用户名: 密码: 验证码:
滨岸城市大气湿沉降汞的时空分布特征及其物源辨析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞作为一种具有生物累积性和放大功能的全球性污染物,即使是在浓度非常低的情况下,它对人类和其它生物都具有相当大的毒性。所有形态的汞都经历着进入大气、形态转化并最终沉降进入水体或陆地生态系统而结束大气循环的过程。大气沉降是水体和陆地生态系统中有毒物质的一个重要来源,大气汞沉降与水生生态系统中鱼类的甲基汞含量具有直接的联系,在年降水日数多、降水量大的地区大气汞的湿沉降是沉降输入的主要类型。目前国外对湿沉降汞的研究较多,而被认为是世界上汞排放量最大的中国在该领域的研究较少,基础薄弱,仅在北京、贵州、长白山等地开展了零星的工作。上海地处长江三角洲东南隅,人口密度大,经济活动强度大,模型模拟显示该地区湿沉降汞的浓度、通量为全球之最;同时上海位于典型东亚季风控制区,存在着冬季风和夏季风的季节性变迁,并且夏季风受西南季风和东南季风交互控制,这造成水汽来源和大气汞输入源的季节性变化,上海又是海陆交互的重要边界带,气溶胶成分变化显著,既有大陆内陆沙尘气溶胶、陆地人类活动排放气溶胶,又有来自海洋的海盐气溶胶,多变的气溶胶成分为大气汞化学形态转化提供了多变的反应界面。因此,以上海市为例研究滨岸城市大气湿沉降汞的时空分布特征及其物源辨析具有重要的意义。
     本文通过采集上海市市区、郊区、钢铁工业区、化学工业区和滨岸农业区不同功能区湿沉降样品以及市区和郊区的总沉降样品,分析、测试其中的离子、汞和其它金属元素的含量,理清上海市湿沉降汞的时空分布特征,通过数理统计分析、气流轨迹模型计算和同位素分析的方法对汞的来源进行研究,并对汞的危害进行简要分析,主要得出以下几点结论:
     (1)上海市各功能区湿沉降总汞浓度、通量较高。市区、郊区、钢铁工业区、化学工业区和滨岸农业区湿沉降总汞浓度平均值分别为0.33μg·L-1(变化范围为0.06μg·L-1-1.18μg·L-1)、0.23μg·L-1、0.26μg·L-1、0.24μg·L-1、0.29μg·L-1,颗粒态汞占总汞比例分别为:48.5%、57.0%、50.0%、62.2%、64.2%;总汞沉降通量分别为447.67μg·m-2·y-1、233.55μg·m-2·y-1、284.46μg·m-2·y-1、296.97μg·m-2·y-1、296.97μg·m-2·y-1,总汞浓度变化规律分别为:夏季=冬季>秋季>春季、秋季>冬季>夏季=春季、秋季=冬季>春季>夏季、秋季>冬季>春季>夏季、秋季>春季>冬季>夏季。当API指数(空气污染指数)高时,湿沉降中的颗粒态汞浓度增大而溶解态汞浓度降低;湿沉降汞的浓度受降水量的影响不明显,而总汞沉降量与降水量呈现显著正相关关系。云下冲刷对上海市湿沉降中总汞浓度的贡献高于40.9%,局地污染物是湿沉降汞的重要来源之一。
     (2)市区总沉降中总汞浓度体积加权平均浓度值为0.51μg·L-1,年沉降通量为654.42μg·m-2·y-1,以湿沉降为主,物质来源的多源性明显。郊区总沉降总汞浓度平均浓度值为0.46μg·L-1,沉降通量为466.77μg·m-2·y-1,干沉降的贡献约为一半,海洋来源对郊区总沉降中汞的贡献较大。市区和郊区总沉降中总汞浓度均为夏季最高,与湿沉降明显不同。不同季节干沉降的来源具有差别,在冬季风影响下,以西北风为主,低温干燥,大气中的活性单质汞被气溶胶粒子吸附反应的几率较小,所以在冬季气溶胶增多的情况下,汞的沉降量仍较低。在夏季风的控制的季节里,东南来源的气溶胶主要是海盐粒子为主,潮湿高温有利于大气活性单质汞在气溶胶表面的吸附反应,从而能够增加汞的沉降。
     (3)湿沉降各离子的浓度较高,郊区总离子浓度(847.60μeq·L-1)远高于其它功能区(383.88-437.92μeq·L-1)。不同功能区湿沉降主要离子的体积加权平均值从大到小依次为:SO42->Ca2+>NH4+>Cl->NO3->Na+>Mg2+>F->K+,其中SO42-和Ca2+的浓度之和占总离子浓度的49.77%。离子浓度的时间变化规律Na+:冬季>秋季>春季>夏季,NH4+:春季>秋季>冬季>夏季,其余组分浓度:秋季>冬季>春季>夏季。各离子来源复杂,多源性明显,受人为活动影响严重,总离子组成的76.7%来自人为排放源,其中K+、Mg2+的来源以壳源为主,Na+、Cl-的来源以海源为主,Cl-也有42.2%的贡献来自人为源,Ca2+、NH4+、SO42-、NO3-、F-等组分均为人为排放源占主体。不同功能区各化学组分的浓度值存在较大的差别,但各来源的比例相对于浓度来讲差别较小。
     (4)不同功能区各形态汞与其它元素的相关性分析和因子分析结果差异显著,汞可能的来源也有所不同。市区汞的来源是部分地表灰尘、建筑尘埃以及特殊源。郊区汞的来源主要是地壳源和特殊源。钢铁工业区汞的来源有化石燃料燃烧、地表灰尘、建筑尘埃及特殊源。化学工业区汞的来源主要是地表灰尘、建筑尘埃来源和特殊源。滨岸农业区汞的来源可能是特殊源。
     (5)上海市市区水汽和低空气团来源在四季存在明显的不同,水汽来源方向:春季方向性不明显,秋季以西-北为主,夏季和冬季均以南-西为主;低空气团来源方向:夏季以东-南为主,春季、秋季和冬季均以北-东为主。湿沉降总汞浓度受水汽来源的影响较大:夏季由于温度高,水-气界面汞的交换通量较大,海盐中丰富的卤素元素能够使单质汞氧化成可溶性的二价汞,所以水汽来源于海域的湿沉降相对于来源于陆地的总汞浓度偏高,且颗粒态汞所占比例较大;其它季节中,大陆水汽蒸发进入雨云中的同时带入当地大气中的汞,水汽来源于内陆且运移距离较长的湿沉降在运移过程中吸收、溶解的气溶胶离子和微量元素较多,导致其湿沉降总汞浓度高、颗粒态汞所占比例小。低空气团的来源对汞的形态分布具有影响,源自海域的低空气团湿沉降中颗粒态汞所占总汞比例较低;低空气团为同一方向,在同时间内运移距离长的湿沉降总汞浓度较大。总汞浓度受降水日数和降水量的影响,当降水量少的时候,云下清除对湿沉降汞的贡献较大,湿沉降事件发生前几天的天气状况影响低空气溶胶的多寡,从而对湿沉降汞具有较大的影响。
     (6)上海市区一年中各月δ18O同位素平均值变化范围范围在-12.16--3.00‰之间,年平均值为-8.11‰,春、夏、秋、冬四季的平均值分别为-5.58‰、-10.35‰、-7.45‰和-4.09‰;滨岸农业区各月δ18O同位素变化范围较在-10.66‰-+1.87‰之间,年平均值为-5.16‰。总体上δ18O同位素值呈现春冬高、夏秋低的特征。上海市区湿沉降样品同位素δ18O值与温度具有弱的负相关性,两者之间的关系为:δ18O=-0.20T-2.73;δ18O值存在明显的降水量效应,两者之间的关系式为:δ18O=-0.0603H-3.1841(H为降水量)。
     具有相近水汽来源和运移路径的湿沉降中,在到达上海发生湿沉降事件前云团的降水量多少对湿沉降总汞的浓度具有影响,当之前的降水量较大时,同位素δ18O值较低,总汞浓度也较低,反之则相反。水汽携带的汞的多少对湿沉降总汞具有较大的影响,且在湿沉降发生时汞就像重同位素一样优先发生沉降,使后期降水云团中汞的含量减少。水汽来源、运移路径以及到达上海前降水量都基本相同的两次湿沉降水汽携带汞的量基本相同,湿沉降总汞的浓度主要受降水量效应的影响。
     (7)水汽来源及路径对湿沉降汞浓度具有显著的控制作用,水汽的海陆来源差异和在相同时间内运移路径的长短均对影响着湿沉降汞浓度值的大小。具有相近水汽来源和运移路径的湿沉降中,在到达上海发生湿沉降事件前云团的降水量多少对湿沉降总汞的浓度具有影响,在湿沉降发生时汞就像重同位素一样优先发生沉降,使后期降水云团中汞的含量减少,所以当之前的降水量较大时,同位素δ18O值较低,总汞浓度也较低,反之则相反。
     (8)以我国地表水质Ⅲ类水质(标准极限0.1μg·L-1)为标准,各功能区湿沉降汞的浓度平均值均高于0.1μg·L-1,利用潜在生物危害指数法评价,发现湿沉降汞的平均值均属于强生态危害范围,少数月份属于很强生态危害。通过饮水途径健康危害风险评价,发现市区湿沉降汞的健康危害风险最高而郊区最低;湿沉降汞的健康危害风险远高于上海及其它地区饮用水源地。
Mercury is a highly toxic, persistent and bioaccumulative trace element that is now exits in various environment media and food worldwide. Adversely may be taking place at lower concentrations than previously thought. All forms mercury is all experiencing the circulation of atmosphere with interacting transforming and transporting and ultimate entering waterbody or land ecosystem. In waterbody or land ecosystem, deposition is one of mainly source of toxic substance. It is direct connection in aquatic ecosystem that methyl mercury content in fish body and atmospherec deposition mercury. Atmospheric wet deposition mercury is the primary type at region that have much rainy days and precipitation. Now, wet deposition mercury has been much researched in abroad. China has been considered as the country where mercury emission ranks a maximum. The research is sporadic job in Beijing, Guizhou, Changbai mountain. Shanghai located in southeast in the Yangtze River delta, have large population density and economic activity intensity. The simulation shows that there is the maximum at wet deposition mercury