用户名: 密码: 验证码:
沧州市地下水的水文地球化学与稳定同位素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沧州市是河北平原淡水资源最为紧缺的城市之一,人均水资源占有量约192m3,仅占全国人均占有量的8%。如何合理开发利用地下淡水资源和改造地下咸水资源,成为满足当地供水和水资源管理需求的重点关注问题。
     本文在历史地理、古气候变化和环境影响分析的基础上,结合水文地球化学和稳定同位素方法,从多学科角度综合研究了沧州市浅层地下水盐分溶质演化过程以及地下水补给来源和分层关系。
     沧州市浅层地下水水位动态分析、主要离子对比、可溶盐化学平衡以及饱和指数计算等研究表明,在干季和湿季交替作用下,地面和饱气带中易溶盐处于不断的沉淀—溶解循环过程中。旱季,水分完全蒸发,矿物全部沉淀;雨季和灌溉季节,有选择性地把溶解能力强的可溶盐优先溶解到水中,排除了海水组分来源,而难溶的碳酸盐类矿物易于形成胶结物,保留在土壤层和包气带中。
     将沧州市当地浅层地下水(井深5~15m)的氢氧稳定同位素值与石家庄降水的氢氧稳定同位素加权平均值(IAEA)和格陵兰冰芯相对比,认为这些浅层地下水的δ2H值(-60~-55‰)和δ18O值(-8.4~-7.9‰)可代表当地全新世降水补给的氢氧同位素特征值。同时,当地水样14C数据估算和格陵兰冰芯对比结果判定,深层地下水(井深300~450m)的δ2H值(-76~-72‰)和δ18O值(-10.7~-10.1‰)可看作是晚更新世冰期古水补给,地下水滞留时间距今2.56~6万年。其他浅层地下水(井深10~50m)样点的δ2H值(-69~-59‰)和δ18O值(-9.6~-8.2‰)明显低于全新世降水补给的氢氧稳定同位素值,结合当地水文地质条件和历史地理状况,认为该层地下水主要为全新世黄河河水补给。
     因此,本次研究所取得的氢氧稳定同位素数据可将沧州市采样点的地下水划分为三组:(1)埋深5~15m的7件样品为当地全新世降水补给,(2)埋深10~50m的9件样品以全新世黄河河水补给为主,和(3)埋深300~450m的5件样品为晚更新世冰期古水。主要离子关系和卤族元素分析进一步从溶质角度论证了上述三组地下水入渗环境的异同,有效地避免了单一应用稳定同位素方法的多解性。
     本文综合应用了地下水动力学以及水文地球化学和氢氧稳定同位素等多种示踪方法,并充分考虑了古气候变化、当地历史地理条件和环境影响状况对沧州市地下水环境的影响。研究结论相辅相成,互相佐证,弥补了单一研究方法可能存在不足,对于认识当地地下水补给来源和地下水咸化过程具有理论指导意义,同时也为地下水资源的开发利用和咸水改造提供了充分的科学依据。
Cangzhou is one of the most water-scarce cities in Hebei Plain,where amount per capita of water resources is 192m3, only 8% of the national average level. Therefore, it is of great importance to consider how to reasonably exploit the fresh groundwater and to desalinate the saline groundwater to satisfy water resources management.
     The dissertation presents a comprehensive study on the evolution of salt solute in shallow groundwater as well as the recharge source of the aquifer system and its stratification in Cangzhou, by employing multidisciplinary methods integrated with historical geography, paleoclimate change and environmental impact analysis based on geochemistry and stable isotope technology.
     Dynamic water-level, main ions relation, soluble salt chemical equilibrium and saturated indexes of shallow groundwater are analyzed, proving soluble salts experiencing precipitation-dissolution cycles in dry and wet seasonal variation. In dry seasons, water is completely evaporated and all minerals are precipitated. In rainy and irrigation seasons, highly soluble salts have the dissolving priority, excluding those salts having marine origins, and insoluble carbonate minerals tend to become cements, remaining in soil and vadose zones.
