用户名: 密码: 验证码:
基于克隆选择优化的船舶航向自适应控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
克隆选择算法是受生物免疫系统克隆选择机制启发而发展起来的一种新兴的进化算法,为解决复杂问题提供了一种新颖的方法,目前正吸引广大智能计算学者的兴趣。船舶运动控制是一个备受航海科技界和控制理论界关注的领域,船舶自动舵的性能直接关系到船舶的航行安全和经济效益。本文从研究人工免疫克隆选择算法出发,以船舶航向自适应控制为目的,研究了免疫克隆选择全局优化算法及其在船舶航向自适应控制中的应用。
     1.将混沌机制引入克隆选择算法中,将混沌优化机制和免疫克隆进化算法有机结合,提出混沌-克隆进化算法。用混沌浮点数编码代替克隆选择算法的二进制编码,利用混沌随机序列产生初始种群,保证初始种群的多样性。对高亲和度抗体采用混沌扰动策略,对抗体根据其亲和度大小加以不同的混沌扰动;混沌扰动系数随进化代数而变,进化前期加速搜索,进化后期加速收敛。对个体的混沌扰动实质上是个体的局部混沌搜索过程,但种群中各个体又具有与亲和度相关的不同搜索步长,使得种群在进化中能同步实现全局搜索和局部搜索;而动态地改变混沌扰动尺度,又提高了进化后期的搜索精度。对低亲和度抗体采用混沌再生策略,保持种群多样性。应用复杂函数进行优化试验验证了该算法的有效性。
     2.基于免疫克隆选择原理,采用浮点数编码,提出一种分级变异的动态免疫克隆选择优化算法。采用了分级变异和动态参数策略,使得该算法在种群内部变异和种群进化过程中都能有机地结合全局搜索和局部搜索。根据抗体的亲和度把种群分解为三个子种群,分配以不同的搜索任务,实施不同的变异策略;在进化过程中动态改变种群规模、克隆规模和变异参数,从而加快全局搜索速度和提高局部搜索精度。对5个复杂函数的优化仿真试验表明该算法有效地改善了克隆选择算法的性能,收敛速度快,精度高,不易陷入局部最优。
     3.基于免疫克隆选择原理,借鉴遗传算法的精英选择算子和交叉算子,提出一种启发式自适应免疫克隆选择算法。该算法采用精英克隆变异算子、启发式克隆交叉算子,对少量的高亲和度抗体进行小幅变异,搜索局部最优解;对其它低亲和度抗体则依据其亲和度随机地与高亲和度抗体进行不同程度的交叉,使其融入优质基因,同时还能保持种群的多样性;从而使得克隆选择算法能在加快全局搜索的同时还能保证局部收敛的精度;其参数自适应机制能有效地防止种群进化停滞。仿真对比试验表明该算法明显改善了克隆选择算法的性能,计算量小,性能稳定,精度高,不易陷入局部最优。
     4.将克隆选择算法用于自适应控制问题,提出一类基于对象模型的克隆选择自适应控制算法。克隆选择算法利用对象模型预估对象未来的输出,评估候选控制器性能,选择最适合当前环境的控制器控制实际对象,从而实现控制器参数的实时整定。将上述克隆选择自适应控制算法用于常规船舶航向PID控制,提出一种船舶航向克隆选择直接自适应PID自动舵;在其自适应模块中加入一个参考模型,利用参考模型监督PID控制器性能评估,试图控制船舶输出与参考模型输出一致,提出了参考模型监督的船舶航向克隆选择自适应自动舵,其中的参考模型与控制系统为并联形式;在闭环反馈前,串联一个参考模型对参考输入进行滤波,使PID控制器直接修正对象输出与参考模型输出误差,实现对参考模型的跟踪控制,提出参考模型跟踪的船舶航向克隆选择自适应自动舵控制算法。以某货船的三阶非线性模型作为被控对象,以其二阶线性模型作为对象模型的仿真试验表明将克隆选择算法应用于航向控制问题是有效的,三种克隆选择航向自适应控制算法对船舶模型摄动和外界干扰有着较强的自适应能力。
     5.针对船舶模型参数摄动和外界干扰不确定问题,提出两种分别为带干扰补偿和不带干扰补偿的克隆选择模型辨识的模型参考PD控制算法。将船舶当成“黑箱”系统,克隆选择算法根据船首向和舵角信息将船舶在线辨识为一个二阶线性模型,然后应用二阶线性系统的模型参考PD控制理论求取PD控制器参数,使船舶跟踪参考模型输出。通过对一个二阶线性船舶和一个三阶非线性船舶两例在不同环境下的仿真对比试验,其结果表明带干扰辨识和补偿的控制算法效果更为出色,而不带干扰辨识和补偿的控制算法也能在一定程度上将外界干扰转化为等效的模型参数辨识,从而提高其鲁棒性。
Based on ideas gleaned from the clone selection principle in immunology system, Clone Selection Algorithms (CSA) has become an advanced method, offering a fresh perspective for complicated calculation problems. CSA attracts foremost attention among calculation researchers. Accordingly, Ship Motion Control is a study focus attended by scientists of both navigation science and control theory because the performance of autopilot for ship steering is of great importance for a ship to navigate safely and economically. Aiming at the research of adaptive control for ship steering, this dissertation examines the Clone Selection Algorithms for global optimization and applications to the adaptive control for ship steering.
     1. A Chaos-Clone based Evolutionary Algorithm (CCEA) is proposed by integrating chaos search and clone selection algorithm (CLONALG). CCEA uses chaotic floating point numbers code instead of the binary code of CLONALG, and produces the initial diversity of antibody population. The algorithm adopts a chaotic disturbance strategy for the antibodies with high affinity; the different chaotic disturbance is added to an antibody according to its affinity to antigen; also, the disturbance factor changes with the evolutionary generation so as to speed search during prophase and convergence during anaphase. CCEA uses a chaos to reshuffle operation for those antibodies with low affinity to maintain the diversity of the population. Simulations on complex benchmark functions demonstrate that the CCEA has better performance than both the chaos optimization and CLONALG individually used.
     2. A dynamic immune clone selection algorithm with classified mutation is proposed based on traditional floating point coding. Applying grading mutation and dynamic parameter strategies, the method speeds up the global search and improves the local con- vergence precision in the process of inner population mutation and their evolution. On one hand, according to the antibody affinity in relation to the antigen, the antibody population is decomposed into three subsets, and they are submitted to respective mutation processes for their different given tasks. On the other hand, the population size, the clone size and the mutation parameters are dynamically changed with evolution process. The proposed algorithm is use to optimize complex functions for testing, and the results show merits of its effectiveness in CSA, such as high accuracy, quick convergence and less opportunity for local optima.
     3. Based on clone selection principle, a novel evolutionary algorithm is proposed with the aid of traditional method using elitism clone mutation and heuristic crossover. The two main operations of elitism clone mutation and heuristic crossover are defined. The elitist antibodies with highest affinity are subject to a small mutation process to search local optima. Those antibodies with general affinity are suffered to a heuristic crossover with elitist antibodies to speed global optimization. The antibodies with lowest affinity are replaced by new individuals to maintain the diversity of the population. Also, to prevent evolutionary stagnation, the scaling factors of affinity are adaptively adjusted in order to guarantee the accuracy of local convergence when speeding up global searches. The computer simulation results adopted complex benchmark functions demonstrate that the proposed algorithm has good performance in the aspect of improvement of CLONALG, easy operation, and high accuracy.