concentration and flue over the world. Shanghai located in typical East Asia monsoon impacting area, where there exits existence seasonal transition for winter monsoon and summer monsoon, southwest monsoon and southeast monsoon interaction control in summer monsoon. Then this bring seasonal characteristic change of atmospheric vapour source and mercury inputs. Shanghai is at the border belt of sea and ground. Aerosol component change are observably. There are continent inland fine sand fling up in the air the aerosol, the aerosol discharging by human being and baysalt aerosol coming from ocean, variable aerosol constituent help atmospheric mercury interacts, transforms at reaction interface.
     Wet depositon sample were collected at urban, suburban, steel industrial park, chemistry industrial park and coast agricultural region, sum deposition sample at urban and suburdan in Shanghai. Concentrations of ions, mercury and others elements were measured, and analysis space-time distribution characteristic, and mercury source has been proved by statistivs analyzing, air current trajectory model and isotope analysis, at last analysis the mercury damage on the human. Research distribution and source of atmospheric wet depositon mercury in shore city has importance therefore.
     Following results have been acquired:
     (1) Wet deposition mercury concentration and fluxes are higher in Shanghai. Wet depositon total mercury volume weighted average concentration at urban, suburban, steel industrial park, chemistry industrial park and coast agricultural region respectively is 0.33μg·L-1 (change range from 0.06μg·L-1 to 1.18μg·L-1),0.23μg·L-1, 0.26μg·L-1, 0.24μg·L-1 and 0.29μg·L-1, ratio of particle mercury accounted for the total mercury of 48.5%,57.0%,50.0%,62.2% and 64.2% concentrationrespectively, total mercury fluxes respectively is 447.67μg·m-2·y-1,233.55μg·m-2·y-1,284.46μg·m-2·y-1, 296.97μg·m-2·y-1 and 296.97μg·m-2·y-1, variation pattern of total mercury respectively is summer=winter>autumn>spring, autumn>winter>summer=spring, autumn=winter> spring>summer, autumn>winter>spring>summer, autumn>spring>winter>summer. Particle mercury concentration is enhancement and dissolve mercury concentration is reduce when API index increas. The correlation of wet deposition concentration and precipitation is unconspicuous, and they are positive correlation of total mercury concentration and precipitation. Wash under cloud take contribution over 40.9% in wet depositon tatal mercury concentration, local contaminant is one of major source in wet deposition mercury.
     (2) Total depositon total mercury volume weighted average concentration is 0.51μg·L-1 at urban, and total mercury fluxes is 654.42μg·m-2·y-1, give first place to wet settlement, and the multisource source of matter obviously. Total mercury average concentration is 0.46μg·L-1 at suburban, and total mercury fluxes is 466.77μg·m-2·y-1, dry depositon conruibute half in total depositon, and sea source devoted largly in total depositon at suburban. Total mercury concentration is maximum in summer at urban and suburban, different that of wet depositon obviously. The source of dry deposition have difference, in witer season, north-west is mostly and low temperature and dry, mercury concentration lowly for Hg0 has been adsorbed from aerosol lessly. In summer season, sea salt particles priority to aerosol from south-east. It can add mercury deposition in summer for Hg0 has been adsorbed from aerosol easily in humid and high temperature weather.
     (3) Every ions concentration in wet deposition are higher, total ions at suburban (847.60μeq·L-1) more than other functional zone (change range from 383.88μeq·L-1 to 437.92μeq·L-1). Ions volume weighted average concentration from higher to lower respectively is SO42->Ca2+>NH4+>Cl>NO3->Na+>Mg2+>F->K+,the sum concentration of SO42- and Ca2+ accounted for the total ions concentration of 49.77%. Temporal variation pattern of ion Na+ is winter>autumn>spring>summer, NH4+ is spring>autumn>winter>summer, the others ions are autumn>winter>spring>summer. Ions source is complicated and multisource obvious, ions concentration were large affected by artificial disturbance and 76.7% of ions concentration is source form artificial disturbance. In ions, K+, Mg2+ was mostly from land source, and Na+, Cl" was mostly from sea source, and 42.4% of Cl- was anthropogenic source. Ca2+, NH4+, SO42-, NO3- and F" were mostly from anthropogenic source. The concentration of ions in every functional zone exists difference obviously, but the ratio of each ion accounted for the total ions concentration less.
