用户名: 密码: 验证码:
离子液体在超声辅助—铁炭微电解体系中的降解与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是近年迅速发展起来的新型介质和功能材料,因其几乎无蒸汽压,热稳定性高、液态范围宽、且具有良好的溶解能力和电化学性能,被广泛关注,成为可设计的绿色材料,并成功应用于化学合成与催化、萃取分离、能源、材料和电化学领域。然而,已有研究表明,许多常用的离子液体是有毒的,且难以生物降解,因此,探讨离子液体有效的化学去除方法非常必要。本文尝试采用超声辅助-零价铁/活性炭(US-ZVI/AC)微电解方法降解常用离子液体,在对实验条件进行优化的基础上,用UV、HPLC、HPLC-MS和GC-MS等技术研究了具有不同烷基侧链的咪唑离子液体、不同头基类型的离子液体以及某些功能性离子液体的降解过程和降解产物,提出了可能的降解途径。主要内容包括:
     (1)以氯化1-丁基-3-甲基咪唑([C4mim]Cl]离子液体为代表,研究了US-ZVI/AC降解离子液体的效果。通过改变炭铁比、炭铁用量、pH值等观察离子液体的降解情况,利用HPLC、UV扫描法分析反应过程,通过测定离子液体降解前后的总有机碳(TOC)观察降解效果。结果表明:铁炭微电解法降解[C4mim]Cl的最佳条件为:炭铁比为2:1,用量为活性炭6g·L-1、零价铁3g·L-1,样品pH=3,45KHz的超声辅助能够大大提高[C4mim]Cl的降解效率;[C4mim]Cl的降解过程遵从准一级反应动力学规律;过量·OH清除剂的存在可以明显降低降解反应速率,但不能阻止降解反应的发生,说明·OH只是降解反应中起重要作用的活性组分之一。在降解110min时咪唑环的UV吸收带基本消失,[C4mim]Cl的降解率为95%以上,TOC去除率达到81.2%。
     (2)改变1-烷基-3-甲基咪唑类离子液体中阳离子的烷基链长,或改变[C4mim]Cl中的阴离子,研究了咪唑类离子液体的降解率与其结构的关系;用GC-MS和HPLC-MS分析了1-烷基-3-甲基咪唑阳离子不同反应时间降解的中间产物,推测了降解机理。结果表明:在US-ZVI/AC微电解体系中,所研究的咪唑离子液体均能快速有效地降解;不同阴离子对1-丁基-3-甲基咪唑离子液体的降解速率和降解率无影响,而不同侧链的咪唑离子液体[Cnmim]Br(n=2,4,6,8,10)的降解速率稍有差异,即不同的烷基链长对降解的影响较小,降解反应遵从准一级反应动力学规律;在降解过程中,[Cnmim]+咪唑环上的3H,4H,5H先被氧化生成1-烷基-3-甲基-2,4,5-三氧咪唑,然后咪唑开环生成1-烷基-3-甲基脲,再分解生成N-烷基甲酰胺。在此过程中,81%以上的TOC被去除,说明降解产物N-烷基甲酰胺还可以进一步矿化。
     (3)分析了不同头基类型的离子液体在US-ZVI/AC微电解体系中降解的中间产物,推测其降解机理。结果显示,在US-ZVI/AC微电解体系中,溴化1-丁基-1-甲基哌啶([C4mpip]Br)、溴化1-丁基-1-甲基吡咯([C4mpyr]Br)和溴化N-丁基-N-甲基吗啉([C4mmor]Br)也能有效降解,其降解效率与离子液体的头基类型有较大关系。与咪唑离子液体不同的是,[C4mpip]Br、[C4mpyr]Br和[C4mmor]Br的氧化降解发生在侧链上,丁基侧链氧化成醇,而后又顺序氧化依次生成了醛和羧酸,然后与杂环脱离,生成了N-甲基杂环化合物。三种离子液体的TOC去除率在69.6-73.8%之间,说明鉴定的最终产物N-甲基杂环化合物同样可以发生进一步的矿化。
     (4)研究了功能离子液体氯化1-烯丙基-3-甲基咪唑([Amim]Cl)、溴化1-丁基-3-甲基苯并咪唑([Bmbim]Br)和四丁基氯化铵([Tba]Cl)在US-ZVI/AC微电解体系中的降解。结果表明,这些功能离子液体在US-ZVI/AC微电解体系中同样可以有效地降解,其中[Amim]Cl的降解途径与前述咪唑离子液体阳离子的降解途径相似,即[Amim]Cl的咪唑环先氧化后开环,生成脲或甲酰胺;[Bmbim]Br降解时,先发生咪唑环中2位C上的氧化,而后侧链断裂或咪唑开环,由于苯环的引入,导致降解过程与前述咪唑类离子液体的差异;[Tba]Cl的降解则通过逐步去除丁基来实现。三种离子液体的TOC去除率在82%以上,证明检出的降解产物均可发生进一步的分解、矿化,在US-ZVI/AC微电解体系中降解的效果非常显著。
     在US-ZVI/AC微电解系统中,高的降解率和TOC去除率说明,这是一种卓有成效且环境友好的离子液体去除方法。本文的研究成果对于消除离子液体的环境影响、评价常用离子液体的环境行为具有重要的指导意义。
Ionic liquids (ILs), as novel media and functional materials, are developing rapidly in recent years due to their attracted properties such as negligible vapor pressure, high thermal stability, extended liquid-state temperature range, good dissolving ability and electrochemical properties. Regarded as green solvents and materials, ILs have been successfully used in chemical synthesis and catalysis, extraction and separation, energy materials and electrochemistry. However, it has been reported that the commonly used ILs are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, an ultrasonic irradiation and zero-valent iron activated carbon (US-ZVI/AC) micro-electrolysis system was applied to degradation of ionic liquid residues in water. The experimental conditions were optimized, and the degradation processes of imidazolium ILs with different alkyl side chains, ILs with different head group types and some functionalized ionic liquids were investigated, and some intermediates generated during the degradation were identified. On the basis of these observations, the degradation pathways were suggested. The main contents are as follows.