     δ2H (-60~-55‰) andδ18O (-8.4~-7.9‰) values of the shallow groundwater (5~15m of well depth) in Cangzhou are regarded as stable isotope values (δ2H,δ18O) of local modern precipitation by analyzing the distribution ofδ2H andδ18O values and comparing with the weighted average values of precipitation in Shijiangzhuang (IAEA) and records of ice core from Greenland.δ2H (-76~-72‰) andδ18O (-10.7~-10.1‰) values of the deep groundwater (300~450m of well depth) are defined as paleowater in glacial period of Late Pleistocene about 2.5 to 6 million years ago, based on the calculation of 14C data and the comparison of the Camp Century ice core.δ2H (-69~-59‰) andδ18O (-9.6~-8.2‰) values of the other shallow groundwater, sampled at 10~50m of well depth, are below the values of Holocene precipitation recharge, which indicates it is mainly recharged by paleo-Yellow River of Holocene by analyzing local hydrology and historical geography.
     Therefore, groundwater samples can be divided into 3 groups byδ2H andδ18O values: (1) samples of 5~10m depth recharged by modern precipitation, (2) samples of 10~50m depth mainly recharged by ancient Yellow River, and (3) samples of 300~450m depth considered as paleowater of Late Pleistocene ice age. Main ions and halogen elements are used to show environment of groundwater infiltration to avoid multiple explanations of such isotope method.
     The integrated application of groundwater dynamics, multi-tracers such as geochemistry and stable isotopes with paleoclimate, historical geography and environmental impact makes up the weak points of an individual method. The results have a theoretical significance of understanding recharge source and salinazation of groundwater, and provide adequate scientific basis for groundwater resources exploitation and saline water desalination.
引文
1. Alcala F J, Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal[J]. Journal of Hydrology. 2008(359):189-207
    2. Allison G B, Barners C J, Hughes M W, et al. Effect of climate, vegetation on oxygen-18 and deuterium profiles in soils[J]. Isotope Hydeology 1983. IAEA, Vienna. 1984
    3. Allison G B, Cook P G, Barnett S R, et al. Land clearance and river salinisation in the Western Murray Basin, Australia[J]. Journal of Hydrology. 1990(119):1-20
    4. Andrews J N, Lee D J. Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends[J]. Journal of Hydrology. 1979(41):233-252
    5. Appelo C A J, Postma D. Geochemistry, groundwater and pollution[M]. Rotterdam: A. A. Balkema Publisher. 2005
    6. Bath A H. Stable isotopic evidence for palaeo-recharge conditions of groundwater. In: International Atomic Energy Agency, Panel Proceeding Series, Palaeoclimates and Palaeowaters: a Collection of Environmental Isotope Studies. Vienna. 1983:169-186
    7. Berner R A. Early diagenesis: a theoretical approach[M]. Princeton University Press, Princeton. 1980
    8. Bridget R S, Kelley E K, et al. Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes, 2006(20):3335-3370
    9. Carol K, Jeffrey J M. Isotope tracers in catchment hrdrology [M]. Elsevier Science B. V. 1998
    10. Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. Lewis Publishers, Chelsea. 1997
    11. Clark I D. Groundwater resources in the Sultanate of Oman: origin, circulation times, recharge processes and paleoclimatolgy[J]. Isotopic and geochemical approaches. Unpublished doctoral thesis, Universitéde paris-Sud, Orsay, France. 1987:264
    12. Craig H. Isotopic variations in meteoric waters[J]. Science. 1961(133): 1702-1703
    13. Dansgaard W, Clausen H B, Gundestrup N, and et al. A new Greenland deep ice core[J]. Science. 1982(218):1273-1277