     4. A class of model-based clone selection adaptive control algorithm is developed by applying CSA to adaptive control problem. CSA dopes out the plant output by a plant model and evaluates the candidate controllers before selecting the fittest controller to the current plant operating conditions. Such approach realizes on-line controller tuning. Then, a CSA direct adaptive PID control is developed by applying this approach to conventional PID controller for ship steering. Moreover, we introduce two new, but closely related approaches to CSA adaptive control which is called "CSA reference model supervisory adaptive PID autopilot" and "CSA reference model tracking adaptive PID autopilot" for ship steering. In these techniques a reference model is used to guide the system output towards the reference model output. Simulations verified that CSA can carry on the adaptive control excellently, the above three adaptive control algorithm for ship steering have good robustness to environmental disturbance and ship model error.
     5. Two CSA model-identified model reference PD controllers, respectively with and without Disturbance Identification-and-Compensation (DIC) are proposed to resist both ship model possible uncertainty and changeful operating conditions. Regarding ship system as a "black box ", CSA on-line identifies the ship with a second order linear model according to the information of both course and rudder angle. Then, the second order linear together with a model reference is used to calculate the PD controller parameters. Their goals are to steer the ship tracking reference model output. Simulations show the controller with DIC has better performance than that without DIC, though the controller without DIC can also cope with the disturbance by translating some disturbance into plant model parameters.
引文
[1]Jerne N K.The Immune System[J].Scientific American,1973,229(1):52-60.
    [2]Jerne N K.Towards a network theory of the immune system[J].Annual Immunology,1974,125C:373-389.
    [3]Perelson A.Immune network theory[J].Immunological Review,1989,110:5-36.
    [4]Farmer J D,Packard N H,Perelson A S.The immune system,adaptation,and machine learning [J].Physica D,1986,22:187-204.
    [5]Varela F J,Stewart J.Dynamics of a class of Immune Network:Global Stability of Idiotype Interactions[J].Journal of Theoretical Biology,1990(19):189-212.
    [6]Bersini H,Varela F J.Hints for Adaptive Problem Solving Gleaned from Immune Networks [C]//Proc,of the 1st workshop on Paralled Problem Solving from Nature.Berlin Heidelberg:Springer—Verlag,1990:343-354.
    [7]Hunt J E,Cooke D E.Learning Using an Artificial Immune System[J].Journal of Network and Computer Applications,1996,19:189-212.
    [8]Dasgupta D,Attoh-okine N.Immunity Based System:A Survey[C]//Proc.of 1997 IEEE International conference on System,Man and Cybernetics.Orlando,FL,USA:IEEE Press,1997,1:369-374.
    [9]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [10]Hofmeyr S A,Forrest S.Immunity by Design:An Artificial Immune System[C]//Proc.of GECCO'99.Orlando,Florida,USA:Morgan Kaufmann,1999:1289-1296.
    [11]Timmis J,Knight T.Artificial immunes system:Using the immune system as inspiration for data mining[M]//.Abbass H A,Sarker R A,Newton C S.Data Mining:A Heuristic Approach.Hersey:Idea Publishing Group,2001:209-230.
    [12]葵白兴,龚涛.免疫算法研究的进展[J].控制与决策,2004,19(8):841-846.
    [13]Ishida Y,Adachi N.Active noise control by an immune algorithm:adaptation in immune system as an evolution[C]//IEEE international conference on evolutionary computation.Nagoya,1996:150-153.
    [14]Ishida Y,Adachi N.An immune algorithm for multi-agent:application to adaptive noise neutralization[C]//IEEE/RSJ international conference on intelligent robots and systems.Osaka,Japan,1996,3:1739-1746.
    [15]Kayama M,Sugita Y,Morooka Y,et al.Distributed diagnosis system combining the immune network and learning vector quantization[C]//21 st international conference on industrial electronics,control,and instrumentation.Orlando,FL,USA,1995,2:1531-1536.
    [16]Ishiguro A,Ichikawa S,Uchikawa Y.A gait acquisition of a 6 - legged robot using immune networks [C]//IEEE/RSJ/GI international conference on intelligent robots and systems.Munich,Germany,1994:1034-1041.
    [17] Ishiguro A, Kuboshiki S, Ichikawa S. Gait coordination of hexapod walking robots using mutual-coupled immune networks[C]//Proc. of IEEE International Conference on Evolutionary Computation. Perth, Australia, 1995:672-677.
    [18] Ishiguro A, Shirai Y, Kondo T, et al. Immunoid:An architeture for behavior arbitration based on the immune networks[C]//Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka, Japan, 1996:1730-1738.
    [19] Forrest S, Hofmeyr S A. Immunology as Information Processing[M]//. Segel L A, Cohen IR. Design Principles for Immune System & Other Distributed Autonomous Systems. Oxford, USA: Oxford Univ. Press, 2000:361-387.
    [20] Forrest S, Hofmeyr S A, Somayaji A. Computer Immunology[J]. Communications of the ACM, 1997,40(10):88-96.
    [21] Forrest S, Longstaff T A, Hofmeyr S A, et al. A sense of self for unix processes[C]//proceedings of IEEE Symposium on Research in Security and Privacy. Oakland, CA, USA, 1996:120-128.
    [22] Hofmeyr S A. An Interpretative Introduction to the Immune System[M]//. Cohen I, Segel L A. Design Principles for the Immune System and Other Distributed Autonomous Systems. Oxford: Oxford University Press, 2000.
    