     (4) It have different source of the mercury and other elements were identified by correlation and principal component factor analysis. Mercury source part from dust of surface and building, and part from special sources at urban, earthcrust and special at suburban, fossil fuel burning and dust of surface and building and special at steel industrial park, dust of surface and building and special at chemistry industrial park, special source at coast agricultural region.
     (5) Source of vapour and low altitude air mass exist difference obviously at all seasons. At vapoure source, no mainly directivity in spring, North-west was mainly in autumn, North-west was mainly in summer and winter. At low altitude air mass, North-east was mainly directivity in summer, and North-east was mainly in the other seasons.
     The wet deposition total mercury concentration was obviously influenced by vapour source. Wet depositon mercury concentration that vapour source from sea higher than what from land and particle mercury accounted for the total mercury oppositioned, for higher temperature and higher fluxes of the air-water mercury exchange quantities and Hg0 ready-made Hg2+ easy to be oxidized foe Hg0 chelated with halogen elements. Mercury concentration that vapour source from land with relatively long migration distance higher than that from relatively near sea or relatively shorter migration distance, and particle mercury concentration accounted for the total mercury to reduced, for absorption or dissolved aerosol ions and trace element, local air mercury enter into rain cloud on land more than on sea when vapour evaporation at seasons except for summer. Wet deposition speciation was obviously influenced by low altitude air mass source. Particle mercury concentration accounted for the total mercury that low altitude air mass source from sea lower than land, and total mercury concentration increased when relatively long migration distance at same time and low altitude air mass source from same direction.
     Total mercury concentration was influenced by rainy days and precipitation. Wash under cloud take more contribution in mercury concentration when little precipitation. Mercury concentration was influenced by weather conditions the other day because low altitude aerosol interrelated with weather conditions.
     (6)Isotopeδ18O ranges from-12.16‰to-3.00‰with season and annual average was-8.11‰at urban. spring, summer, autumn and winter season average respectively-5.58‰,-10.35‰,-7.45‰and-4.09‰at urban. Ranges from-10.66‰to+1.87‰with season and annual average was-5.16‰. Isotopeδ18O variation character was higer at spring and witer, lower at summer and autumn. Isotopeδ18O was negatively correlated with temperature, the line is fitted asδ18O=-0.20T-2.73. the precipitation effect ofδ18O in the precipitation is very pronounced, the line is fitted asδ18O=-0.0603H-3.1841 (H is precipitation)。
     The wet deposition total mercury concentration has effected by precipitation that have homology vapour source and transporting before getting to Shanghai. Total mercury concentration and 18O have been reduced when precipitation generous. Be contrary on the contrary. Wet deposition mercury concentration has been effected by mercury of vapour carry-over. Mercury concentration in cloud has decreased at latter atage precipitation for mercury fall off prederential during the period of rain as heavy isotope. Total mercury concentration has been effected by precipitation when vapour source and transporting and precipitation before getting to Shanghai for mercury capacity of vapour carry-over homology.
     (7)Wet deposition mercury concentration was controlled prominently by vapour source and transportation ways especially migration distance at same time. Total mercury concentration affected by precipitation before the time when the wet deposition happen on Shanghai in different wet deposition that have same vapour source and transportation ways. Isotopeδ18O and total mercury concentration to reduced when much precipitation happened before the cloud reached Shanghai for mercury as weightly isotope precedence fall when wet deposition happen lead to mercury concentration decrease in cloud.
     (8) Each functional zone wet deposition mercury concentration higher than 0.1μg·L-1, sample was estimated by the method of Potential Ecological Risk Index and the earth's surface waterⅢkind standardwas chose as the estimated standard, the result show that wet deposition mercury was heavy degree ecological risk, and few month was significantly heavy degree ecologicl risk. Sample health risks associated with mercury in drinking water was estimated by Health Risks Associated Models, the result show that wet depositon mercury health risk more than drinking water region in Shangh and other areas and the highest risk at urban and lowest at suburban.
引文
Aas W, Shao M, Jin L, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003. Atmospheric Environment,2007,41(8):1706-1716.
    Anthony C. Mercury from combustion sources:a review of the chemical species emitted and their transport in the atmosphere[J]. Water, air and Soil Pollution.1997,98(3-4):241-254.
    Ariya P A, Khalizoz A, Gidas A. Reaction of gaseous mercury with atomic and molecular halogens:Kinetics, product studies, and atmospheric implications[J]. Journal of Physical Chemistry. A.2002,106:7310-7320.
    Asmna W A H, Van J J A. A variable resolution transport model applied for NHX in Europe[J]. Atmospheric Environment,1992,26(A):445-464.
    Atkeson T, Axelrod D, Pollman C D, et al. Integrating atmospheric mercury deposition and aquatic cycling in the Florida Everglades:an approach for conduction a total maximum daily load analysis for an atmospherically derived pollutant[R]. Report prepared for EPA.2003.
    Baez A, Belmont R, Garcia, R et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmospheric Researh.2007,86(1):61-75.
    Bauer M, Heinz A, Whybrow P C. Thyroid hormones, serotonin and mood of synergy and significance in the adult brain[J]. Mol Psychiatry,2002,7(2):140-156.
    Bergan T L, Gallardo L, Rodhe H. Mercury in the global troposphere:A three-dimensional model study[J].Atmospheric Environment,1999,33(10):1575-1585.
    Beverland I, Crowther J, Srinivas M, et al. The influence of the meteorology and atmospheric transport patterns on the chemical composition of rainfall in south-east England[J]. Atmospheric Environment,1998,32:1039-1048.
    Billock O R J, Brehme K A, Mapp G R. Lagrangian modeling of Mercury air emission, transport and depositon:an analysis of model sensitivity to emissions uncertainty [J]. Science of the Total Environment,1998,213:1-12.
    Bilos C, Colombo J C, Skorupka C N, et al. Sources, distribution and variability of airborn trace metals in La Plata City area, Argentina[J]. Environmental Pollution,2001,111:149-158.
    Bosilovichm G, Schubert S D. Water vapor tracers as diagnostics of the regional hydrologic cycle[J]. Journal of Hydrometeorology,2002,3:149-165.
    Brankov E, Rao S T, Porter P S. A trajectory-clustering-correlation methodology foe examining teh long-range transport of air pollutants[J]. Atmospheric Environment,1998,32,9:1525-2534.
    Bridgman H. Global air pollution[M]. Wiley, London,1994,261.
    Brosset C. The behaviour of mercury in the physical environment[J].Water, Air and Soil Pollution,1987,34:145-166.
    Buehler S S and Hites R A. The Great Lakes'integrated atmospheric deposition network[J]. Environmental Science and Technology,2002,36(5):354A-359A.
