organization,2000,78(9):1093-1103
    [65]钟建江,王斯靖,王红强.一种新型搅拌生物反应器及其在红豆杉细胞培养中的尝试.第七届全国生物化学会议论文集.北京:北京工业出版社,1996.45-54
    [66] Williams P, Islam M, Adomako E,et al. Increase in rice grain arsenic for regions ofBangladesh irrigating paddies with elevated arsenic in groundwaters. Environmentalscience&technology,2006,40(16):4903-4908
    [67]边黎明,施季森.植物生物反应器细胞悬浮培养研究进展.南京林业大学学报自然科学版2004,28(4):101-104
    [68] Scragg A, Allan E, Leckie F. Effect of shear on the viability of plant cell suspensions.Enzyme and microbial technology,1988,10(6):361-367
    [69] Schiel O, Berlin J. Large scale fermentation and alkaloid production of cell sus-pension cultures of Catharanthus roseus. Plant cell, tissue and organ culture,1987,8(2):153-161
    [70] Tanaka H. Large-scale cultivation of plant cells at high density: A review. Processbiochemistry,1987,22(4):106-113
    [71]刘志伟,张晨.植物细胞培养生物反应器的研究进展.现代化工,1999,19(8):14-16
    [72]罗凯,胡廷章,罗建平.植物细胞培养生产次生代谢产物的研究进展.时珍国医国药,2007,18(10):2338-2340
    [73] Malik S, CusidóRM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. Production ofthe anticancer drug taxol in Taxus baccata suspension cultures: A review. Processbiochemistry,2011,46(1):23-34
    [74]吕晓辉,臧新,杨冬之.红豆杉细胞的工业化培养.时珍国医国药,2006,17(5):844-846
    [75] Goleniowski ME. Cell lines of Taxus species as source of the anticancer drug taxol.Biocell,2000,24(2):139
    [76] Hu Y-M, Gan F-Y, Lu C-H, Ding H-S, et al. Productions of taxol and related taxanesby cell suspension cultures of Taxus yunnanensis. ACTA BOTANICASINICA(CHINESE),2003,45(3):373-377
    [77]杨秦,李丽琴,付春华,余龙江.曼地亚红豆杉细胞系的建立与评价.武汉植物学研究,2007,24(6):536-540
    [78] Fu C, Li L, Wu W,et al. Assessment of genetic and epigenetic variation during longterm Taxus cell culture. Plant cell reports,2012:1-11
    [79] Li S-t, Fu C-h, Zhang M,et al. Enhancing taxol biosynthesis by overexpressing a9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis.Plant Molecular Biology Reporter,2012:1-6
    [80] Pan Z-W, Wang H-Q, Zhong J-J. Scale-up study on suspension cultures of Taxuschinensis cells for production of taxane diterpene. Enzyme and microbial technology,2000,27(9):714-723
    [81] Son S, Choi S, Lee Y,et al. Large-scale growth and taxane production in cell culturesof Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant cell reports,2000,19(6):628-633
    [82]汤志群,梅兴国,余斐.中国红豆杉悬浮细胞培养的发酵动力学模型.广州化工,2001,29(1):16-18
    [83]梅兴国,余斐,张姝,等.红豆杉细胞悬浮培养结构化数学模型的探讨.生物技术,2000,10(3):8-11
    [84] Wu Z-L, Yuan Y-J, Ma Z-H,et al. Kinetics of two-liquid-phase Taxus cuspidata cellculture for production of Taxol. Biochemical Engineering Journal,2000,5(2):137-142
    [85]吴兆亮,元英进.南方红豆杉细胞两液相培养过程动力学.化工学报,2000,51(5):637-642
    [86]马玺,马英,刘威,周东坡.红豆杉细胞培养生产紫杉醇.药物生物技术,2004,11(6):401-405
    [87] Fett‐Neto AG, Zhang WY, Dicosmo F. Kinetics of taxol production, growth, andnutrient uptake in cell suspensions of Taxus cuspidata. Biotechnology andbioengineering,1994,44(2):205-210
    [88] Srinivasan V, Pestchanker L, Moser S,et al.Taxol production in bioreactors: kineticsof biomass accumulation, nutrient uptake,and taxol production by cell suspensions ofTaxus baccata. Biotechnology and bioengineering,1995,47(6):666-676
    [89]王丽,仇燕.南方红豆杉细胞悬浮培养动力学研究.河北师范大学学报自然科学版,2003,27(1):81-83
    [90] Liu Y, Chen G, Rols J. A kinetic model incorporating energy spilling for substrateremoval in substrate-sufficient batch culture of activated sludge. Appliedmicrobiology and biotechnology,1999,52(5):647-651
    [91] Bouguettoucha A, Balannec B, Amrane A. Unstructured generalized models for theanalysis of the inhibitory and the nutritional limitation effects on Lactobacillushelveticus growth—Models validation.Biochemical Engineering Journal,2008,39(3):566-574