    [23] Hofmeyr S A, Forrest S. Achitecture for an Artificial Immune system[J]. Evolutionary Com- putation, 2000, 8(4):443-473.
    [24] Dasgupta D. Immunity-Based Intrusion Detection System: A General Framework[C]//Proc. of the 22nd National Information Systems Security Conference. Arlington, Virginia, USA: NIST Publishers, 1999:147-160.
    [25] Dasgupta D, Brian H. Mobile Security Agents for Network Traffic Analysis[C]//Proc. of DARPA Information Survivability Conference and Exposition II (DISCEX- II). Anaheim, CA, USA: IEEE Press, 2001, 2:332-340.
    [26] Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C]//Proc. of the Second International Conference On Inteligent Processing and Manufacturing of Mate- rial(IPMM99). Honolulu, HI, USA: IEEE Press, 1999, 1:257-267.
    
    [27] Dasgupta D, Gonzalez F. An Immunity-Based Technique to Characterize Intrusions in com-puter Networks[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3):281-291.
    [28] Dasgupta D, Majumdar N S. Anomaly Detection in Multidimensional Data Using Negative Selection Algorithm[J]. Knowlge Based System, 2002, 14(3-4):121-130.
    
    [29] de Castro L N. Immune Engineering:A Personal Account[C]//II Workshop on Computational Intelligence and Semiotics, CD ROM Proc. of. Sao Paulo, Brazil: Itau Cultural, 2002.
    
    [30] de Castro L N, Timmis J I. Artificial Immune Systems as a Novel Soft Computing Paradigm[J]. Soft Computing, 2003, 7:526-544.
    [31] de Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications[C]//Proc. of the Genetic and Evolutionary Computation Conference(GECCOO), Workshop on Artificial Immune Systems and Their Applications. Las Vegas, Nevada, USA, 2000:36-42.
    [32] de Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Princi- ple[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3):239-251.
    [33] de Castro L N. Immune, Swarm, and Evolutionary Algorithms—Part HrPhilosophical Comparisons [C]//Proc. of International Conference on Neural Information Processing, Workshop on Artificial Immune Systems. Singapura, 2002, 3:1469-1473.
    
    [34] de Castro L N. The Immune Response of an Artificial Immune Network (aiNet)[C]//The 2003 Congress on Evolutionary Computation(CEC'03). California, USA: IEEE Press, 2003:146-153.
    
    [35] de Castro L N, Timmis J I. An Artificial Immune Network for Multimodal Function Optimization [C]//Proc. of IEEE Congress on Evolutionary Computation (CEC'02). Hawaii: IEEE Press, 2002, 1:699-674.
    
    [36] de Castro L N, Von Zuben F J. Artificial immune system: Part I- basic theory and applica-tions[R]. Brazil: School of Computing and Electrical Engineering. State University of Campinas, 1999.
    
    [37] de Castro L N, Von Zuben F J. An Immunological Approach to Initialize Centers of Radial Basis Function Neural Networks[C]//Proc. of V Brazilian Conference on Neural Networks, de Janeiro, RJ, Brazil; 2001:79-84.
    
    [38] de Castro L N, Von Zuben F J. Data mining : a heuristic approach[M]. USA: idea group, 2001.
    
    [39] de Castro L N, Von Zuben F J. An Immunological Approach to Initialize Feedforward Neural Network Weights[C]//Proc. of ICANNGA (Int. Conf. on Artificial Neural Networks and Genetic Algorithms). Prague, C.R.: Springer Verlag, 2001:126-129.
    
    [40] de Castro L N, Von Zuben F J. Immune and Neural Network Models:Theoretical and Empirical Comparisons[J]. International Journal of Computational Intelligence and Applications, 2001, l(3):239-257.
    