     (1)1-Butyl-3-methylimidazolium chloride ([C4mim]Cl), a widely used ionic liquid, was chosen as a model ionic liquid to study the degradation efficiency of ionic liquids in US-ZVI/AC system. The degradation efficiency of [C4mim]Cl was investigated by changing AC/ZVI ratio, dosages of AC and ZVI, solution pH and so on. The degradation processes were analyzed by using UV and HPLC techniques and the degradation efficiency was observed by determination of TOC. It was shown that the optimized experimental conditions for [C4mim]Cl degradation were: AC/ZVI ratio of2:1, the AC dosage of6g·L-1, the ZVI dosage of3g·L-1, and solution pH value of3. The degradation efficiency of [C4mim]Cl could be improved greatly by ultrasonic irradiation frequency of45KHz, and the degradation could be described by a pseudo-first-order kinetics. The presence of excess hydroxyl radical scavenger could greatly reduce the reaction rate but could not prevent degradation of [C4mim]Cl, and the results confirmed that OH· participated in the reaction process and played an important role, but it was not the only reactive species involved in the degradation of [C4mim]Cl. The ultraviolet absorption band of [C4mim]Cl at212nm disappeared almost completely, and more than95%of [C4mim]C1could be degraded in aqueous solution and81.2%of [C4mim]Cl could be mineralized within110min.
     (2) The relationship between the degradation degree and the chemical structure of ionic liquids was investigated by changing the length of alkyl chain in1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n=2,4,6,8,10) and the counter ion type of1-butyl-3-methylimidazolium cation ([C4mim]+). The degradation intermediates of [Cnmim]+at different reaction time were analyzed by GC-MS and HPLC-MS, and the degradation pathway was suggested. It was shown that the imidazolium ILs studied here can be degraded rapidly in US-ZVI/AC system, and the degradation of imidazolium ILs was not influenced by the type of counter anion but can be less influenced by their alkyl chain length. The degradation of [Cnmim]Br followed the pseudo-first-order kinetics model with respect to its concentration. In the degradation processes, the2,4,5positioned H atoms of1-alkyl-3-methylimidazolium ring were first oxidized to generate1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, and then the ring was opened to form1-alkyl-3-methylurea which was further decomposed to form N-alkylformamide. More than81%of TOC removal of [Cnmim]Br suggested further mineralization of the N-alkylformamide.
     (3) The degradation of the ILs with different head group types was investigated in US-ZVI/AC system and their degradation intermediates were identified by GC-MS and HPLC-MS in the same way mentioned above, and the degradation pathways were then suggested. The results showed that1-butyl-1-methylpiperidinium bromide ([C4mpip]Br),1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded in the system, and the level of degradation is dependent on the type of cationic head group of the ILs. Unlike the imidazolium ILs discussed above, oxidation degradation of [C4mpip]Br,[C4mpyr]Br and [C4mmor]Br in the micro-electrolysis system was observed at the N-butyl side chains. The alcohols formed by oxidation were subsequently oxidized via aldehydes to carboxylic acids. N-methyl heterocyclic core was generated via the elimination of the oxidized butyl side chain. The TOC removal of these ILs was in the range of69.6-73.8%and this indicated partial mineralization of N-methyl heterocyclic core.
     (4) Degradation of the functionalized ionic liquids1-allyl-3-methylimidazolium chloride ([Amim]Cl), N-butyl, methyl benzimidazolium bromide ([Bmbim]Br) and tetrabutyl ammonium chloride ([Tba]Cl) was investigated in US-ZVI/AC micro-electrolysis system. The degradation degree and intermediates were analyzed and degradation mechanisms were presumed. It is shown that the three functionalized ILs could also be effectively degraded and the degradation pathway of [Amim]Cl was similar to that of the imidazolium ILs discussed above: the imidazolium ring of [Amim]C1was first oxidized and then the ring was opened to form urea or formamide. The degradation of [Bmbim]Br was started by the oxidization of2-positioned C atom of the imidazolium ring, and then the alkyl side chain was broken or the imidazolium ring was opened. The difference in degradation pathway is probably caused by the presence of benzene ring. The degradation of [Tba]Cl was carried out through the gradual elimination of butyl groups. The TOC removal of the three ILs was greater than82%, which indicated the further mineralization of the degradation products identified and significant degradation effect of the ILs in the system.