    14. Dansgaard W, Johnsen S J, Clasen H B and et al. Climatic record revealed by the camp century ice core. In: Turekian K K.(Eds.) The late Cenozoic glacial ages. Yale University Press, New Haven.1971:37-56
    15. Dansgaard W. Stable Isotopes in Precipitation[J]. Tellus. 1964(16):436-468
    16. Darling W G, Bath A H. A stable isotope study of recharge processes in the English chalk[J]. Journal of Hydrology. 1988(101):31-46
    17. Darling W G, Edmunds W M, Smedley P. Isotopic evidence for palaeowaters in the British Isles[J]. Applied Geochemistry. 1997(12):813-829
    18. Davis S N, DeWiest R J M. Hydrogeology(2nd.ed.)[M]. Wiley. New York, London, Sydney. 1967:463
    19. Davis S N, Whittemore D O, Fabryka-Martin J. Uses of chloride/bromide rations in studies of natural waters[J]. Ground Water. 1998(36):338-350
    20. Dean G A. The iodine content of some New Zealand drinking waters with a note on the contribution from sea spray to the iodine in rain[J]. N.Z.J Sci.. Wellington. 1963(6):208-214
    21. Degens E T. Geochemische untersuchungen von w??ssern aus der ?gyptischen Sahara[J]. Geol. Rundsch. 1962(52):625-639
    22. Edmunds W M, Shand P. Geochemical baselinge as basis for the European Groundwater Directive[J]. Tayor and Francis Group, London, ISBN 90 5809 6416. 2004:393-397
    23. Edmunds W M, Smedley P L. Residence Time Indicators in Groundwater: the East Midlands Triassic Sandstone Aquifer[J]. Applied Geochemistry. 2000(15):737-752
    24. Edmunds W M, Wright E P. Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya[J]. Journal of Hydrology. 1979(40):215-241
    25. Edmunds W M. Bromine Geochemishtry of British Groundwaters[J]. Mineralogical Magazine. 1996(60):275-284
    26. Edmunds W M. Contribution of isotopic and nuclear tracers to study of groundwaters. In: Aggarwal P K, Gat J R, Froehlich K F O.(Eds.). Isotopes in the water cycle: past, present and future of a developing science. ISBN:978-1-4020-3010-9. IEA, Netherland. 2005:172-191
    27. Edmunds W M. Groundwater as an archive of climatic and environmental change. In: Aggarwal P K, Gat J R, Froehlich K F O.(Eds.). Isotopes in the water cycle: past, present and future of a developing science. ISBN:978-1-4020-3010-9. IEA, Netherland. 2005:171-192, 381
    28. Edmunds W M. Significance of geochemical signatures in sedimentary basin aquifer systems[J]. Water-Rock Interaction. 2001:29-36
    29. Eichinger L, Merkel B, Nemeth G, et al. Seepage velocity determinations in unsaturated Quarternary gravel. Recent Investigations in the Zone of Aeration, Symposium Proceedings, Munich, Otc. 1984:303-313
    30. Eleonora C, Edusrdo K, Josep M P. Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Sambotombon Bay, Argetina[J]. Journal of Hydrology, 2009(365):335-345
    31. Elliot T. Palaeoages of groundwaters in a fissured chalk aquifer, UK[R]. Isotope Techniques in Water Resources Development and Mangement. IAEA, Vienna. 1999:144-154
    32. Emunds W M, Droubi K. Groundwater salinity and environmental change. In: Isotope Techniques in the Study of Past and Current Enviroment Changes in the Hydrosphere and the Atmosphere. IAEA, Vienna. 1997:503-518
    33. Emunds W M, et al. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators[J]. Applied Geochemishtry. 2003(18):805-822
    34. Fernandes P G, Carreira P M. Isotopic evidence of aquifer recharge during the last ice age in Portugal[J]. Journal of Hydrology. 2008(361):291-308
    35. Florent B, Christelle M, Elisabeth G, et al. Hydrochemical and isotopic characterization of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France)[J]. Applied Geochemistry. 2000(15):791-805
    36. Florent B, Christelle M, Elisabeth G, et al. Hydrochemical and isotopic characterization of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France)[J]. Applied Geochemistry. 2000(15):791-805