    [41] de Castro L N, Von Zuben F J. Automatic Determination of Radial Basis Functions:an Immunity-Based Approach[J]. International Journal of Neural Systems (IJNS), Special Issue on Non-Gradient Learning Techniques, 2002, 11(6):523-535.
    
    [42] de Castro L N, Von Zuben F J, de Deus Jr G A. The Construction of a Boolean Competitive Neural Network Using Ideas from Immunology [J]. Neurocomputing, 2003, 50C:51-85.
    
    [43] Timmis J. On parameter adjustment of the immune inspired machine learning algorithm AINE[R]. Canterbury: Univ. Kent, 2000.
    
    [44] Timmis J, Neal M. A resource limited artificial immune system for data analysis[J]. Knowledge Based Systems, 2001, 14(3-4): 121-130.
    
    [45] Timmis J, Neal M, Hunt J. Artificial immune system for data analysis[J]. Biosystems, 2000, 55(1-3):143-150.
    
    [46] Ishida Y. International workshop on the immunity-based systems 1996 (IMBS' 96) held in conjunction with ICMAS' 96[OL]. http://www.sys.tutkie.tut.ac.jp/~ishida/IMBS96proc.html.
    
    [47]焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540一1548.
    
    [48] Dasgupta D. Artificial Immune Systems and Their Applications[M]. Berlin: Springer-Verlag, 1999.
    