     The high degradation efficiency and TOC removal suggested that the ZVI/AC micro-electrolysis assisted by ultrasonic irradiation could serve as an efficient technology for the removal of ILs from aqueous solutions, and the degradation products are environmental friendly to a great extent. The results presented here may be useful for the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs.
引文
[1]Bermudez, M. Introduction to the ionic liquids special issue [J]. Tribology Letters.2010, 40(2):213.
    [2]邓友全.离子液体—性质、制备与应用[M].北京:中国石化出版社.2006.
    [3]张锁江,吕兴梅.离子液体一从基础研究到工业应用[M].北京:科学出版社.2006.
    [4]邹汉波,董新法,林维明.离子液体及其在绿色有机合成中的应用[J].化学世界.2004,45(2):107-110.
    [5]Wasserscheid, P., Keim, W. Ionic liquids-New "solutions" for transition metal catalysis [J]. Angewandte Chemie International Edition.2000,39(21):3772-3789.
    [6]Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Gratzel, M. Hydrophobic, highly conductive ambient-temperature molten salts [J]. Inorganic Chemistry.1996,35(5): 1168-1178.
    [7]石家华,孙逊,杨春和,高青雨,李永舫.离子液体研究进展[J].化学通报.2002,65(4):243-250.
    [8]McEwen, A.B., Ngo, H.L., Lecompte, K., Goldman, J.L. Electrochemical prorerties of imidazolium salt electrolytes for electrochemical capacitor applications [J]. Journal of Electrochemical Society.1999,146(5):1687-1695.
    [9]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报.2004,49(6):515-521.
    [10]Huddleston, J.G., Broker, G.A., Willauer, H.D., Rogers, R.D. Ionic liquids [M]. ACS Symposium Series.2002,818:270-278.
    [11]李汝雄,王建基.绿色溶剂—离子液体的制备与应用[J].化工进展.2002,21(1):43-48.
    [12]Peng, J.J., Shi, F., Gu, Y.L., Deng, Y.Q. Highly selective and green aqueous-ionic liquid biphasic hydroxylation of benzene to phenol with hydrogen peroxide [J]. Green Chemistry. 2003,5(2):224-226.
    [13]Pegot, B., Vo-Thanh, G., Gori, D., Loupy, A. First application of chiral ionic liquids in asymmetric Baylis-Hillman reation [J]. Tetrahedron Letters.2004,45(34):6425-6428.
    [14]Seddon, K.R., Stark, A. Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids[J]. Green Chemistry.2002,4(2):119-123.
    [15]Baleizao, C., Pires, N., Gigante, B., Curto, M. Friedel-Crafts reactions in ionic liquids: the counter-ion effect on the dealkylation and acylation of methyl dehydroabietate [J]. Tctrahedron Letters.2004,45(22):4375-4377.
    [16]Song, C.E., Jung, D.U., Choung, S.Y., Roh, E.J., Lee, S.G. Dramatic enhancement of catalytic activity in an ionic liquid: highly practical Friedel-Crafts alkenylation of arenes with alkynes catalyzed by metal triflates [J]. Angewandte Chemie International Edition.2004, 43(45):6183-6185.
    [17]Doherty, S., Goodrich, P., Hardacre, C., Luo, H.K., Rooney, D.W., Seddon, K.R., Styring, P. Marked enantioselectivity enhancements for Diels-Alder reactions in ionic liquids catalysed by platinum diphosphine complexes [J]. Green Chemistry.2004,6(1):63-67.
    [18]Visser, A., Swatloski, R., Reichert, W.M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J.H., Jr., Rogers, R.D. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd+: synthesis, characterization, and extraction studies [J]. Environmental Science & Technology.2002,36(11):2523-2529.
    [19]Huang, H.L., Wang, H.P., Wei, G.T., Sun, I.W., Huang, J.F., Yang, Y.W. Extraction of nanosize copper pollutants with an ionic liquid [J]. Environmental Science & Technology. 2006,40(15):4761-4764.
    [20]Barrosse-Antle, L.E., Silvester, D.S., Aldous, L., Hardacre, C., Compton, R.G Electroreduction of sulfur dioxide in some room-temperature ionic liquids [J]. The Journal of Physical Chemistry C.2008,112(9):3398-3404.
    [21]Zhao, D., Liu, R., Wang, J.L., Liu, B.Y. Photochemical oxidation-ionic liquid extraction coupling technique in deep desulphurization of light oil [J]. Energy Fuels.2008, 22(2):1100-1103.
    [22]Huddleston, J.G., Rogers, R.D. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J]. Chemical Communications.1998, (16):1765-1766.
    [23]Abbott, A.P., Cullis, P.M., Gibson, M.J., Harris, R.C., Raven, E. Extraction of glycerol from biodiesel into a eutectic based ionic liquid [J]. Green Chemistry.2007,9 (8):868-872.