    Calvert J. G. and Lindberg S. E. Mechanisms of mercury removal by 03 and Oh in gthe atmosphere, Atmos. Environ.,2005,39:3355-3367.
    Choi H D, Sharac T J, Holsen T M, et al. Mercury deposition in the Adirondacks:A comparison between precipitation and throughfall[J]. Atmospheric Environment,2008,42(8):1818-1827.
    Chow J C. Measurement methods to determine compliance with ambient air quality standards for suspended particles[J]. Journal of Air & Waste Management Association,1995,45:320-382.
    CITEPA. substances relative to the contamination by heacy metals[EB/OL]. http://www.citepa.org/emissions/index.htm,2007-05.
    Cohen M, Artz R, Draxler R, et al. Modeling the atmospheric transport and deposition of mercury to the Great Lakes[J]. Environmental Research,2004,95:247-265.
    Comeua S E, Jickellsa T D, Capeb J N, et al. Organic nitrogen deposition on land and coastal environments:A review of methods and data[J]. Atmospheric Environment,.2003,37: 2173-2191.
    Cushman D J, Driver K S, Ball S D. Risk assessment for environmental contamination:an overview of the fundamentals and application of risk assessment at contaminated sites[J]. Canadian Journal of Civil Engineering,2001,28:155-162.
    Cyrill B. and Lord E. Reactions of airborne mercury, ozone and some other microcomponent in pure water or very dilute sulfuric acid[J]. Water, Air and Soul Pollution,1995,81:241-264.
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468.
    Da Silva G S, Jardim W F, Fadini P S. Elemental gaseous merury flux at the water/air interface over the Negro River basin, Amazon, Brazil. Science of The Total Environment, 2006,368(1):189-198.
    Dastoor A P, Larocque Y. Global circulation of atmospheric mercury:a modelling study[J]. Atmospheric Environment,2004,38:147-161.
    Davis A P, Shokouhian M, Ni S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources[J]. Chemosphere,2001,44:997-1009.
    Dianne L L and Baker J E. Atmospheric deposition of organic contaminants to the Chesapeake Bay[J]. Atmospheric Environment,1994,28:1499-1520.
    Downs S G, Macleod C L, Lester J N. Mercury in precipitation and its relation to bioaccumulation in fish:a literature review. Water, Air and Soil Pollution,1998,108(1-2):149-187.
    Draxler, R R. Meteorological factors of ozone predictability at Houston, Texas[J]. Air and Waste Management Assoc,2000,50:259-271.
    Fitzgerald W F, Engstrom D R, Manson R. The case for atmospheric mercury contamination in remote areas[J]. Environment Science and Technology,1998,32(1):1-7.
    Fitzgerald W F, Manson R P, Vandal G M. Atmospheric cycling and air-water exchange of mercury over Mid-continental Lacustrine Regions[J] Water Air and Soil Pollution, 1991,56:745-767.
    Friedman I, Smith G I, Gleason J D, et al. Stable isotope compositions of waters in southeastern Galifornia:Part1, Modern precipitation [J]. Jour of Geophys Research, 1992,97(D5):5795-5812.
    Fulkerson M, Nnadi F N. Predicting mercury wet deposition in Florida:A simple approach[J]. Atmospheric Environment,2006,40(21):3962-3968.
    Gao J, Wang T, Ding A, et al. Observational study of ozone and carbon monoxide at the summit of mount Tai(1534m a.s.l.) in central-eastern China[J]. Atmospheric Environment,2005,39(26):4779-4791.
    Gbor P K, Wen D Y, Meng F, et al. Improved model for mercury emission, transport and deposition[J]. Atmospheric Environment,2006,40:973-983.
    Gill G A, Guentzel J L, Landing W M. Total gaseous mercury measurements in Florida:The FAMs Project(1992-1994)[J]. Water Air and Soil Pollution,1995,80:235-244.
    Glass G E, Sorsen J A, Schmidt K W, et al. Mercury deposition and sources for the Upper Great Lakes Region[J]. Water Air and Soil Pollution,1991,56:253-249.
    Gong S L, Barrie L A, Blanchet J P, et al. Canadian aerosol module:A size-segregated simulation of atmospheric aerosol processes for climate and air quality models [J]. Journal of Geophysical Research,2003,101(D1)AAC3-1-AAC3-16.
    Goodsite M E, Plane J M C, Skov H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere[J]. Environmantal Science and Technology,2004,38:1772-1776.
    Gratz L E, Keeler G J, Miller E K. Long-term relationships between mercury wet deposition and meteorology[J]. Atmospheric Environment,2009,43:6218-6229.
    Guentzel J L, Landing W M, Gill G A, et al. Processes influencing rainfall deposition of mercury in Florida[J]. Environmental Science and Technology,2001,35:863-873.
    Hakason L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research,1980,14:975-986.
    Hall B. The gas phase oxidation of elemental mercury by ozone[J]. Water Air and Soil Pollution.1995,80:301-315.
    Hall B D, Manplopoulos H, Hurley J P, et al. Methyl and total mercury in precipitation in the Great Lakes region[J]. Atmospheric Environment,2005,39(39):7557-7569.
    Harris J M. An interpretation of trace gas correlations during Barrow, Alaska,Winter dark periods,1986-1997[J]. Journal of Geophysical Research,2000,105,D13:17267-17238.
    Holmes C. D, Jacob D J, Yang X. Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere [J]. Journal of Geophysical Research,2006,33, L20808, Doi:10.1029/2006GL027176.
    Hoyer M, Burke J, Keeler G J. Atmospheric sources, transport and deposition of mercury in Michigan:two years of evernt precipitation[J]. Water Air and Soil Pollution,1995,80:199-208.
    Hu G P, Balasubramanian R, Wu C D. Chemical characterization of rainwater at Singapore[J]. Chemosphere,2003,51:747-755.
    Huang K, Zhuang G S, Xu C, et al. The chemistry of the severe acidic precipitation in Shanghai, China[J]. Atmospheric Research,2008,89:149-160.
    Ingraham N L, Lyles B, Jacobson R L, et al. Stable isotopic study of precipitation and spring discharge in southern Nevada[J]. Jour of Hydrol,1991,125:243-258.
    Ingraham N L, Taylor B E. Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada[J]. Water Resour Res,1991,27:77-90.
    Iverfeldt A. Occurrence and Turnover of Atmospheric mercury over the Nordic Countries[J]. Water Air and Soil Pollution,1991,56:251-266.
    Ivrefeldt A. Mercury in forest canopy throughfall water and its relation to atmospheric deposition[J]. Water, Air and Soil Pollution,1991,56(1):553-564.
    Jensen A, Iverfeldt A. Atmospheric bulk deposition of mercury to the southern Baltic sea area[A]. Mercury Pollution:Integration and Synthesis [C].Ann Arbor,Michigan:Lewis Publishers,1994,221-229.
    Jensen S, Jernelov A. Behaviour of Mercury in the Environment[A]. in:International Atomic Energy Agency, Mercury Contamination in Man and his Environment[C]. Technical Report, Series No.137. IAEA, Vienna,1972.43-48.