    [49] de Castro L N, Timmis J I. Artificial Immune Systems: A New Computational Intelligence Approach[M]. London: Springer-Verlag, 2002.
    [50]刘乐,陈秋艳,王艳秋.人工免疫系统的研究与应用[J].辽宁工学院学报,2006,26(5):286-290.
    [51]Wang L,Jiao L C.The Immune Genetic Algorithm and Its Converge[C]//Fourth International Conference on Signal Processing.Beijing,China:IEEE Inc.,1998,2:1347-1350.
    [52]丁永生,任立红.人工免疫系统:理论与应用[J].棋式识别与人工智能,2000,13(1):52-59.
    [53]Stadler P F,Schuster P,Perelson A S.Immune networks modeled by replicator equations[J].Math.Biol.,1994,33:111-137.
    [54]Hirayama H,Okita Y.Mathematical introduction of dynamic behavior of an idio-type network of immune reactions[J].IEICE Trans.Fundamentals,2000,E83-A(11):2357-2369.
    [55]Smith D J,Forrest S,Perelson A S.Immunological Memory is Associative[C]//Workshop Notes,Workshop 4:Immunity Based Systems,Intnl.Conf.on Multiagent Systems.Tokyo,Japan,1996:62-70.
    [56]Abbattista E Gioia G D,Santo G D,et al.An associative memory based on the immune networks[C]//IEEE International Conference on Neural Networks.Washington,DC,USA:IEEE Press,1996,1:519-523.
    [57]Tang Z,Yamaguchi T,Tashima K.Multiple-valued immune network model and its simulations [C]//Proc,of 27th International Symposium on Multiple-Valued Logic.Antigonish,Nova Scotia,Canada,1997:519-524.
    [58]Toma N,Endo S,Yamada K.Immune algorithm with Immune Network and MHC for adaptive problem solving[C]//Proc,of the IEEE International Conference on Systems,Man and Cybernetics.Tokyo,Japan:IEEE Inc.,1999,4:271-276.
    [59]Toma N,Endo S,Yamada K.An Immune Co-evolutionary Algorithm for N-th Agent's Traveling Salesman Problem[C]//Proc.of 2003 IEEE International Symposium on Computational International Intelligence in Robostics and Automation.Kobe,Japan:IEEE Press,2003:1503-1508.
    [60]丁永生,任立红.一种基于免疫突现计算的生物网络结构的设计[J].控制与决策,2003,18(2):185-189.
    [61]Mitsumoto N,Fukuda T,Shimojima K,et al.Autonomous robotic system and biologically inspired immune swarm strategy as a multi-agent robotic system[C]//Proc,of IEEE International Conference on Robotics and Automation.Minneapolis,Minesota,USA,1995:2187-2192.
    [62]Mitsumoto N,Fukuta T.Control of distributed autonomous robotic system based on biologically inspired immunological architecture[C]//IEEE intennational conference on robotics and automation.Albuquerque,NM,USA:IEEE Press,1997,4:3551-3556.
    [63]Zak M.Physical model of immune inspired computing[J].Information Sciences,2000,129:61-79.
    [64]Forrest S,Perelson A,Allen L,et al.Self-Nonself Discrimination in a Computer[C]//Proc.of the IEEE Symposium on Research in Security and Privacy.Los Alamitos,CA:IEEE Computer Society Press,1994:202-212.
    [65]Forrest S,Perelson A S.Genetic algorithms and the immune system[M]//.Schwefel H P,Manner R.Parallel Problem Solving from Nature,Lecture Notes in Computer Science.Berlin,Germany:Springer-Verlag,1991:320-325.
    [66]Forrest S,Smith R E.Using Genetic Algorithms to Explore Pattern Recognition in the Immune System[J].Evolutionary Computation,1993,1(3):191-211.
    [67]Kim J,Bentley P.The artificial immune model for network intrusion detection[C]//Proc,of 7th European Congress on Intelgent Techniques and Soft Computing.Aachen,Germany,1999:13-19.
    [68]Helman P,Forrest S.An efficient algorithm for generation random antibody strings[R].New Mexico:Univ.New Mexico,1994.
    [69]Haeseleer P D,Forrest S,Helman P.An Immunological Approach to Change Detection:Algorithms,Analysis,and implication[C]//Proc,of IEEE Symposium on Research in Security and Privacy.Oakland,CA,USA,1996:110-119.
    [70]张楠,李志蜀,张建华.基于混沌理论的否定选择算法[J].四川大学学报(工程科学版),2006,38(1):124-127.
    [71]Chun J S,Jung H K,Hahn S Y.A Study on Comparison of Optimization Performances between Immune Algorithm and other euristie Algorithms[J].IEEE Transactions on Magnetic,1998,34(5):2972-2975.
    [72]Hajela P,Lee J.Constrained Genetic Search via Schema Adaptation,An Immune Network Solution[C]//Proc.of the First World Congress of Stuctural and Multidisciplinary Optimization.Goslar,Germany:Pergamon,1995:915-920.
    [73]Yoo J,Hajela P.Immune network simulations in multicriterion design[J].Structural Optimization,1999(18):85-94.
    [74]Yoo J,Hajela P.Fuzzy multicrtiterion design using immune network simulation[J].Struct.Multidisc Optim.,2001(22):188-197.
    [75]Mori K,Tsukiyama M,Fukuda T.Application of an Immune Algorithm to Multi-Optimization Problems[J].Electrical Engineering in Japan,1998,122(2):30-37.
    [76]Mori K,Tsukiyama M,Fukuda T.Adaptive Scheduling System Inspired by Immune System [C]//Proc,of 1998 IEEE International Conference on System,Man and Cybernetics.San Diego,California,USA:IEEE Press,1998,4:3833-3837.
    [77]Fukuda T,Mori K,Tsukiyama M.Parallel Search for Multi-Model Function Optimization with Diversity and Learning of Immune Algorithm[M].Berlin,Heidelberg:Springer-Verlag,1999.
    [78]Chun J S,Kim M K,Jung H K.Shape optimization of electromagnetic devices using immune algorithm[J].IEEE Transactions on Magnetics,1997,33(2):1876-1879.
    [79]罗小平.人工免疫遗传学习算法及其工程应用研究[D].杭州:浙江大学,2002.
    [80]Burnet F M.The Clonal Selection Theory of Acquired Immunity[M].Cambridge:Cambridge University Press,1959.