    [24]Baltus, R.E., Counce, R.M., Culbertson, B.H., Luo, H.M., DePaoli, D.W., Dai, S., Duckworth, D.C. Examination of the potential of ionic liquids for gas separations [J]. Separation Science and Technology.2005,40(1-3):525-541.
    [25]Zhang, W.Z., He, L.J., Gu, Y.L., Liu, X., Jiang, S.X. Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography [J]. Analytical Letters.2003,36(4):827-839.
    [26]Qin, W.D., Li, S.F.Y. Determination of ammonium and metal ions by capillary electrophoresis-potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent [J]. Journal of Chromatography A.2004,1048(2):253-256.
    [27]Ding, J., Welton, T., Armstrong, D.W. Chiral ionic liquids as stationary phases in gas chromatography [J]. Analytical Chemistry.2004,76(22):6819-6822.
    [28]Planeta, J., Roth, M. Solute partitioning between the ionic liquid 1-n-butyl-3-methylimidazolium tetrafluoroborate and supercritical CO2 from capillary-column chromatography [J]. The Journal of Physical Chemistry B.2005, 109(31):15165-15171.
    [29]Peng, J.F., Liu, J.F., Xu, X.L., Jiang, G.B. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high performance liquid chromatography [J]. Journal of Chromatography A. 2007,1139(2):165-170.
    [30]Endres, F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors [J]. ChemPhysChem.2002,3(2):145-154.
    [31]Barhdadi, R., Courtinard, C., Nedelec, J.Y., Troupel, M. Room-temperature ionic liquids as new solvents for organic electrosynthesis. The first examples of direct or nickel-catalysed electroreductive coupling involving organic halides [J]. Chemical Communications.2003, (12):1434-1435.
    [32]Gorlov, M., Kloo, L. Ionic liquid electrolytes for dye-sensitized solar cell [J]. Dalton Transactions.2008, (20):2655-2666.
    [33]Wasserscheid, P., Weiton, T. Ionic liquids in Synthesis [M]. Weinheim: Wiley-Verlag GmbH & Co. KGaA,2008.
    [34]Wu, B., Holbery, J.D., Reddy, R.G, Rogors R.D. Ionic liquid temperature sensor [P]. US patent,20030185279 Al,2003.
    [35]Ye, C.F., Liu, W.M., Chen, Y.X., Yu, L.G Room temperature ionic liquids: a novel versatile lubricant [J]. Chemical Communications.2001, (21):2244-2245.
    [36]Liu, W.M., Ye, C.F., Gong, Q.Y., Wang, H.Z., Wang, P. Tribological performance of room temperature ionic liquids as lubricant [J]. Tribology Letters.2002,13(2):81-85.
    [37]Vitz, J., Erdmenger, T., Haensch, C., Schubert, U.S. Extended dissolution studies of cellulose in imidazolium based ionic liquids [J]. Green Chemistry.2009,11(3):417-424.
    [38]Xu, A.R., Wang, J.J., Wang, H.Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent system [J]. Green Chemistry.2010,12(2):268-275.
    [39]Turner, M.B., Spear, S.K., Holbrey, J.D., Daly, D.T., Rogers, R.D. Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization [J]. Biomacromolecules,2005,6(5):2497-2502.
    [40]Bisswas, A., Shogren, R.L., Stevenson, D.G., Willett, J.L., Bhowmik, P.K. Ionic liquids as solvents for biopolymers: acylation of starch and zein protein [J]. Polymeric Preprints.2005, 46(2):924-925.
    [41]张春艳,潘志彦.离子液体在环境保护中的应用及潜在危害[J].现代化工.2009,29(3):88-90.
    [42]Ranke, J., Stolte, S., Stormann, R., Arning, J., Jastorff, B. Design of sustainable chemical products--the example of ionic liquids [J]. Chemical Reviews.2007,107(6):2183-2206.
    [43]Stock, F., Hoffmann, J., Ranke, J., Stormann, R., Ondruschka, B., Jastorff, B. Effects of ionic liquids on the acetylcholinesterase--a structure-activity relationship consideration [J]. Green Chemistry.2004,6(6):286-290.
    [44]Arning, J., Stolte, S., Boschen, A., Stock, F., Pitner, W.-R., Welz-Biermann, U., Jastorff, B., Ranke, J. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalized side chains and anions of ionic liquids on acetylcholinesterase [J]. Green Chemistry.2008,10(l):47-58.
    [45]Skladanowski, A.C., Stepnowski, P., Kleszczynski, K., Dmochowska, B. AMP deaminase in vitro inhibition by xenobiotics:A potential molecular method for risk assessment of synthetic nitro- and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts [J]. Environmental Toxicology and Pharmacology.2005,19(2):291-296.
    [46]Yu, M., Li, S.M., Li, X.Y., Zhang, B.J., Wang, J.J. Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver [J]. Ecotoxicology and Environment Safety.2008,71(3):903-908.
    [47]Docherty, K.M., Hebbeler, S.Z., Kulpa, C.F., Jr. An assessment of ionic liquid mutagenicity using the Ames Test [J]. Green Chemistry.2006,8(6):560-567.