    37. Fontes J Ch. Enviromental isotopes in groundwater hydrology. In: Fritz, Fontes J Ch.(Eds.). Handbook of environmental isotope geochemistry. Elsevier, Amesterdam. 1980:75-140
    38. Fontes J Ch. Palaeowaters. In: Gat J R, Gonfiantini R (Eds.). Stable isotope jydrology, deuterium and oxygen-18 in the water cycle. IAEA, Vienna. 1981:273-302
    39. Fontes J Ch, Garnier J M. Determination of the initial C activity of the total dissolved carbon[J]. A review of the existing models and a new approach. Water Resources Research. 1979(15):339-413
    40. Freeze R A, Cherry J A. Chemical Properties and Principles[M]. London: Prentice-Hall Inc. 1979
    41. Fritz P, Drimmie R J, Render F W. Stable isotope contents of major prairie aquifer in centralManitoba, Ganada[J]. Isotope Techniques in Groundwater Hydrology, IAEA, Vienna. 1974(1): 379-398
    42. Gaciri S J, Davis T C. The occurrence and geochemistry of fluriode in some natural waters of Kenya[J]. Journal of Hydrology. 1993(143):395-412
    43. Gad G, Furstenau E. Eine betriebsmethode zur bestimmung des fluros im Wasser und Ermittlung des Flurorspoegels im westdeutschen Raum[J]. Gesund. Ing. Munich. 1954(75):352-256
    44. Garrels R M, Christ C L. Solutions, minerals and equilibria. Harper Row, New York. 1964:450
    45. Gat J R, Mazor E, Tzur Y. The stable isotope compositon of mineral waters in the Jordan Rift Valley, Israel[J]. Journal of Hydrology. 1969:334-352
    46. Geyh M A. Dating of old groundwater- history, potential, limits and future. In: Aggarwal P K, Gat J R, Froehlich K F O.(Eds.). Isotopes in the water cycle: past, present and future of a developing science. ISBN:978-1-4020-3010-9. IEA, Netherland. 2005:221-241
    47. Gonfiantini R, Dincer T, Derekoy A M. Isotope hydrology in the Hodna region, Algeria[J]. Isotope Techniques in Groundwater Hydrology, IAEA, Vienna. 1974(1): 293-316
    48. Harvie C E, Weare J H. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentrations at 25℃[J[. Geochim. Cosmochim. Acta. 1980(44):981-997
    49. Hem J D. Study and interpretation of the chemical characteristics of natural water(2nd)[M]. U.S. Geological Survey Water Supply Paper No. 1535-C. Washington. 1970:17
    50. Hiroshiro Y, Jinno K, Berndtsson R. Hydrogeochemical properties of a salinity-affected coastal aquifer in western Japan[J]. Hydrological processes. 2006(20):1425-1435
    51. Horita J. Saline waters. In: Aggarwal J R, Gat J R, Froehlich K F O.(Eds.). Isotopes in the water cycle: past, present and future of a developing science. ISBN:978-1-4020-3010-9. IEA, Netherland. 2005:271-289
    52. Jacob C E. Corre;ation of groundwater levels and precipitation on Long Island[J]. Trans. Amer. Geophys. Union, New York. 1944(25):928-938
    53. James I D. The geochemistry of natural waters-surface and groundwater environments[M]. Prentice-Hall Inc, London. 1997
    54. Jong-Sik Ryu, Kwang-Sik Lee, Ho-Wan Chang. Hydrogeochemical and isotopic investigations of theHan River basin, South Korea[J]. Journal of Hydrology. 2007(345):50-60
    55. Junge C E, Werby R T. The Concentration of chloride, sodium, potassium, potassium, calium and sulfate in rain water over the United States[J]. J. Mereorol. 1958(15):417-425
    56. Krejci-Graf K.über rum?nische ?lfeldw?sser[J]. Geol. Mott. Aachen. 1963(2):351-391
    57. Lorrai M, Fanfani L, Lattanzi P, et al. Processes controlling groundwater chemistry of a coastal area in SE Sardinia[J]. Water-Rock interaction. Taylor and Francis Group, London. 2004:439-443
    58. Maloszewski P, Moser H, Sticher W, et al. Modelling of groundwater pollution by riverbank filration using oxygen-18 data[R]. In: Groundwater monitoring and management, proceedings, Dresden symposium, March. IAHS Publ. 1987(173):153-161