    [81]Kim D H.Intelligent tuning of a PID controller for multivariable process using immune network model based on fuzzy set[C]//The 10th IEEE International Conference on Fuzzy Systems.Melbourne,Australia:IEEE Press,2001:93-98.
    [82]Kim J,Bentley P J.Towards an Artificial Immune System for Network Intrusion Detection:An Investigation of Dynamic Clonal Selection[C]//Proc.of Congress on Evolutionary Computation (CEC02).Honolulu,HI,USA:IEEE Service Center,2002:1015-1020.
    [83]徐雪松.基于人工免疫系统的函数优化及其在复杂系统中的应用研究[D].杭州:浙江大学,2004.
    [84]孙勇智.人工免疫系统、算法及其应用研究[D].杭州:浙江大学,2004.
    [85]刘若辰.免疫克隆策略算法及其应用研究[D].西安:西安电子科技大学,2005.
    [86]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [87]王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):806-812.
    [88]Jiao L C,Wang L.A Novel Genetic Algorithm Based on Immunity[J].IEEE Transactions on Systems,Man and Cybernetics—Part A:Systems and Humans,2000,30(5):552-561.
    [89]Lee D W,Sire K B.Artificial immune network-based cooperative control in collective autonomous mobile robots[C]//Proc,of 6th IEEE international workshop on robot and human communication.Sendai:IEEE Press,1997:58-63.
    [90]Mitsumoto N,Hattori T,Idogaki T,et al.Self-organizing micro robotic system[C]//Proc,of 6th International symposium on micro machine and human science.Nagova,Japan,1995:261-270.
    [91]Dasgupta D.An artificial immune system as a multi-agent decision support system[C]//Proc.of the IEEE International Conference on Systems,Man and Cybernetics.San Diego:IEEE Press,1998:3816-3820.
    [92]Meshref H,Vanlandingham H.Artificial immune systems:application to autonomous agents[C]//Proc,of IEEE International Conference on Systems,Man,and Cybernetics.Tennessee,USA:IEEE Press,2000,1:61-66.
    [93]Meshref H,VanLandingham H.Immune Network Simulation of Reactive Control of a Robot Arm Manipulator[C]//IEEE Mountain Workshop on Soft Computing in Industrial Applications,SMCia01.Virginia Tech,Blacksburg,Virginia:IEEE Press,2001.
    [94]King R L,Lambert A B,Russ S H,et al.The Biological Basis of the Immune System as a Model for Intelligent Agents[C]//Proc.of the 11 IPPS/SPDP'99 Workshops Held in Conjunction with the 13th International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing.San Juan,Puerto Rico,USA:Springer-Verlag,1999:156-164.
    [95]King R L,Russ S H,Lambert A B,et al.An artificial immune system model for intelligent agents[J].Journal of Future Generation Computer Systems,2001,17(4):335-343.
    [96]Michelan R,Femando J.Decentralized control system for autonomous navigation based on evolved artificial immune network[C]//Proc,of the 2002 Congress on Evolutionary.Honolulu,Hawaii,2002,2:1021-1026.
    [97]Takahashi K,Yamada T.Self-tuning immune feedback control for controlling mechanical systems[C]//Proc,of IEEE conference on advanced intelligent mechatronics.Tokyo,Japan,1997:101-107.
    [98]Takahashi K,Yamada T.Application of an immune feedback mechanism to control system[J].JSME international Journal,1998,41(2):184-191.
    [99]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统[J].控制与决策,2000,15(4):443-446.
    [100]Ding Y S.A Nonlinear PID Controller Based on Fuzzy-Tuned Immune Feedback Law[C]//The 3rd World Congress on Intelligent Control and Intelligent Automation.Hefei,China:IEEE Press,2000.
    [101]Kumar K K,Neidhoeffer J.Immunized neurocontrol[J].Expert Systems with Applications,1997,13(3):201-204.
    [102]Kumar K K.Immunized neurocontrol:concepts and initial results[C]//International Workshop on Combinations of Genetic Algorithms and Neural Networks,1992(COGANN-92).Baltimore,MD,USA:IEEE Computer Society,1992,2:146-168.
    [103]Kumar K K,Neidhoefer J.Immunized adaptive critic for an autonomous aircraft control application[M]//.Dasgupta D.Artificial Immune Systems and Their Applications.Berlin:Springer-Verlag,1999:221-240.
    [104]Neidhoefer J,Kumar K K.Immunized neural networks for complex system identification[C]//Twenty-Fifth Southeastern Symposium on System Theory,1993.Tuscaloosa,AL,USA:IEEE Press,1993:383-387.
    [105]Kumar K K,Neidhoefer J.Immunised Neurocontrol[J].Expert Systems with Applications,1997,13(3):201-214.
    [106]Kumar K K,Neidhoefer J.Immunized adaptive critics for level 2 intelligent control[C]//Proc.of International Conference on Systems,Man and Cybernetics.Orlando,1997,1:856-861.
    [107]Kumar K K,Neidhoefer J.An Immune System Framework for Integrating Computational Intelligence Paradigms with Applications to Adaptive Control[M]//.Palaniswami M,Attikiouzel Y,Marks II D,R.J.and Fogel,et al.Computational Intelligence:A Dynamic System Perspective.New York:IEEE Press,1995:32-45.
    [108]左兴权,李士勇.一种些于人工免疫原理的最优模糊神经网络控制器[J].信息与控制,2004,33(3):380-384.
    [109]王粉花,孙一康,王新、基于免疫算法的模糊神经网络在板厚板形控制中的应用[J].信息与控制,2004,33(4):504-506.
    [110]Kim D H.Tuning of a PID controller using immune network model and local fuzzy set[C]//Proc,of IEEE International Symposium on Industrial Electronics(ISlE 2001).Pusan,South Korea:IEEE Inc.,2001,3:1656-1661.
    [111]Kim D H.Tuning of 2-DOF PID controller by immune algorithm[C]//Proc,of the 2002 Congress on Evolutionary Computation.Honolulu,HI,USA:IEEE Service Center,2002,1:675-680.
    [112]Kim D H,Hong W P,Park J I.Auto-tuning of reference model based PID controller using immune algorithm[C]//Proc,of the 2002 Congress on Evolutionary Comuutation.Honolulu,HI,USA:IEEE Service Center,2002,1:483-488.