    [48]Pernak, J., Goc, I., Mirska, I. Anti-microbial activities of protic ionic liquids with lactate anion [J]. Green Chemistry.2004,6(7):323-329.
    [49]Cieniecka-Roslonkiewicz, A., Pernak, J., Kubis-Feder, J., Ramani, A., Robertson, A.J., Seddon, K.R. Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids [J]. Green Chemistry.2005,7(12):855-862.
    [50]Pernak, J., Rogoza, J., Mirska, Ⅰ. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides [J]. European Journal of Medical Chemistry.2001, 36(4):313-320.
    [51]Pernak, J., Kalewska, J., Ksycinska, H., Cybulski, J. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group [J]. European Journal of Medical Chemistry.2001,36 (11-12):899-907.
    [52]Pernak, J., Sobaszkiewicz, K., Mirska, I. Anti-microbial activities of ionic liquids [J]. Green Chemistry.2003,5(1):52-56.
    [53]Pernak, J., Chwala, P. Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides [J]. European Journal of Medical Chemistry.2003, 38(11-12):1035-1042.
    [54]Docherty, K.M., Kulpa, C.F., Jr. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids [J]. Green Chemistry.2005,7(4):185-189.
    [55]柯明,周爱国,宋昭峥,蒋庆哲.离子液体的毒性[J].化学进展.2007,19(5):671-679.
    [56]Swatloski, R.P., Holbrey, J.D., Memon, S.B., Caldwell, G.A., Caldwell, K.A., Rogers, R.D. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids [J]. Chemical Communications.2004, (6):668-669.
    [57]卢珩俊,陆胤,徐冬梅,魏超,陈梅兰.咪唑类离子液体系列对卤虫的急性毒性研究[J].中国环境科学.2011,31(3):454-460.
    [58]Kumar, R.A., Papaiconomou, N., Lee, J.-M., Salminen, J., Clark, D.S., Prausnitz, J.M. In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions [J]. Environmental Toxicology.2009,24(4):388-395.
    [59]Stasiewicz, M., Mulkiewicz, E., Tomczak-Wandzel, R., Kurmirska, J., Siedlecka, E.M., Golebiowski, M., Gajdus, J., Czerwicka, M., Stepnowski, P. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids(1-alkoxymethyl-3-hydroxypyridinium chloride, saccharine and acesulfamates) on cellular and molecular level [J]. Ecotoxicology and Environmental Safety.2008,71(1): 157-165.
    [60]Stolte, S., Arning, J., Bottin-Weber, U., Muller, A., Pitner, W.-R., Welz-Biermann, U., Jastorff, B., Ranke, J. Effects of different head groups and functionalized side chains on the cytotoxicity of ionic liquids [J]. Green Chemistry.2007,9(7):760-767.
    [61]Stepnowski, P., Skladanowski, A.C., Ludwiczak, A., Laczynska, E. Evaluating the cytotoxicity of ionic liquids using human cell line HeLa [J]. Human & Experimental Toxicology.2004,23(11):513-517.
    [62]Frade, R.F.M., Matias, A., Branco, L.C., Afonso, C.A.M., Duarte, C.M.M. Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines [J]. Green Chemistry.2007, 9(8):873-877.
    [63]Salminen, J., Papaiconomou, N., Kumar, R.A., Lee, J.-M., Kerr, J., Newman, J., Prausnitz, J.M. Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids [J]. Fluid Phase Equilibria.2007,261(1-2):421-426.
    [64]Latala, A., Stepnowski, P., Nedzi, M., Mrozik, W. Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana [J]. Aquatic Toxicology.2005,73(1):91-98.
    [65]Jastorff B., Molter K., Behrend P., Bottin-Weber U., Filser J., Heimers A., Ondruschka B., Ranke J., Schaefer M., Schroder H., Stark A., Stepnowski P., Stock F., Stormann R., Stolte S., Welz-Biermann U., Ziegert S., and Thoming J. Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products [J]. Green Chemistry.2005, 7(5):362-372.
    [66]Stolte, S., Matzke, M., Arning, J., Boschen, A., Pitner, W.-R., Welz-Biermann, U., Jastorff, B., Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids [J]. Green Chemistry.2007,9(11):1170-1179.
    [67]Matzke, M., Stolte, S., Thiele, K., Juffernholz, T., Arning, J., Ranke, J., Welz-Biermann, U., Jastorff, B. The influence of anion species on the toxicity of 1-alky 1-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery [J]. Green Chemistry.2007, 9(11):1198-1207.
    [68]Bernot, R.J., Brueseke, M.A., Evans-White, M.A., Lamberti, G.A. Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna [J]. Environmental Toxicology and Chemistry.2005,24(1):87-92.
    [69]Bernot, R.J., Kennedy, E.E., Lamberti, G.A. Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta [J]. Environmental Toxicology and Chemistry.2005,24(7):1759-1765.
    [70]Wells, A.S., Coombe, V.T. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids [J]. Organic Process Research and Development.2006, 10(4):794-798.