    Johnson D L, Braman R S. Distribution of atmospheric mercury species near ground [J]. Environmental Science and Technology,1974,8(1):1003-1009.
    Jouzel J, Froehlich K, Schotterer U. Deuterium and oxygen18 in present-day precipitation:data and modeling[J]. Journal of Hydrological Sciences,1997,42(5):747-763.
    Kaufman Y T, Fraser R S, Ferrare R A. Satellite remote sensing of large scale air pollution-method[J]. Journal of Geophysical Research,1990,95:9895-9909.
    Keeler G J, Landis M S, Norris G A, et al. Sources of mercury wet deposition in eastern Ohio,USA[J]. Environmental Science and Technology,2006,40(19):5874-5881.
    Keeler G, Glinsorn G, Pirrone N. Particulate mercury in the atmosphere:its significance, transport, transformation and sources[J]. Water, Air and Soil Pollution,1995,80:159-168.
    Keene W C, Pszenny A P, Galloway J N, et al. Sea salt correction and interpretation of constituent ratiosin marine precipitation[J]. Journal of Geophysical Research,1986,91:6647-6658.
    Kim K H, Kim M Y. Some insights into short-term variability of total gaseous mercury in urban air[J]. Atmospheric environment,2001,35(1):49-59.
    Kulshrestha U C, Kulshrestha M J, Sekar R, et al. Chemical characteristics of rainwater at an urban site of south-central India[J]. Atmospheric Environment,2003,37:3019-3026.
    Lai S O, Holsen T M, Hopke P K, et al. Wet depositon of mercury at a New York state rural site: Concentrations, fluxes, and source areas[J]. Atmospheric Environment,2007,41:4337-4348.
    Lamborg D H, Fitzgerald W F, O'Donell J, et al. A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients[J].Geochimica et Cosmochimica Acta,2002,66:1105-1118.
    Lamborg D H, Fitzgerald W F, O'Donell J, et al. Non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients [J]. Geochemical et Cosmochimica Acta,2002,66(7):1105-1118.
    Lam K S, Wang T J, Chan L Y, et al. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong[J]. Atmospheric Environment, 2001,35,3121-3135.
    Landis M S, Keeler G J. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Stury[J]. Environmental Science and Technology,2002, 36(21):4518-4524.
    Lee B K, Hong S H, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J]. Atmospheric Environment,2000,34:563-575.
    Lin C. J, Pongprueksa P., Lindberg S. E, et al. Scientific uncertainties in atmospheric mercury models:Ⅰ. Model science evaluatin[J]. Atmospheric Environment,2006,40:2911-2918.
    Lindqvist O. Atmospheirc mercury-areview[J]. Tellus,1985,37B:136-159.
    Lindberg S E, Turner P R, Meyers T P, et al. Atmospheric concentrations and deposition of mercury to a deciduous forest at Walker branch watershed, Tennessee, USA[J]. Water Air and Soil Pollution,1991,56:577-594.
    Lindberg S E, Stratton W J. Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air[J].Environmental Science and Technology, 1998,32:99-116.
    Lindberg S E, Bolluck R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. A Journal of the Human Environment, 2007,36:19-32.
    Lindberg S E, Brooks S, Lin C J. et al. Dynamic oxidation of gaseous mercury in the Artic troposphere at Polar sunrise[J]. Environmental Science and Technology,2002,36:1245-1256.
    Lindqvist O, Johansson K, Aastrup M, et al. Mercury in the Swedish Environment:Recent Research on Causes, Consequence and Corrective Methods[J].Water, Air and Soil Pollution, 1991,55:23-32.
    Lee B K, Hong S H, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J]. Atmospheric Environment,2000,34:563-575.
    Lu J Y, Schroeder W H. Comparison of conventional filtration and a denuder based methodology for sampling of particulate phase mercury in ambient air[J]. Talanta,1999,49:15-24.
    Mason R P, Lawson N M,'Sullivan K A. The concentration, speciation and sources of mercury in Chesapeake bay precipitation[J]. Atmospheric Environment,1997,31 (21):3541-3550.
    Manson R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental Mercury: anthropogenic influences[J].Geochmical et Gosmochemical Acta,1994,58:3191-3198.
    Marks R, Beldowska M. Air-sea exchange of mercury vapor over the Gulf of Gdansk and southern Baltic Sea[J]. J Marine Systems.2000,27:315-324.
    Martuzevicius D, Grinshpun S A, Reponean T, et al. Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density-the Greater Cincinnati study[J]. Atmospheric Environment,2004,38:1091-1105.
    Mason R P, Sheu G R. Role of the ocean in the global mercury cycle[J]. Global Biogeochemical cycles,2002,16:1093-1106.
    Massei A M, Ollivon D, Tiphsgne K, et al. Atmospheric bulk deposition of trace metals to the Seine River basin, France:concentrations, sources and evolution from 1988 to 2001 in Paris[J]. Water, Air and Soil Pollution,2005,164:119-135.
    McCarthy J H, Vaughn W W, Learned R E, et al. Mercury in soil gas and air-a potential tool in mineral exploration[M]. Washington:United States Geological Survey,1969.
    Mercury Study Report to Congress(EPA-452/R-97-003).U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards, Office of Research and Development, U.S. Government Printing Office:Washington,1998.
    Migliavacca D, Teixeira E C, Pires M, et al. Study of chemical elements in atmospheric precipitation in South Brazil[J]. Atmospheric Environment,2004,38(11):1641-1656.
    Migliavacca D, Teixeira E, Wiegand F, et al. Atmospheric precipitation and chemical composition of an urban site, Guaiba hudrographic basin, Brzail. Atmospheric Environment,2005, 39,1829-1844.
    Mordechai P, Valeri M, Eran T, et al. Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel[J]. Environmental Science and Technology,2007,41:7280-7285.
    Morrison K A, Kuhn E S, Watras C J. Comparison of three methods of estimating atmospheric mercury deposition[J]. Environmental Science and Technology,1995,29:571-577.
    Mouli P C, Mohan S V, Reddy S J. Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition[J]. Atmospheric Environment,2005, 39:999-1008.
    MRI (Midwest Research Institute).Locatingand Estimating Form Sources of Mercury and Mercury Compounds[C].1993, EPA-454/R-93-023.
    Munthe J, Wngber I, Pirrone N, et al. Intercomparison of methods for sampling and analysis of atmospheric mercury species [J].Atmospheric Environment,2001,35:3007-3017.
    Munthe R A, Bodaly R A, Branfireun B A, et al. Recovery of mercury-contaminated fisheries[J]. A Journal of the Human Environment,2007,36(1):33-44.
    Nguyen H L, Leermakers M, Kurunczi S, et al. Mercury distribution and speciation in Lake Balaton, Hungary[J].Science of the Total Environment,2005,39(1):231-246.
    Nicola P, Niragu. Regional differences in Worldwide Emissions of Mercury to the atmosphere[J]. Atmospheric Environment 1996,30(17):2981-2987.
    Okuda T, Iwase T, Ueda H, et al. Long-term of chemical constituents in precipitation in Tokyo metropolitan area, Japan, From 1990 to 2002[J]. Science of the Total Environment, 2005,339(1-3):127-141.