    [92]兰文智,余龙江,金文闻,陈超.红豆杉悬浮细胞放大培养的细胞生长与紫杉醇合成动力学.生命科学研究,2002,6(1):55-59
    [93] Yu L J, Lan W Z, Qin W M, Xu H B. Effects of salicylic acid onfungalelicitor-induced membrane-lipid peroxidation and taxol production in cellsuspension cultures of Taxus chinensis. Process biochemistry,2001,37(5):477-482
    [94] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determinationof sugars and related substances. Analytical chemistry,1956,28(3):350-356
    [95] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar.Analytical chemistry,1959,31(3):426-428
    [96] Murphy J, Riley J P. A modified single solution method for the determination ofphosphate in natural waters, Anal. Chim. Acta,1962,27:31–36
    [97]罗杰,胡道伟,刘凌,梅兴国.不同培养方式的红豆杉细胞悬浮培养比较研究.华中科技大学学报自然科学版,2002,30(7):114-116
    [98] Kuenen J. Growth yields and―maintenance energy requirement‖in Thiobacillusspecies under energy limitation. Archives of Microbiology,1979,122(2):183-188
    [99] Downs A J, Jones C W. Energy conservation in Bacillus megaterium. Archives ofMicrobiology,1975,105(1):159-167
    [100] Neijssel O, Tempest D. The regulation of carbohydrate metabolism in Klebsiellaaerogenes NCTC418organisms, growing in chemostat culture. Archives ofMicrobiology,1975,106(3):251-258
    [101] Stouthamer A, Bettenhaussen CW. Determination of the efficiency of oxidativephosphorylation in continuous cultures of Aerobacter aerogenes. Archives ofMicrobiology,1975,102(1):187-192
    [102] Neijssel O, Tempest D. Bioenergetic aspects of aerobic growth of Klebsiellaaerogenes NCTC418in carbon-limited and carbon-sufficient chemostat culture.Archives of Microbiology,1976,107(2):215-221
    [103] Pirt S. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Archives of Microbiology,1982,133(4):300-302
    [104] Tsai S, Lee Y. A model for energy‐sufficient culture growth. Biotechnology andbioengineering,1990,35(2):138-145
    [105] Liu Y, Tay JH. A kinetic model for energy spilling‐associated product formation insubstrate‐sufficient continuous culture. Journal of applied microbiology,2000,88(4):663-668
    [106] Dempers C, Breed A, Hansford G. The kinetics of ferrous-iron oxidation byAcidithiobacillus ferrooxidans and Leptospirillum ferrooxidans: effect of cellmaintenance. Biochemical Engineering Journal,2003,16(3):337-346
    [107]黄英明,李春,焦鹏,曹竹安. DCA13发酵产酸期代谢动力学模型的建立.中国生物工程杂志,2003,23(8):57-60
    [108] Zhang C Y, Dong Y S, Li Y L,et al. Unstructured models for suspension cultures ofTaxus media cells in a bioreactor under substrate-sufficient conditions. BiochemicalEngineering Journal,2013,71:62-71
    [109] Liu Y, Chen GH. Model of energy uncoupling for substrate‐sufficient culture.Biotechnology and bioengineering,1997,55(3):571-576
    [110] Bapat PM, Das D, Dave NN, Wangikar PP. Phase shifts in the stoichiometry ofrifamycin B fermentation and correlation with the trends in the parameters measuredonline.Journal of Biotechnology,2006,127(1):115-128
    [111]Nielsen J, Villadsen J. Bioreaction engineering principles.(second edition).New York:Plenum Press,2003
    [112] Fatmawati A, Agustriyanto R. Kinetic study of gluconic acid batch fermentation byAspergillus niger. In Proceedings of the57th World Congress of Science,Engineering and Technology (WCSET), Amsterdam, WASET,2009.269-73
    [113] Prakash M S. A simple unstructured mathematical model for ethanol fermentation bymutant Neurospora crassa. International Journal of Chemical EngineeringResearch,2010,2:13–21
    [114]梁新红,孙俊良,赵瑞香,郭安鹊,刘勇强.嗜酸乳杆菌细胞生长数学模型的建立.江苏调味副食品,2006,23(005):11-13