    59. Marimuthu S, Reynoids D A, et al. A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system[J]. Journal of Hydrology. 2005(315):93-116
    60. Masaru Yamanaka, Yoshihiro Kumagai. Sulfur isotope constraint on the provenance of salinity in a confined aquifer system of the southweatern Nobi Plain, central Japan[J]. Journal of Hydrology. 2006(325):35-55
    61. Matthess G. The properties of groundwater[M]. John Wiley and Sons, New Jersey. 1982:255
    62. Mazor E, Verhagen B Th. Dissolved ions, stable isotopes and radioactive isotopes and noble gases in thermal waters of South Africa[J]. Hydrology. 1983(63): 315-329
    63. Mazor E. Palaeotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters, Jordan Rift Valley, Israel[J]. Geochim. Cosmochim. Acta. 1972(36):1321-1336
    64. Nuria B B, Vicente G Y, Francisco R B. Influence of transport parameters and chemical properties of the sediment in experiments to measure reactive transport in seawater intrusion[J]. Journal of Hydrology. 2008(357):29-41
    65. Panno S V, Hackley K C, Greenberg S E, et al. Characterization and Identification of Na-Cl Sources in Ground Water[J]. Ground Water. 2006(44):176-187
    66. Pearson F J, Hanshaw B B. Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating[J]. Isotope Hydrology 1970. IAEA, Vienna. 1970:271-276
    67. Pearson F J. Effects of parameter uncertainty in modelling 14C in groundwater. In: Taylor R E, Long A, Kra R S.(Eds.). Radiocarbon after four decades. Spriner-Verlag, New York. 1992:262-275
    68. Plummer L N, Parkhurst D L, Fleming G W, Dunkle S A. A Computer Program Incorporating Pitzer’sEquations for Calculation of Geochemical Reactions in Brines[R]. U. S. Geological Survey. 1988:88, 4153
    69. Posnjak E. Deposition of calcium sulfate from sea water[J]. Am. J. Sci.. 1940(238):559-568
    70. Quentin K E. Der fluorgehalt bayerischer W?sser. Mitteilung Gesund. Ing. Munich. 1957:329-333
    71. Reardon E J, Fritze P E. Computer modeling of groundwater 13C and 14C isotope compositions[J]. Journal of Hydrology. 1978(36):201-224
    72. Ridder T B, Baard J H, Buishand T A. The influence of sampling methods on the quality of precipitation (in Dutch)[J]. KNMI Techn. Rep. 1984(55):40
    73. Ronzanski K. Deuterium and oxygen-18 in European geoundwaters-links to atmospheric circulation in the past[J]. Chmical Geology (Isotope Geoscience Section). 1985(52):349-363
    74. Rozanski K, Araguás-Araguás L, Gonfiantini R. Isotopic patterns in moden global precipitation. In: Continental isotope indicators of climate. Amercian Geophysical Union Monograph. 1993
    75. Salama R B, Otto C J, Fitzpatrick R W. Contributions of groundwater conditions to soil and water salinization[J]. Journal of Hydrology. 1999(7):46-64
    76. Schiavo M A, Hauser S, Povinec P P. Stable isotopes of water as a tool to study groundwater-seawater interactions in coastal south-eastern Sicily[J]. Journal of Hydrology. 2009(364):40-49
    77. Sharp Z. Principles of stable isotope geochemistry[M]. Prentice Hall. New Jersey 2006:40-102
    78. She-Chang Park, Seong-Taek Yun, et al. Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea[J]. Journal of Hydrology. 2005(313):182-194
    79. Smith D B, Downing R A, Otlet R L, et al. The age of groundwater in the Chalk of the London Basin[J]. Water Resources Research. 1976(12):392-404
    80. Srinivasa Rao N. The occurrence and behaviour of fluoride in the groundwater of the lower Vamsadhara River basin, India[J]. Hydrological Sciences. 1997(6):877-892
    81. Stewart F H. Marine wcaporites. Data of Geochemistry(6th ed.). U.S. Geological Survey Professional Paper 440Y. 1963