    Olmez I, Ames M R,1997. Atmospheric mercury:how much do we really know? Pure and Applied chemistry,69(1):35-40.
    Orihel D M, Paterson J J, Gilmour C C, et al. Effect of loading rate on the fate of mercury in littoral mesocosms[J]. Environmental Science and Technology,2006,40(19):5992-6000.
    Pacyna E G, Pacyna J M. Global emission of mercury from anthropogenic sources in 1995. Water, Air and Soil Pollution,2002,137:149-165.
    Pacyna J M, Pacyna E G, Steenhuisen F W S. Mapping 1995 global anthropogenic emissions of mercury[J]. Atmospheric Environment,2003,37(1):S109-S117.
    Pai P, Karamchandani P, Seigneur C. Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model[J]. Atmospheric Environment,1997, 31(17):2717-2732.
    Pai P, Niemi D, Powers B. A North American inventory of anthropogenic mercury emissions[J]. Fuel Processing Technology,2000,65-66:101:115.
    Pan L, Carmichael G R, Adhikary B, et al. A regional analysis of the fate and transport of mercury in East Asia and an assessment of major uncertainties[J]. Atmospheric Environment, 2008,42:1144-1159.
    Pancyna E G, Pacyna J M, Pirrone N. European emissions of atmospheric mercury from anthropogenic sources in 1995[J]. Atmospheric Environment,2001,35:2987-2996.
    Pirrone N, Costa P, Pacyna J M, et al. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region[J]. Atmospheric Environment,2001, 35:2997-3006.
    Pirrone N, Keeler G J, Nriagu J O. Regional differences in the worldwide emissions of mercury to the atmosphere [J].Atmospheric Environment,1996,30(17):2981-2987.
    Placidi G P, Boldrini M, Patronelli A, et al. Prevalence of psychiatric disorder in thyroid disease patients[J]. Neuropsychobiology,1998,38(4):222-225.
    Possanzini M, Buttini P, Dipalo V. Characterization of a rural area in terms of dry and wet deposition[J]. Science of the Total Environment,1988,74:111-120.
    Rastogi N, Sarin M M. Chemical characteristics of individual rain events from semi-arid region in India:Three-year study [J]. Atmospheric Environment,2005,39:3313-3323.
    Richmen L A. Fact and fallacies concerning uptake by fish in acid stressed lakes[J]. Water, Air and Soil Pollution,1998,37:465-473.
    Rolfhus K R, Sakamoto H E, Cleckner L B, et al. Distribution and fluxes of total and methylmercury in Lake Superior[J]. Environmental Science and Technology,2003, 37(5):865-872.
    Rose S, Crean M S, Sheheen D K, et al. Comparative zinc dynamics in Atlanta metropolitanregion stream and street runoff[J]. Environmental Geology,2001,40:983-992.
    Ross H B, Vermette S L.Precipitation[A]. Trace Elements in Natural Waters[C]. Anr Arbor, MI: CRC Press,1995,99-116.
    Rozanski K, Araguas-Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation[M]. In:Continental Isotope Indicators of Climatte, American Geophysical Union Monograph,1993.
    Sakata M, Asakura K. Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan[J]. Atmospheric Environment,2007,41(8):1669-1680.
    Sakata M, Marumoto K. Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment,2005,39:3145-3152.
    Sakata M, Marumoto K, Narukawa M, et al. Regional variations in wet and dry deposition fluxes of trace elements in Japan[J]. Atmospheric Environment,2006,40(3):521-531.
    Sakata M, Kohji M. Wet and dry deposition fluxes of mercury in Japan[J]. Atmospheric Environment,2005,39:3139-3146.
    Salati E, Dall'Olio A, Matsui E, et al. Recycling of water in the Amazon basin:an isotopic study[J]. Water Resour Res,1979,15:1250-1258.
    Selin N E and Jacob D L. Seasonal and spatial patterns of mercury wet deposition in the United States:Constraints on the contribution from North American anthropogenic sources [J]. Atmospheric Environment,2008,42(21):5193-5204.
    Schroeder W H and Munthe J. Atmospheric mercury-an overview[J]. Atmospheric Environment,1998,32(5):809-822.
    Schlesinger W H, Reiners W A, Knopman D S. Heavy metal concentration. New Hampshire, USA[J]. Environ Pollut,1974,6:39-47.
    Schroeder W H, Yarwood G, Niki H. Atmospheric mercury measurement at rural site in southern Ontario[J]. Water, Air and Soil Pollut,1991,56:231-234.
    Seigeur C, Wrobet J, Constantinou E. A Chemical Kinetic Mechanism for Atmasphe ric Inorganic Mercury[J]. Environmental Science and Technology,1994,28:1589-1597.
    Selin N E, Jacob D L. Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources[J]. Atmospheric Environment,2008,42(21):5193-5204.
    Selin N E, Jacob D L, Park R J, et al. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations[J]. Journal of Geophysical Research,2007,112, D02308, doi:10.1029/2006JD007450.
    Sengupta S, Sarkar A. Stable isotope evidence of dual(Arabian Sea and bay of Bengal) vapor sources in monsoonal precipitation over north India[J]. Earth and Planetary Science Letters,2006,(250):511-521.
    Shahin U, Yi S, Paode R D, et al. Long-term elemental dry deposition fluxes measured around Lake Michigan with and automated dry deposition sampler[J]. Environmental Science and Technology,2000,34:1887-1892.
    Sheppard D S. Mercury content of Antarctic Iceland-snow:further results[J]. Atmospheric Environment,1991,25A,1578-1600.
    Shia R L, Seigneur C, Pai P, et al. Global simulation of atmospheric mercury concentrations and deposition fluxes[J]. Journal of Geophysical Research,1999,104:23747-23760.
    Siegenthaler U, Oeschger H. Correlation of 18O in precipitation with temperature and altitude[J]. Nature,1980,285:314-317.
    Sigg L, Stumm W, Zobrist J, et al. The chemistry of fog:factors regulation its composition. Chimia,1998,41:159-165.
    Slemr F, Scheel H E. Trends in atmospheric mercury concentrations at the summit of the Wank Mountain,Southern Germany[J]. Atmospheric Environment,1998,32(5):845-853.
    Sorensen J A, Glass G E, Schmidt K W. Regional patterns of wet mercury deposition[J]. Environmental Science and Technology,1994,28(12):2025-2032.
    Stohl A et al. A backward modeling study of intercontinental pollution transport using aircraft measurements[J]. Journal of Geophysical Research,2003,108,D12,4370, doi:10.1029/2002JD002862.
    Streets D G, Hao J, WuY et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment,2005,39,7789-7806.
    Taylor S R. Abundance of chemical elements in the continental crust:a new table[J]. Geochim. Cosmochim. Acta,1964,28:1273-1285.
    Tossell J A. Calculation of the energyetics for oxidation of gasphase elemental Hg by Br and BrO[J]. Journal of Physical Chemistry. A.2003,107:7804-7808.
    Tu J, Wang H, Zhang Z, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003[J]. Atmospheric Research,2005,73:283-298.