    [71]Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monni, G., Intorre, L. Acute toxicity of ionic liquids to the zebrafish (Danio rerio) [J]. Green Chemistry.2006, 8(3):238-240.
    [72]Li, X.Y., Zhou, J., Yu, M., Wang, J.J., Pei, Y.C. Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata [J]. Ecotoxicology and Environment Safety.2009 72(2):552-556.
    [73]Luo, Y.R., Li, X.Y., Chen, X.X., Zhang, B.J., Sun, Z.J., Wang, J.J. The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna [J]. Environmental Toxicology.2008,23(6):736-744.
    [74]Bailey, M.M., Townsend, M.B., Jernigan, P.L., Sturdivant, J., Hough-Troutman, W.L., Rasco, J.F., Swatloski, R.P., Rogers, R.D., Hood, R.D. Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice [J]. Green Chemistry.2008, 10(11):1213-1217.
    [75]徐红梅,田芳,靳丹萍,丁运生,张威,严国林,杨珍,卓彩虹.咪唑型离子液体对小鼠的急性毒 性[J].环境科学学报.2011,31(2):420-423.
    [76]Stepnowski, P. Preliminary assessment of the sorption of some alkyl imidazolium cations as used in ionic liquids to soils and sediments [J]. Australian Journal of Chemistry.2005, 58(3):170-173.
    [77]Stepnowski, P., Mrozik, W., Nichthauser, J. Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils [J]. Environmental Science & Technology. 2007,41(2):511-516.
    [78]Matzke, M., Thiele, K., Miiller, A., Filser, J. Sorption and desorption of imidazolium based ILs in different soil types [J]. Chemosphere,2009,74(4):568-574.
    [79]Beaulieu, J.J., Tank, J.L., Kopacz, M. Sorption of imidazoliumbased ionic liquids to aquatic sediments [J]. Chemosphere,2008,70(7):1320-1328.
    [80]Gorman-Lewis, D.J., Fein, J.B. Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces [J]. Environmental Science & Technology.2004, 38(8):2491-2495.
    [81]Vijayaraghavan, K., Pham, T.P.T., Cho, C.-W., Won, S.W., Choi, S. B., Mao, J., Kim, S., Kim, Y.-R., Chung, B.W., Yun, Y.-S.,2009. An assessment on the interaction of a hydrophilic ionic liquid with different sorbents [J]. Industrial & Engineering Chemistry Research.2009, 48(15):7283-7288.
    [82]Pham, T.P.T., Cho, C.-W., Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review [J]. Water Research.2010,44 (2):352-372.
    [83]Gathergood, N., Scammells, P.J. Design and preparation of room-temperature ionic liquids containing biodegradable side chains [J]. Australian Journal of Chemistry.2002, 55(9):557-560.
    [84]Gathergood, N., Garcia, M.T., Scammells, P.J. Biodegradable ionic liquids Part I. Concept, preliminary targets and evaluation [J]. Green Chemistry.2004,6(3):166-175.
    [85]Garcia, M.T., Gathergood, N., Scammells, P.J. Biodegradable ionic liquids Part II. Effect of the anion and toxicology [J]. Green Chemistry.2005,7(1):9-14.
    [86]Gathergood, N., Scammells, P.J., Garcia, M.T. Biodegradable ionic liquids Part III. The first readily biodegradable ionic liquids [J]. Green Chemistry.2006,8(2):156-160.
    [87]Coleman, D., Gathergood, N. Biodegradation studies of ionic liquids [J]. Chemical Society Reviews.2010,39(2):600-637.
    [88]Boethling, R.S., Howard, P.H., Meylan, W., Stiteler, W., Beauman, J., Tirado, N. Group contribution method for predicting probability and rate of aerobic biodegradation [J]. Environmental Science & Technology.1994,28(3):459-465.
    [89]Boethling, R.S. Designing safer chemicals[M]. ACS Symposium Series.1996,640:156-171.
    [90]Howard, P.H., Boethling, R.S., Stiteler, W., Meylan, W., Beauman, J. Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base[J]. Science of the Total Environment.1991,109-110:635-641.
    [91]Stolte, S., Abdulkarim, S., Arning, J., Blomeyer-Nienstedt, A.-K., Bottin-Weber,U., Matzke, M., Ranke, J., Jastorff, B., Thoming, J. Primary biodegradation of ionic liquids cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds [J]. Green Chemistry.2008,10(2):214-224.
    [92]Docherty, K.M., Dixon, J.K. Kulpa C.F. Jr. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community [J]. Biodegradation,2007, 18(4):481-493.
    [93]Kumar, S., Ruth, W., Sprenger, B., Kragl, U. On the biodegradation of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [J]. Chimica Oggi-Chemistry Today.2006, 24(1):24-26.
    [94]Jastorff, B., Stormann, R., Ranke, J., Molter, K., Stock, F., Oberheitmann, B., Hoffmann, W., Hoffmann, J., Nuchter, M., Ondruschka, B., Filser, J. How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation [J]. Green Chemistry.2003,5(2):136-142.