    [113]Kim D H,Cho J H.Robust PID Controller Tuning Using Multiobjective Optimization Based on Clonal Selection of Immune Algorithm[C]//Eighth International Conference on Knowledge-Based Intelligent Information and Engineering Systems(KES 2004).Wellington,New Zealand:Springer Verlag,2004:50-56.
    [114]Chun J S,Lim J,Jung S Y,et al.Multisolution Optimization of Permanent Magnet Linear Synchronous Motor for High Thrust and Acceleration Operation[C]//IEEE International Conference on Electric Machines and Drives,1999(IEMD apos'99).Canterbury,UK:IEEE Press,1999:57-59.
    [115]Chun J S,Lim J P,Jung H K,et al.Optimal design of synchronous motor with parameter correction using immune algorithm[J].IEEE Transaction on Energy Conversion,1999,14(3):610-615.
    [116]Huang S J.Enhancement of thermal unit commitment using immune algorithms based optimization approaches[J].International journal of electrical power & energy systems,1999,21(4):245-252.
    [117]Astrom K J,Wittenmark B.Computer controlled system-Theory and Design[M].New York:Prentice-Hall,Inc.,Englewood Cliffs,1984.
    [118]Astrom K J,Wittenmark B.Adaptive Control[M].New York:Addison-Wesley Publishing Company,1989.
    [119]Astrom K J,Kallstrom C G.Identification of ship steering dynamics[J].Automatica,1976,12(9).
    [120]Kallstrom C G,Astrom K J,Thorell N E,et al.Adaptive autopilots for tankers[J].Automatica,1979,15:241-254.
    [121]Kallstrom C G.Identification and adaptive control applied to ship steering[D].Lund,Sweden:Lund Institute of Technology,1982.
    [122]Amerongen J V.Adaptive steering of ships-a model reference approach to improved manoeuvring and economical course-keeping[D].Delft,the Netherlands:Delft University of Technology,1982.
    [123]Amerongen J V.Adaptive Steering of Ship_A Model Reference Approach[J].Automatica,1984,20(1):3-14.
    [124]Jeffery R L.Fuzzy model reference learning control for cargo ship steering[J].IEEE Control System,1993,13(5):23-34.
    [125]McGookin D J,Murray-Smith E W,Lin Y,et al.Ship Steering Control System Optimisation Using Genetic Algorithms[J].Control Engineering Practice,2000(8):429-443.
    [126]Sutton R.A fuzzy autopilot optimized using a genetic algorithm[J].Navigation,1997,50(1):120-131.
    [127]金宏章,王科俊,梁超.具有横摇补偿控制的潜艇航向变结构控制[J].中国造船,2001,42(2):75-81.
    [128]林叶锦,任光.基于RBF网络和遗传优化的船舶操纵模糊控制器[J].中国造船,2003,44(4):73-79.
    [129]杜刚,战兴群,张卫明,等.基于改进型径向基函数网络的船舶非线性航向自适应逆控制[J].上海交通大学学报,2006,40(6):988-992.
    [130]张显库,赵翔宇.船舶转向的鲁棒控制及其优化设计[J].哈尔滨工程大学学报,2006,27(3(:319-322.
    [131]吕进,郭晨.船舶航向的神经网络二阶导数多步预测模糊自适应控制[J].大连海事大学学报,2006,32(3):1-4.
    [132]孟浩,赵国良.基于神经网络参考模型的船舶航向智能自适应控制系统[J].哈尔滨工程大学学报,2003,24(4):394-399.
    [133]杨国勋,贾欣乐,郭晨,等.基于模拟退火优化的船舶航向模糊控制研究[J].中国造船,2001,42(4):42-45.
    [134]王先洲,许汉珍,孙江龙.基于模糊逻辑的船舶航向变结构控制研究[J].华中科技大学学报(自然科学版),2004,32(11):65-67.
    [135]谈英姿,沈炯,吕震中.免疫优化算法及其前景展望[J].信息与控制,2002,31(5):385-390.
    [136]林飞卿,余传霖,何球藻.医学基础免疫学[M].上海:上海医科大学出版社,1992.
    [137]王世若,王兴龙,韩文瑜.现代动物免疫学[M].长春:吉林科技出版社,2001.
    [138]陈仁.免疫学基础[M].北京:人民卫生出版社,1982.
    [139]Janeway C,Travers P,Walport M,et al.Immunobiology The Immune System in Health and Disease[M].6th Edition.New York,USA:Garland Publishing,1997.
    [140]Parish C R,O'Neill E R.Dependence of the Adaptive Immune Response on Innate Immunity:Some Questions Answered but New Paradoxes Emerge[J].Immunology and Cell Biology,1997,75:523-527.
    [141]Carol M C,Prodeus A P.Linkages of Innate and Adaptive Immunity[J].Current Opinion in Immunity,1998,10:36-40.
    [142]Colaco C.Acquired Wisdom in Innate Immunity[J].Immunity Today,1998,19(1):50?
    [143]Medzhitov R,Janeway Jr C A.Innate Immune Recognition and Control of Adaptive Immune Responses[J].Seminars in Immunity,1998,10:351-353.
    [144]龚非力.医学免疫学[M].北京:科学出版社,2003.
    [145]刘克胜.人工免疫模型及其应用[D].北京:中国科学技术大学,2000.
    [146]王磊.免疫进化计算理论及应用[D].西安:西安电子科技大学,2001.
    [147]霍凤财.基于人工免疫算法的优化问题研究[D].大庆:大庆石汕学院,2004.
    [148]张著洪.人工免疫系统中智能优化及免疫网络算法理论与应用研究[D].重庆:重庆大学,2004.
    [149]Burnet F M.Clonal Selection and After[M]//.Bell G I,Perelson A S,Pimbley Jr.G H.Theoretical Immunology.New York:Marcel Dekker Inc.,1978:63-85.
    [150]张乐.人工免疫系统研究与应用[D].南京:南京工业大学,2004.
    [151]Sutton R S,Barto A.Reinforcement Learning:An Introduction[M].Cambridge,MA:MIT Press,1998.
    [152]Berek C,Ziegner M.The Maturation of the Immune Response.[J].Immunology Today,1993,14(8):400-402.
    [153]George A J T,Gray D.Receptor editing during affinity maturation[J].Immunology Today,1999,20(4):196.
    [154]Nussenzweig M.Immune receptor editing:Reverse and select[J].Cell,1998,95(7):875-878.
    [155]Tonegawa S.Somatic generation of antibody diversity[J].Nature,1983,302(14):575-581.
    [156]Allen D,Cumano A,Dildrop R,et al.Timing,Genetic Requirements and Functional Consequences of Somatic Hypermutation during B-cell Development[J].Immunol Rev,1987(96):5-22.
    [157]Storb U.Progress in Understanding the Mechanism and Consequence of Somatic Hypermutation [J].Immunol Rev,1998(162):5-11.
    [158]Cziko G.Without Miracles[M].Cambridge,MA:MIT Press,1995:39-48.
    [159]Holland J H.Adaptation in Natural and Artificial Systems[M].5th edition.Cambridge,MA:MIT Press,1998.
    [160]史忠植.智能科学[M].北京:清华大学出版社,2006.