    UNEP (United Nations Environment Programme). Global Mercury Assessment[Z]. UNEP Chemicals, Geneva, Switzerland.2002,92-103.
    U.S. National Research Council. Risk assessment in the federal government:managing the process [M]. Washington DC:National Academy Press,1983.
    US EPA. Superfund public health evaluation manual[R]. EPA/540/1-86. Washington DC:US EPA,1986.
    Wangberg I, Munthe J, Berg T, et al. Trends in air concentration and deposition of mercury in the coastal environment of the North Sea Area[J]. Atmospheric Environment, 2007,41:2612-2619.
    Wang H, Zhou L, Tang X. Ozone concentrations in rural regions of the Yangtze Delta in China[J]. Journal of atmospheric chemistry,2006,54:255-265.
    Wang Y, Zhuang G, Zhang X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment,2006,40:2935-2952.
    Wan Q, Feng X B, Lu J L, et al. Atmospheric mercury in Changbai Mountain area, northeastern China Ⅱ. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes[J]. Environmental Research,2009,109:721-727.
    Weckwerth G. Verification of traffic emitted aerosol components in the ambient air of Cologne(Germany)[J]. Atmospheric Environment,2001,35:5525-5536.
    Wobeser G A, Swift M. Mercury poisioning in a wild milk. Journal of Wildlife Diseases, 1976,12:335-340.
    Wotawa G, Kroger H, Stohl A. Transport of ozone towards the Alps-results from trajectory analyses and photochemical model studies. Atmospheric Environment,2000,34,1367-1377.
    Wu Y, Wang S, Streets D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science and Technology,2006,40:5312-5318.
    Xiao Z, Sommar J, Wei S, et al. Sampling and determination of gas phase divalent mercury [J].Journal of Analytical Chemistry,1997,358:386-391.
    Xiu G, Zhang D, Chen J, et al. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air[J]. Atmospheric Environment,2004,38:227-236.
    Ye B, Ji X, Yang H, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period[J]. Atmospheric Environment,2003,37:499-510.
    Zhang M, Wang S, Wu F, et al. Chemical composition s of wet precipitation and anthropogenic influences at a developing urban site in southeastern China[J]. Atmospheric Research, 2007,84:311-322.
    Zhao C, Wang Y H, Zeng T. East china plains:A "basin" of ozone pollution[J]. Environmental Science and Technology,2009,43(6):1911-1915.
    Zimmerrnann F, Lux H, Maenhaut W, et al. A review of air pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe[J]. Atmospheric Environment, 2003,37(5):671-691.
    蔡文贵,林钦,贾晓平,等.考洲洋重金属污染水平与潜在生态危害综合评价[J].生态学杂志,2005,24(3):343-347.
    陈斌林,贺心然,王童远,等.连云港近岸海域表层沉积物中重金属污染及其潜在生态危害[J].环境海洋科学,2008,27(3):246-249.
    陈静生,王忠,刘玉机.水体金属污染潜在危害:应用沉积学方法评价[J].环境科技,1989,9(1):16-25.
    杜敏,白乃彬.我国硒与健康数据库数据质量评价[J].环境科学,1989,10(2):81-84.
    方凤满,王起超,李东侠,等.长春市大气颗粒汞及其干沉降通量研究[J].环境科学,2001(2):60-64.
    冯新斌,洪业汤.酸沉降对人类的威胁之一:引起湖泊体系鱼体汞污染[J].地质地球化学,1996(5):50-53.
    弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4): 732-736.
    高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价[J].环境科学,2004,25(2):47-50.
    郭艳娜,冯新斌,何天容,等.乌江流域大气降雨中不同形态汞的时空分布[J].环境科学学报,2008,28(7):1441-1446.
    龚香宜,祈士华,吕春玲,等.福建省兴化湾大气重金属的干湿沉降[J].环境科学研究,2006,19(6):31-34.
    何锦林,谭红,赵亚民,等.贵州梵净山自然保护区大气汞的沉降[J].环境科学学报,1999,19(2):164-169.
    胡健,张国平,刘丛强.贵阳市大气降水中的重金属特征[J].矿物学报,2005,25(3):257-262.
    胡敏,张静,吴志军.北京降水化学组分特征及其对大气颗粒物的去除作用[J].中国科学B辑(化学),2005,35(2):169-176.
    黄银芝,张明旭,郑晓红.上海市近16年湿沉降化学特征分析[J].城市环境与城市生态,2008,21(12):1-3.
    黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地学前缘,2006,13(3):162-167.
    蒋靖坤,郝吉明,吴烨,等.中国燃煤汞排放清单的初步建立[J].环境科学,2005,26(2):34-39.
    江研因,王素芸.上海地区酸雨趋势及其影响、对策研究[J].上海环境科学,1992,11(2):24-26.
    李珊珊,田考聪.饮用水源水中重金属的健康风险评价[J].重庆医科大学学报,2008,33(4):450-453.
    黎彤,倪守斌.地球和地壳的化学元素丰度[M].地质出版社,北京:1990.
    李永华,王五一,杨林生.汞的环境生物地球化学研究进展[J].地理科学进展,2004,23(6):33-40.
    李永丽,刘静玲.滦河流域不同时空水环境重金属污染健康风险评价[J].农业环境科学学报,2009,28(6):1177-1184.
    刘东生,陈正明,罗可文.桂林地区大气降水的氢氧同位素研究[J].中国岩溶,1987,6(3):225-231.
    刘进达,赵迎昌,刘恩凯,等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘察科学技术,1997,4:14-18.
    柳鉴容,宋献方,袁国富,等.我国南部夏季季风降水水汽来源的稳定同位素证据[J].自然资源学报,2007,22(6):1004-1012.
    刘俊峰,宋之光,许涛.广州地区雨水化学组成与雨水酸度主控因子研究[J].环境科学,2006,27(10):1998-2002.
    刘俊华,王文华,彭安.降水中汞的赋存形态[J].环境科学,2000a,21(5):42-46.
    刘俊华,王文华,彭安.降水中汞及其它元素来源的识别分析[J].环境科学,2000b,21(2):77-80.
    刘俊华,陈乐恬,王文华等.北京市区及郊区大气中的汞沉降的估算[J].环境科学学报,2001,21(5):643-645.
    刘俊峰,宋之光,许涛.广州地区雨水化学组成与雨水酸度主控因子研究[J].环境科学,2006,27(10):1998-2002.
    李如祥,黄世鸿.积云发展对酸化剂清除的数值模拟[J].气象科学,1996,16(4):362-367.
    李宗恺,王体健.中国的酸雨模拟及控制对策研究[J].气象科学,2000,20(3):339-347.
    庞洪喜,何元庆,卢爱刚,等.天气尺度下丽江季风降水中δ18O变化[J].科学通报,2006,51(10):1218-1224.
    庞洪喜,何元庆,张忠林.重要海-气-天文时间与新德里季风降水中δ18O的关系[J].冰川冻土,2004,26(1):42-47.
    庞洪喜,何元庆,张忠林,等.季风降水中δ18O与季风水汽来源[J].科学通报,2005,20(50):2263-2266.