    [95]Pham, T.P.T., Cho, C.-W., Jeon, C.-O., Chung, Y.-J., Lee, M.-W., Yun, Y.-S. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms [J]. Environmental Science & Technology. 2009,43(2):516-521.
    [96]Stepnowski, P., Zaleska, A. Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids [J]. Journal Photochemistry and Photobiology A:Chemistry.2005,170 (1):45-50.
    [97]Czerwicka, M., Stolte, S., Muller, A., Siedlecka, E.M., Golebiowski, M., Kumirska, J., Stepnowski, P. Identification of ionic liquid breakdown products in an advanced oxidation system [J]. Journal of Hazardous Materials.2009,171(1-3):478-483.
    [98]Li, X.H., Zhao, J.G., Li, Q.H., Wang, L.F., Tsang, S.C. Ultrasonic chemical oxidative degradation of 1,3-dialkylimidazolium ionic liquids and their mechanistic elucidation [J]. Dalton Transactions.2007,36 (19):1875-1880.
    [99]Siedlecka, E.M., Mrozik, W., Kaczynski, Z., Stepnowski, P. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system [J]. Journal of Hazardous Materials.2008,154 (1-3):893-900.
    [100]Siedlecka, E.M., Stepnowski, P. The effect of alkyl chain length on the degradation of alkylimidazolium and pyridinium-type ionic liquids in a Fenton-like system [J]. Environmental Science and Pollution Research.2009,16(4):453-458.
    [101]Siedlecka, E.M., Golebiowski, M., Kaczynski, Z., Czupryniak, J., Ossowski, T, Stepnowski, P. Degradation of ionic liquids by Fenton reaction; the effect of anions as counter and background ions [J]. Applied Catalysis B:Environmental.2009, 91(1-2):573-579.
    [102]Itakura, T., Hirata, K., Aoki, M., Sasai, R., Yoshida, H., Itoh, H. Decomposition and removal of ionic liquid in aqueous solution by hydrothermal and photocatalytic treatment [J]. Environmental Chemistry Letters.2009,7(4):343-345.
    [103]Haerens, K., Matthijs, E., Binnemans, K., Bruggen, B.V. Electrochemical decomposition of choline chloride based ionic liquid analogues [J]. Green chemistry.2009,11(9):1357-1365.
    [104]Kroon, M.C., Buijs, W., Peters, C.J., Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing [J]. Green Chemistry.2006,8(3):241-245.
    [105]Wooster, T.J., Johanson, K.M., Fraser, K.J., MacFarlane, D.R., Scott, J.L. Thermal degradation of cyano containing ionic liquids [J]. Green Chemistry.2006,8(8):691-696.
    [106]Awad, W.H., Gilman, J.W., Nyden, M., Harris, R.H., Sutto, T.E., Callahan, J., Trulove, P.C., Delong, H.C., Fox, D.M. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites [J]. Thermochimica Acta.2004,409(1):3-11.
    [107]Hao, Y., Peng, J., Hu, S.W., Li, J.Q., Zhai, M.L. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations [J]. Thermochimica Acta,2010,501(1-2):78-83.
    [108]Kroon, M.C., Buijs, W., Peters, C.J., Witkamp, G.-J. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids [J]. Thermochimica Acta,2007,465(1-2):40-47.
    [109]Yin, X.L., Bian, W.J., Shi, J.W.4-chlorophenol degradation by pulsed high voltage discharge coupling internal electrolysis [J]. Journal of Hazardous Materials.2009,166 (2-3):1474-1479.
    [110]Dou, X.M., Li, R., Zhao, B., Liang, W.Y. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples [J]. Journal of Hazardous Materials.2010,182 (1-3):108-114.
    [111]Ruan, X., Liu, M., Zeng, Q., Ding, Y. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis [J]. Separation and Purification Technology.2010,74 (2):195-201.
    [112]Liu, H.N., Li, G.T., Qu, J.H., Liu, H.J. Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound [J]. Journal of Hazardous Materials.2007,144(1-2):180-186.
    [113]Fu, J., Xu, Z., Li, Q.S., Chen, S., An, S.Q., Zeng, Q.F., Zhu, H.L. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite [J]. Journal of Environmental Science.2010,22(4):512-518.
    [114]Liang, B., Yao, Q., Cheng, H.Y., Gao, S.H., Kong, F.Y., Cui, D., Guo, Y.Q., Ren, N.Q., Wang, A.J. Enhanced degradation of azo dye alizarin yellow R in a combined process of iron-carbon microelectrolysis and aerobic bio-contact oxidation [J]. Environmental Science and Pollution Research.2012,19(5):1385-1391.
    [115]Pernak, J., Branicka, M. Synthesis and aqueous ozonation of some pyridinium salts with alkoxylmethyl and alkyltiomethyl hydrophobic groups [J]. Industrial & Engineering Chemistry Research.2004,43 (9):1966-1974.
    [116]Stepnowski, P., Muller, A., Behrend, P., Ranke, J., Hoffmann, J., Jastorff, B. Reversed-phase liquid chromatographic method for the determination ofselected room-temperature ionic liquid cations [J]. Journal of Chromatography A.2003,993(1-2), 173-178.