    [161]Hong J,Lee S,Lee B,et al.An Efficient Production Algorithm for Multihead Surface Mounting Machines Using the Biological Immune Algorithm[J].International Journal of Fuzzy Systems,2000,2(1):45-53.
    [162]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615.
    [163]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策,1999,14(3):285-288.
    [164]Denvaney R.An Introduction to Chaotic Dynamical Systems[M].New York:Addison Wesley,1987.
    [165]张琪昌,王洪礼,竺致文,等.分叉与混沌理论及应川[M].天津:天津大学出版社,2005.
    [166]陈关荣,汪小帆.动力系统的混沌化—理论、方法与应用[M].上海:上海交通大学出版社,2006.
    [167]郝柏林.从抛物线淡起—混沌动力学引论[M].上海:上海科技教育出版社,1993.
    [168]de Castro L N.Matlab code for CLONALG is on his webpage[OL],http://www.dca.fee.unicamp.br/~lnunes/immune.html.
    [169]Gasper A,Collard P.From GAs to artificial immune systems:improving adaption in time dependent optimization[C]//Proc,of the Congress on Evolutionary Computation(CEC'99).Piscataway,NJ:IEEE Service Center,1999,3:1859-1866.
    [170]Garrett S M.Parameter-Free,Adaptive Colonal Selection[C]//Proc.of the 2004 Congress on Evolutionary Computation(CEC2004).Portland,OR,United States:IEEE Press,2004,1:1052-1058.
    [171]杜海峰,焦李成,刘若辰.免疫优势克隆算法[J].电子与信息学报,2004,6(12):1918-1924.
    [172]Cruze Cortes N,Coello Coello C A.Multiobjective Optimization Using Ideas from the Clonal Selection Principle[C]//Proc.of the Genetic and Evolutionaty Computation Conference (GECCO 2003).2003.Chicago,IL,USA:Springer Verlag,Lecture Notes in Computer Science.
    [173]Wang L,Jiao L C.A Novel Genetic Algorithm Based on Immunity[C]//IEEE International Symposium on Circuits and Systems(ISCAS 2000).Geneva,Switzerland:IEEE Press,2000,5:385-388.
    [174]Back T,Hoffmeister F,Schwefel H.A survey of evolution strategies[C]//Proc,of the 4th Int'l Conf.on Genetic Algorithms.San Diego,CA:Morgan Kaufmann,1991:2-9.
    [175]Goldberg D E,Richardson J.Genetic algorithms with sharing for multimodal function optimization [C]//Proc,of the 2nd International Conference on Genetic Algorithms.Lawrence:Erlbaum Asociates,1987:41-49.
    [176]罗印升,李人厚.基于免疫原理的进化算法[J].控制与决策,2004,19(2):219-222.
    [177]Back T,Hoffmeister F,Schwefel H P.A survey of evolution strategies[C]//Proc,of the 4th International Conference on Genetic Algorithms.Los Altos:Morgan Kaufmann Publishers,1991:2-9.
    [178]Rechenberg I.Computational Intelligence:Imitating Life[M].New York:IEEE Press,1944:147-159.
    [179]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模[M].大连:大连海事大学出版社,1999.
    [180]周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算[J].船舶工程,1983(6):21-29.
    [181]Kijima K,Katsuno T,Nakiri Y,et al.On the manoeuvering performance of a ship with the parameter of loading condition[J].Journal of Society.of Naval Architects of Japan,1990(168).
    [182]范尚雍.船舶操纵性[M].北京:国防工业出版社,1988.
    [183]Norrbin N H.Theory and observation on the use of a mathematical model for ship manoeuvering in deep and confined waters[C]//Proc,of the eighth symposium on Naval Hydrodynamics.Goteborg,Sweden,1970.
    [184]Clarke D,Gedling P,Hine G.The application of manoeuvering criteria in hull design using linear theory[J].Transactions of Royal Institute of Naval Architect,1983,125:45-68.
    [185]杨盐生,贾欣乐.不确定系统的鲁棒控制及其应用[M].大连:大连海事大学出版社,2003.
    [186]Zudweg J K.Automatic guidance of ships as a control problem[D].Netherlands:Delft University,1970.
    [187]Prince W S,Bishop R E D.Probablistic theory of ship dynamics[R].London:Chapmann and Hall Ltd,1974.
    [188]Nomoto K,Taugchi K,Honda K,et al.On the steering quality of ships[J].International Shipbuilding Process,1957,35(5):354-370.
    [189]杨盐生,郭子瑞.船舶住非定常风中的舵力保向[J].大连海运学院学报,1993,19(2):145-152.
    [190]任燚,陈宗海,陈锋.人工免疫系统及其在控制领域巾的应用[J].信息与控制,2003,32(1):45-50.
    [191]Bersini V.The immune learning mechanisms:reinforcement,recruitment and their applications [J].Computingwith Biological Metaphors,1994,1(2):166-192.
    [192]Ootsuki J T,Seldguchi T.Application of the Immune System Reaction Mechanism Concept to Sequential Control[C]//Proc.of the 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation(ETFA'99).Barcelona,Spain:IEEE Inc.,1999,2:1391-1396.
    [193]Ishiguro A,Kondo T,Watanabe Y,et al.Emergent construction of artificial immune network for autonomous mobile robots[C]//IEEE international conference on systems,man,and cybernetics.Orlando,Florida,USA:IEEE Press,1997,2:1222-1228.
    [194]左兴权,李士勇.采用免疫进化算法优化设计径向基函数模糊神经网络控制器[J].控制理论与应用,2004,21(4):521-525.
    [195]王东凤,李志清,李炎,等.免疫优化变参数PID控制及其应用[J].华北电力大学学报,2004,3l(1):36-40.
    [196]Fossen T I.Guidance and control of ocean vehicles[M].Chichester,England:John Wiley &Sons Ltd.,1994.
    [197]Lennon W K.Passino K M.Genetic Adaptive Identification and Control[J].Engineering Applications of Artificial Intelligence,1999,12(2):185-200.
    [198]Porter L,Passino K.Genetic Adaptive and Supervisory Control[J].International Journal of Intelligent Control and Systems,1998,2(1):1-41.
    [199]Passino K M,Lennon W K.Strategies for Genetic Adaptive Control[C]//Proc.of the 36th Conference on Decision & Control.San Diego,Califonia,USA,1997:1908-1913.
    [200]胡江强,郭晨,尹建川.基于免疫算法和参考模型的船舶航向自动舵设计[J].大连海事大学学报,2007,33(4):32-36.
    [201]Ioannou P A,Sun J.Robust Adaptive Control[M].New Jersey:Prentice Hall,1996:372-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700