    钱家忠,李如忠,汪家权,等.城市供水水源地水质健康风险评价[J].水利学报,2004,8:90-93.
    沙晨燕,何文珊,童春富,等.上海近期酸雨变化特征及其化学组分分析[J].环境科学研究,2007,20(5):31-34.
    施望芝,毛以伟,王建生,等.台风降水云区中单站强降水诊断分析和预报[J].气象科学,2006,26(6):668-675.
    孙超,陈振楼,张翠,等.上海市主要饮用水源地水重金属健康风险初步评价[J].环境科学研究,2009,22(1):60-65.
    孙林,商晓青,孙长奎,等.城市地区气溶胶光学厚度与空气污染指数的相关性分析[J].山东科技大学学报,2008,27(3):9-13.
    谭红,何锦林,花金兰,等.汞矿区大气汞的流通量与汞的干湿沉降研究[J].环境化学,1999,18(1):34-38.
    覃嘉铭,袁道先,林玉石.桂林44ka B.P.石笋同位素记录及其环境解译[J].地球学报,2000,21(4):408-416.
    唐奇峰,杨忠芳,张本仁,等.成都经济区As等元素大气干湿沉降通量及来源研究[J].地学前缘,2007,14(3):213-222.
    唐孝炎,张远航,邵敏.大气环境化学(第二版)[M].北京:高等教育出版社,2006:365-446.
    田立德,姚檀栋,蒲健辰,等.拉萨夏季降水中稳定同位素变化特征[J].冰川冻土,1997,19(4):295-301.
    涂林玲,王华,冯玉梅.桂林地区大气降水的D和18O同位素的研究[J].中国岩溶,2004,23(4):304-309.
    卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-40.
    王大坤,李建新.健康危害评价在环境质量评价中的应用[J].环境污染与治理,1995,17(5):9-12.
    王基华,王亮,张风民,等.隐伏断层性状的汞地球化学标志[J].地震研究,1994,10(2):112-122.
    王军,刘天仇,尹观.西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J].地质地球化学,2000,28(1):63-67.
    王凌青,卢新卫,戴丽君,等.燃煤电厂周围土壤中Hg的空间分析和风险评价[J].农业环境科学学报,2007,26(2):629-633.
    王明星,郑循华.大气化学概论[M].北京:气象出版社,2005:138-158.
    王起超,马如龙.煤及其灰渣中的汞[J].中国环境科学,1997,17(1):76-79.
    王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    王秋莲,张震,刘伟.天津市饮用水源地水环境健康风险评价[J].环境科学与技术,2009,32(5):187-190.
    王锐,刘文兆,宋献方.长武塬区大气降水中氢氧同位素特征分析[J].水土保持学报,2008,22(3):56-59.
    王书肖,刘敏,蒋靖坤,等.中国非燃煤大气汞排放量估算[J].环境科学,2006,27(2):2401-2406.
    王五一,李日邦,谭见安.我国21世纪环境、健康与发展研究的重点领域和主要方向[J].地理科学进展,1997,16(1):11-14.
    王晓蓉.环境化学[M].南京:南京大学出版社,1993:191-192.
    王雪梅,杨龙元,秦伯强,等.太湖流域春季降水化学组成及其来源研究[J].海洋与湖沼,2006,37(3):249-255.
    王艳,葛福玲,刘晓环,等.泰山降水的离子组成特征分析[J].中国环境科学,2006,26(4):422-426.
    王艳,刘晓环,金玲仁,等.泰山地区湿沉降中重金属的空间分布[J].环境科学,2007,28(11):2562-2568.
    王增焕,林钦,李纯厚,等.珠江口重金属变化特征与生态评价[J].中国水产科学,2004,11(3):214-218.
    魏虹,王建力,李旭光.重庆缙云山降水化学组成的季节变化特征分析[J].西南师范大学学报(自然科学版),2005,30(4):725-729.
    吴辰熙,祈士华,苏秋克,等.福建省兴化湾大气沉降中重金属的测定[J].环境化学,2006, 25(6):781-784.
    吴旭东.成都地区大气降水稳定同位素组成反应的气候特征[J].地质学报,2009,29(1):52-54.
    徐晓斌,刘希文,林伟立.输送对区域本地站衡量气体浓度的影响[J].应用气象学报,2009,20(6):656-664.
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,32(2):112-115.
    薛积彬,钟巍,赵引娟.广州大气降水中δ18O与气候要素及季风活动之间的关系[J].冰川冻土,2008,30(5):761-768.
    薛薇.SPSS统计分析方法及应用(第2版)[M].北京:电子工业出版社,2009:234-324.
    闫欣荣,周航,邸涛.城市饮用水源地水质健康风险评价[J].环境科学与管理,2008,33(4):164-166.
    杨复沫,贺克斌,雷宇,等.2001-2003年间北京大气降水的化学特征[J].中国环境科学,2004,24(5):538-541.
    杨梅学,姚檀栋,田立德,等.藏北高原夏季降水的水汽来源分析[J].地理科学,2004,24(4):426-431.
    姚克亚,黄美元.雨水对云下污染物清除的Euler模拟[J].中国科学技术大学学报,1995,25(2):148-153.
    姚檀栋,孙伟贞,蒲健辰,等.内陆河流域系统降水中稳定同位素——乌鲁木齐河流域降水中δ18O与温度关系研究[J].冰川冻土,2000,22(1):15-22.
    于津生,张红斌,虞福平,等.西藏东部大气降水氢同位素组成特征[J].地球化学,1980,2:113-121.
    俞志明,Waser N A D, Harrison P J.不同氮源对海洋微藻氮同位素分馏作用的影响[J].海洋与湖沼,2004,35(6):524-529.
    张国玉,周立旻,郑祥民,等.上海市夏季湿沉降汞的时空分布规律及其影响因素[J].环境科学与技术,2010.
    张琳,陈立,刘君,等.香港地区大气降水的D和18O同位素研究[J].生态环境学报,2009,18(2):572-577.
    张苗云,王世杰,张迎,等.金华市大气降水的化学组成特征及来源解析[J].中国环境监测,2007,23(6):86-91.
    张韵,李崇明,赵俊伟,等.长江、嘉陵江重庆段饮用水源健康风险评价[J].三峡环境与生态,2008,1(1):56-60.
    章新平,施雅凤,姚檀栋.青藏高原东北部降水中δ18O的变化特征[J].中国科学(B辑),1995,25(5):540-547.
    章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53(4):356-363.
    章新平,中巴正义,姚檀栋,等.青藏高原及其毗邻地区降水中稳定同位素成分的时空变化[J].中国科学(D辑),2001,31(5):353-361.
    赵彩,李启泰.贵阳市SO2雨水清除系数的研究[J].高原气象,2001,20(1):41-45.
    赵恒,王体健,江飞,等.利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源[J].热带气象学报,2009,25(2):181-186.
    郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧同位素研究[J];科学通报,1983,13:801-806.
    周竹渝,陈德容,殷捷,等.重庆市降水化学特征分析[J].重庆环境科学,2003,25(11):112-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700