    [117]Stepnowski, P. Solid-phase extraction of room-temperature imidazolium ionic liquids from aqueous environmental samples [J]. Analytical and Bioanalytical Chemistry.2005, 381(1):189-193.
    [118]Stepnowski, P., Mrozik, W. Analysis of selected ionic liquid cations by ion exchange chromatography and reversed-phase high performance liquid chromatography [J]. Journal of Separation Science.2005,28(2):149-154.
    [119]Orentiene, A., Olsauskaite, V., Vickackaite, V., Padarauskas, A. UPLC a powerful tool for the separation of imidazolium ionic liquid cations [J]. Chromatographia.2011,73 (1-2):17-24.
    [120]Cao, J.S., Wei, L.P., Huang, Q.G. Wang, L.S., Han, S.K. Reducing degradation of azo dye by zero-valent iron in aqueous solution [J]. Chemosphere.1999,38 (3):565-571.
    [121]Zhou, H.M., Shen, Y.Y., Lv, P., Wang, J.J., Fan, J. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon [J]. Separation and Purification Technology.2013,104,208-213.
    [122]Elaiwi, A., Hitchcock, P.B., Seddon, K.R., Srinivasan, N., Tan, Y.-M., Welton, T., Zora, J.A. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate (III) ionic liquids [J]. Journal of the Chemical Society, Dalton Transactions.1995, (21):3467-3472.
    [123]Dupont, J., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Kintzinger, J.-P. C-H-π interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures [J]. Chemistry-A European Journal.2000,6(13):2377-2381.
    [124]Fabianska, A., Ossowski, T., Stepnowski, P., Stolte, S., Thoming, J., Siedlecka, E.M. Electrochemical oxidation of imidazolium-based ionic liquids: The influence of anions [J]. Chemical Engineering Journal.2012,198-199:338-345.
    [125]Siedlecka, E.M., Stolte, S., Golebiowski, M., Nienstedt, A., Stepnowski, P., Thoming, J. Advanced oxidation process for the removal of ionic liquids from water: the influence of functionalized side chains on the electrochemical degradability of imidazolium cations [J]. Separation and Purification Technology.2012,101:26-33.
    [126]臧洪俊,王美玲,程博闻,吉科猛,常俊强.新型氮二烷基吗啉盐酸盐离子液体的合成及其性能研究[J].化学学报.2008,66(20):2289-2294.
    [127]张仁庆,于泓,刘玉珍.离子色谱-直接电导检测法分析哌啶离子液体阳离子[J].色谱.2012,30(7):728-732.
    [128]任强,武进,张军,何嘉松,过梅丽.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J].高分子学报.2003,3(3):448-450.
    [129]王美玲,臧洪俊,蔡白雪,程博闻.纤维素在离子液体[AMMor]Cl/[AMIM]Cl混合溶剂中的溶解性能[J].高等学校化学学报.2009,30(7):1469-1472.
    [130]Li, W.Z., Ju, M.T., Wang, Y.N., Liu, L., Jiang Y. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride [J]. Carbohydrate Polymers.2013, 92(1):228-235.
    [131]Wang, X.J., Li, H.Q., Cao, Y., Tang, Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) [J]. Bioresource Technology.2011, 102(17):7959-7965.
    [132]Wang, M.F., Shan, Z.Q., Tian, J.H., Yang, K., Liu, X.S., Liu, H.J., Zhu, K.L. Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries [J]. Electrochimica Acta.2013,95:301-307.
    [133]Casas, A., Alonso, M.V., Oliet, M., Santos, T.M., Rodriguez, F. Characterization of cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride [J]. Carbohydrate Polymers.2013,92(2):1946-1952.
    [134]Duan, E.H., Guan, Y.N., Guo, B., Zhang, M.M., Yang, D., Yang, K. Effects of water and ethanol on the electrical conductivity of caprolactam tetrabutyl ammonium halide ionic liquids [J]. Journal of Molecular Liquids.2013,178 (1):1-4.
    [135]王斌,刘晨江,王吉德,雷振凯,胡东林.功能化苯并咪唑类离子液体的合成及性质[J].高等学校化学学报.2012,33(1):76-81.
    [136]游楚楚.苯并咪唑离子液体的合成及其在萃取分离中的应用[硕士论文].福州:福建师范大学.2011.
    [137]张蓉,李锦堂,傅翠梨,罗学涛.苯并咪唑类光电功能配合物的研究进展[J].材料导报.2011,25(13):61-64.
    [138]Kotadia, D.A., Soni, S.S. Silica gel supported-SO3H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols [J]. Journal of Molecular Catalysis A:Chemical.2012,353-354(1):44-49.
    [139]王尊元,张萍,梁美好,沈正荣.2-丙基-4-[(1-羟基-1-甲基)乙基]-1H-咪唑-5-羧酸乙酯的合成[J].化学试剂.2007,29(11):679-680.
    [140]端木慧.1,4-二(苯并咪唑基)苯的氧化[J].北京电力高等专科学校学报自科版.2012,29(10):793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700