    82. Stute M, Schlosser P. Atmoshpheric noble gases. In: Cook P G, Herczeg A L.(Eds.). Environmental tracers in subsurface hydrology. Kluwer, Boston. 1999:379-383
    83. Subba Rao N. Groundwater quality:focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India[J]. Hydrological Sciences. 2003(5):835-847
    84. Sugawara K, Koyama T,Terada K. Coprecipitation of iodide ions by some metallic hydrated oxides with special reference to iodide accumulation in bottom water layers and in interstitial water of ,ids om some Japanese lakes[J]. J. Earth Sci.. Nagoya Univ., Nagoya. 1958(6):52-61
    85. Todd D K, Larry W M. Groundwater Hydrology[M]. John Wiley and Sons, New Jersey. 2005
    86. Tsutomu Yamanaka, Jun Shimada, et al. Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain: climatology and inter-storm variability[J]. Hydrological Processes. 2004(18):2211-2222
    87. Usiglio M J. Etudes sur la composition de l’eay de la Mediterranee et sur l’exploitation des sels qu’elle contient[J]. Ann. Chim. Phys. 1849(27):172-191
    88. Velderman B J. Groundwater recharge and contamination: sensitivity snslysis for carbonate aquifers in South-Eastern Ontario, the Jock River Basin study. Unpublished M. Sc. Thesis, University of Ottawa, Ottawa, Canada. 1993:126
    89. Vengosh A, Ben-Zvi A. Formation of a salt plume in the Coastal Plain aquifer of Israel: the Be’er Toviyya region[J]. Journal of Hydrology. 1994(160):21-52
    90. Veogel J C, Ehhalt D. The use of carbon isotopes in groundwater studies[R]. Radioisotopes in Hydrology. IAEA, Vienna. 1996:383-395
    91. Yonge J C, Goldenberg L, Krouse H R. An isotope study of water bodies along a traverse of southwestern Canada[J]. Journal of Hydrology. 1989(106):245-255
    92.蔡鹤生,鄢志华,刘存富等.确定平原地下水4He年龄方法的尝试—以河北平原为例[J].地球学报. 2005(26):293-297
    93.沧州市第四水文地质工程地质大队和沧州市水利局.沧州地区与沧州市浅层咸水资源评价及开采条件研究[R].河北沧州. 1992
    94.陈望和等.河北地下水[M].地震出版社,北京. 1999
    95.陈梧桐,陈名杰著.黄河传[M].河北大学出版社. 2001
    96.地质科学研究院水文地质工程地质研究所(编译).水圈与生物圈中溴和碘的地球化学. 1972
    97.董悦安,何明,蒋菘生等.河北省保定及沧州地区地下水36Cl年龄初步研究[J].质谱学报. 1999(20):3-4
    98.郭永海,沈照理,钟佐燊.河北平原咸水下移及其浅层咸水淡化的关系[J].水文地质工程地质. 1995(2):8-12
    99.韩非,薛禹群,吴吉春等.莱州湾南岸咸水入侵条件下地下水化学特征与卤水形成[J].地质评. 2001(47):103-108
    100.河北地矿局第一水文地质工程地质大队.黄淮海平原(河北部分)水文地质综合评价咸水改造利用专题报告[R].河北沧州. 1985
    101.河北省地勘局第四水文工程地质大队.河北省平原东部(沧州市)第四系咸水资源调查评价报告[R].河北沧州. 2005
    102.李孝聪.中国区域历史地理[M].北京大学出版社,北京. 2004
    103.刘存富,王佩仪,周炼等.河北平原第四系地下水36Cl年龄研究[J].水文地质工程地质. 1993(6):35-38
    104.牟纯儒,张建平.河北省典型区咸淡水界面下移现状及其入侵机制分析[J].河北水利水电技术. 2002(1):37-39
    105.潘国营,武亚遵,唐常源,李东发.大型水源地开采地下水导致的盐分迁移和污染[J].水文地质工程地质. 2007(5):59-62
    106.钱会,马致远.水文地球化学[M].地质出版社,北京. 2005
    107.宋海波,张兆吉,费宇红等.开采条件下河北平原中部咸淡水界面下移[J].水文地质工程地质. 2007(1):44-46
    108.谭其骧.西汉以前黄河下游河道.载自《长水集》下册.人民出版社. 1987
    109.王家兵.华北平原深层淡水在开采条件下接受上覆咸水越流补给—以天津平原为例[J].水文地质工程地质. 2002(6):35-37
    110.王金昌.河北平原的古代湖泊[J].载自《地理集刊》第18辑.科学出版社. 1987
    111.王瑞久.水文地质学的概念模型[J].水文地质工程地质. 1985(4):25-28
    112.王瑞久,吴士良等.区域地下水的环境同位素及地球化学数据的时间序列讨论.摘自苏锡常地区地下水资源利用与重大地质环境问题防治研究科研报告. 2000
    113.吴忱等.黄河古三角洲的发现与水系变迁的关系.载自《华北平原古河道研究论文集》.中国科学技术出版社. 1991
    114.吴春吉,薛禹群,谢春红等.海水入侵过程中水—岩间的阳离子交换[J].水文地质工程地质. 1996(3):18-19
    115.武金博,周爱国,蔡鹤生等.河北平原地下水14C年龄新认识[J].水文地质工程地质. 2007(5):43-45
    116.薛禹群,吴吉春,谢春红等.莱州湾沿岸海水入侵与咸水入侵研究[J].科学通报. 1997(22):2360-2367
    117.杨巧凤等,深圳市沿岸海水的水文化学[J](待发表),2009
    118.张光辉,聂振龙,陈宗宇.全新世以来华北平原层圈间水循环演变过程与区域地下水演变周期性[J].地球学报. 2001(22):293-297
    119.张之淦,张洪平,孙继朝等.河北平原第四系地下水年龄、水流系统及咸水成因初探—石家庄至渤海湾同位素水文地质剖面研究[J].水文地质工程地质. 1987(4):1-6
    120.张宗祜,沈照理,薛禹群等.华北平原地下水环境演化[M].地质出版社,北京. 2000
    121.赵建.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学. 1999(6):525-531
    122.中国科学院《中国自然地理》编辑委员会.黄河.载自中国自然地理·历史自然地理.科学出版社. 1982
    123.周魁一.隋唐五代时期黄河的一些情况.载自《黄河史论丛》.复旦大学出版社. 1986
    124.邹逸麟.中国历史地理概述[M].上海教育出版社. 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700