    [115] Metzner A, Otto R. Agitation of non‐Newtonian fluids. AIChE Journal,1957,3(1):3-10
    [116]俞路:絮凝酵母在悬浮床反应器流变与流动行为研究:[博士学位论文]。大连:大连理工大学图书馆,2011
    [117] Raposo S, Lima-Costa M. Rheology and shear stress of Centaurea calcitrapa cellsuspension cultures grown in bioreactor. Biotechnology Letters,2006,28(6):431-438
    [118] Xu J, Xie J, Han A, Feng P, Su Z. Kinetic and technical studies on large scale cultureof Rhodiola sachalinensis compact callus aggregates with air‐lift reactors. Journalof Chemical Technology and Biotechnology,1998,72(3):227-234
    [119]吴兆亮,元英进.模拟植物细胞悬浮培养体系和其两相培养体系流变特性研究.化学反应工程与工艺,1998,14(3):269-274
    [120]张长银,董艳山,李雅丽,等.红豆杉细胞反应器悬浮培养的流变特性研究.武汉理工大学学报,2012,34(11):36-40
    [121] Tanaka H. Oxygen transfer in broths of plant cells at high density. Biotechnologyand bioengineering,2004,24(2):425-442
    [122] Jolicoeur M, Chavarie C, Carreau P, Archambault J. Development of a helical-ribbonimpeller bioreactor for high-density plant cell suspension culture. Biotechnology andbioengineering,1992,39(5):511-521
    [123] Curtis W R, Emery A H. Plant cell suspension culture rheology. Biotechnology andbioengineering,2004,42(4):520-526
    [124]葛锋,王剑平,王晓东,赵兵,王玉春.新疆紫草细胞悬浮培养过程研究.天然产物研究与开发,2010,22(003):460-465
    [125] Tribe L, Briens C, Margaritis A. Determination of the volumetric mass transfercoefficient (kLa) using the dynamic―gas out–gas in‖method: Analysis of errorscaused by dissolved oxygen probes. Biotechnology and bioengineering,2004,46(4):388-392
    [126] Bandyopadhyay B, Humphrey A, Taguchi H. Dynamic measurement of the oxygenvolumetric transfer coefficient in fermentation systems. Biotechnology andbioengineering,2004,9(4):533-544
    [127] Vilaca P, Badino Jr A, Facciotti M, et al. Determination of power consumption andvolumetric oxygen transfer coefficient in bioreactors. Bioprocess and BiosystemsEngineering,2000,22(3):261-265
    [128] López J C, Porcel E R, Alberola I O,et al. Simultaneous determination of oxygenconsumption rate and volumetric oxygen transfer coefficient in pneumaticallyagitated bioreactors. Industrial&engineering chemistry research,2006,45(3):1167-1171
    [129] Badino A, Facciotti M, Schmidell W. Volumetric oxygen transfer coefficients (kLa)in batch cultivations involving non-Newtonian broths. Biochemical EngineeringJournal,2001,8(2):111-119
    [130] Ortiz-Ochoa K, Doig S D, Ward J M,et al. A novel method for the measurement ofoxygen mass transfer rates in small-scale vessels. Biochemical Engineering Journal,2005,25(1):63-68
    [131] Marques D A V, Torres B R, Porto A L F,et al. Comparison of oxygen mass transfercoefficient in simple and extractive fermentation systems. Biochemical EngineeringJournal,2009,47(1):122-126
    [132] Littlejohns J V, Daugulis A J. Oxygen transfer in a gas–liquid system containingsolids of varying oxygen affinity. Chemical Engineering Journal,2007,129(1):67-74
    [133] Yang X M, Mao Z X, Yang S Z,et al. An improved method for determination of thevolumetric oxygen transfer coefficient in fermentation processes. Biotechnology andbioengineering,2004,31(9):1006-1009
    [134] Gupta A, Rao G. A study of oxygen transfer in shake flasks using a non‐invasiveoxygen sensor. Biotechnology and bioengineering,2003,84(3):351-358
    [135] Kuboi R, Nienow A. Intervortex mixing rates in high-viscosity liquids agitated byhigh-speed dual impellers. Chemical engineering science,1986,41(1):123-134
    [136] Gauthier L, Thibault J, LeDuy A. Measuring kLawith randomly pulsed dynamicmethod. Biotechnology and bioengineering,2004,37(9):889-893
    [137]俞俊棠,唐孝宣.生物工艺学(下)(.第一版).上海:华东化工学院出版社,1992.
    [138] Pérez J, Montesinos J L, Gòdia F. Gas–liquid mass transfer in an up-flow cocurrentpacked-bed biofilm reactor. Biochemical Engineering Journal,2006,31(3):188-196
    [139] Ogut A, Hatch R T. Oxygen transfer into newtonian and non‐newtonian fluids inmechanically agitated vessels. The Canadian Journal of Chemical Engineering,2009,66(1):79-85
    [140] Thibault J, Leduy A, Denis A. Chemical enhancement in the determination of kLabythe sulfite oxidation method. The Canadian Journal of Chemical Engineering,2009,68(2):324-326
    [141] Yang JD, Wang NS. Oxygen mass transfer enhancement via fermentor headspacepressurization. Biotechnology progress,1992,8(3):244-251
    [142] Garcia-Ochoa F, Gomez E. Mass transfer coefficient in stirred tank reactors for thangum solutions. Biochemical Engineering Journal,1998,1(1):1-10
    [143] Liu Y S, Wu J Y, Ho K P. Characterization of oxygen transfer conditions and theireffects on Phaffia rhodozyma growth and carotenoid production in shake-flaskcultures. Biochemical Engineering Journal,2006,27(3):331-335
    [144] Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbialprocesses: an overview. Biotechnology advances,2009,27(2):153
    [145] Van't Riet K. Review of measuring methods and results in nonviscous gas-liquidmass transfer in stirred vessels. Industrial&Engineering Chemistry Process Designand Development,1979,18(3):357-364
    [146]陈坚,堵国成,李寅,等.发酵工程实验技术.(第一版).北京:化学工业出版社,2009
    [147]杨晓明,毛维颍.一种确定体积氧传递系数kL a的简便方法.生物工程学报1987,3(1):64-67
    [148]庄信博,邹崇达.运态法确定体积氧传递系数的改进.华侨大学学报自然科学版,1991,12(002):201-206
    [149] Garcia-Ochoa F, Gomez E. Theoretical prediction of gas–liquid mass transfercoefficient, specific area and hold-up in sparged stirred tanks. Chemical engineeringscience,2004,59(12):2489-2501
    [150] Gogate P R, Beenackers A A, Pandit A B. Multiple-impeller systems with a specialemphasis on bioreactors: a critical review. Biochemical Engineering Journal,2000,6(2):109-144
    [151] Luo J, Mei X. Taxol production in suspension cultures of Taxus chinensis as affectedby the combination of nutrient feed with dissolved oxygen control. Acta BotanicaSinica,2002,44(11):1286
    [152]徐魁.搅拌反应器中颗粒完全离底悬浮的临界转速.化工时刊,1995,5
    [153] Armenante P M, Nagamine E U. Effect of low off-bottom impeller clearance on theminimum agitation speed for complete suspension of solids in stirred tanks.Chemical engineering science,1998,53(9):1757-1775
    [154] Dylag, M, Talaga, J. Hydrodynamics of mechanical mixing in a threephaseliquid-gas-solid system. International Chemical Engineering,1994,34(4):539–551
    [155]鲁明波.红豆杉高产细胞株的筛选及培养条件优化:[博士学位论文]。武汉:华中科技大学图书馆,2009
    [156]朱守一,陈静,施幽芬.抗生素发酵液的流变特性.抗生素,1981,6(4).24-31
    [157]黄海东,侯刚.模拟稳态法测定生物反应器KLa值的研究.天津农学院学报,2004,11(003):28-31
    [158] Nielsen D R, Daugulis A J, McLellan P J. A novel method of simulating oxygenmasstransfer in two‐phase partitioning bioreactors. Biotechnology and bioengineering,2003,83(6):735-742
    [159] Brown W A. Developing the best correlation for estimating the transfer of oxygenfrom air to water. Chemical Engineering Education,2001,35(2):134-134
    [160]王春魁.浅谈发酵液粘度在抗生素发酵生产中的探索和应用.科技风,2010(15)
    [161] Tempest D W, Neijssel0M. The status of YATP and maintenance energyasbiologically interpretable phenomena. Annu Rev Microbiol,1984,38:459-486
    [162] Hueting S, Tempest D. Influence of the glucose input concentration on the kineticsof metabolite production by Klebsiella aerogenes NCTC418: growing in chemostatculture in potassium-or ammonia-limited environments. Archives of Microbiology,1979,123(2):189-194
    [163] Liu Y, Chen G H, Paul E. Effect of the S0/X0ratio on energy uncouplingin substratesufficient batch culture of activated sludge. Water research,1998,32(10):2883-2888
    [164]颜日明,张志斌,邱晓芳,曾庆桂,游海,朱笃.杜仲细胞悬浮培养产黄酮及其动力学研究.中国生物工程杂志,2008,28(10):60-65
    [165]吴兆亮,邸进申,元英进,胡宗定.东北红豆杉细胞两液相培养中紫杉醇释放行为研究.生物工程学报,2000,16(4):500-504
    [166]葛志强,李景川.红豆杉细胞两液相耦合培养过程中细胞凋亡与紫杉醇含量的关系.化工学报2002,53(10):1066-1070
    [167]王传贵.大规模细胞培养生产紫杉醇工艺研究:[博士学位论文]。武汉:华中科技大学图书馆,2000
    [168] Bringi V, Kadkade PG, Prince CL,et al. Enhanced production of taxol and taxanesby cell cultures of Taxus species. US Patents,1995,5407816
    [169] Choi H K, Kim S I, Son J S,et al. Enhancement of paclitaxel production bytemperature shift in suspension culture of Taxus chinensis. Enzyme and microbialtechnology,2000,27(8):593-598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700