用户名: 密码: 验证码:
α-Fe_2O_3基复合光催化剂的制备及其降解甲苯性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对空气中挥发性有机污染物(VOCs)的治理是环境领域的重要问题。最常见、最典型的VOCs是甲苯,基于太阳能利用的光催化技术在控制甲苯等VOCs方面表现出十分重要的应用前景。因此开发基于太阳能利用的高量子效率的光催化体系已成为一项重要的研究课题。本研究以纺锤状α-Fe2CO3为基材料构建α-Fe2O3/GO、Ag/a-Fe2O3及g-C3N4/a-Fe2O3等复合体系,利用原位红外光谱技术,研究甲苯在这些材料上的可见光催化降解过程,探讨复合光催化体系内异质界面上光生电荷的迁移机制和光催化降解机理。研究成果如下:
     (1)合成出空心纺锤形貌的α-Fe2O3催化剂,样品纯度高、结晶好。通过对样品进行DRS、BET表征以及光电响应机理分析,发现其空心结构增强了样品的可见光吸收能力和表面吸附能力,且样品具有一定的光生电荷分离能力。
     (2)通过浸渍和光照还原法制备了贵金属银负载的Ag/α-Fe2O3复合体系。利用原位红外光谱技术考察了可见光下复合催化剂对甲苯的光催化活性,以及不同Ag负载量对Ag/α-Fe2O3降解率的影响。结果发现在6h的氙灯照射下,该复合体系对甲苯光催化活性,明显高于商用α-Fe2O3和空心纺锤状α-Fe2O3,并且对甲苯的降解完全,降解产物为C02和水。Ag在α-Fe2O3上的表面等离子共振效应提高了光生电荷的分离效率。结果还发现Ag的负载量对Ag/α-Fe2O3复合体系的降解率也有一定程度的影响,当Ag负载量为1.0wt%左右时,Ag/α-Fe2O3的降解率最高,达到88%。
     (3)制备出α-Fe2O3与新型碳材料石墨烯的复合体系α-Fe2O3/GO,该复合体系比单一空心纺锤状α-Fe2O3具有更强的可见光吸收能力、光生载流子的分离能力和表面的吸附能力。该催化剂对甲苯进行可见光催化降解,6h的降解率为80%。利用原位红外光谱技术检测出反应产物为苯甲醛、苯甲酸、C02和水。降解率的提高主要归因于石墨烯优越的吸附特性以及GO的加入引起了复合体系导带电位的负向移动,从而加快了光生载流子的有效分离,提高了量子效率。
     (4)通过简单溶剂热法成功地将α-Fe2O3纳米颗粒负载在g-C3N4上形成了光催化复合体系g-C3N4/α-Fe2O3该复合体系对甲苯进行可见光催化降解,降解产物为苯甲醛、苯甲酸、CO2和水,6h后甲苯的降解率为91%。其高的光催化性能主要归因于复合结构中α-Fe2O3和g-C3N4的协同效应以及大的比表面积,同时,复合体系中各组分的质量比也影响其光催化活性,结果显示,当组分中g-C3N4含量为70wt%时g-C3N4/α-Fe2O3复合体系光催化活性最高并且具有一定的稳定性,在多次重复使用后其催化活性基本保持不变。
     (5)对比发现上述α-Fe2O3基复合体系对甲苯的可见光催化降解活性顺序为:g-C3N4/α-Fe2O3复合体系>Ag/α-Fe2O3复合体系>α-Fe2O3/GO复合体系>纺锤状空心α-Fe2O3。
Currently with increasing environmental pollution, the management of volatile organic compounds (VOCs) in the air is a top priority. A most common and typical example of VOCs is toluene. Photocatalytic technology based on the utilization of solar energy has demonstrated a very important prospect in the application of controlling toluene and other VOCs. So the development of photocatalytic system with high quantum efficiency based on solar energy utilization has become an important research topic. On this basis, α-Fe2O3was used as a base material to construct α-Fe2O3/GO, Ag/α-Fe2O3and g-C3N4/α-Fe2O3complex systems. In situ infrared spectroscopy was applied to study the photocatalytic degradation process of toluene over these materials under visible light. Light-induced charge migration and photocatalytic degradation mechanisms were explored in the constructed photocatalytic systems. The main results obtained are as follows:
     (1) Successful synthesis of the hollow spindle-shaped α-Fe2O3catalyst of high purity as well as good crystallinity. Through the DRS, BET characterization on the samples and detailed analysis of SPV mechanisms, enhanced visible-light absorptive capacity and adsorption capacity as well as effective separation capability of photogenerated carriers were found due to the hollow structure of the sample.
     (2) Ag/α-Fe2O3composite systems were prepared by impregnation of loading precious metal silver. Photocatalytic activity and the effects of different Ag loadings on toluene degradation rates over Ag/α-Fe2O3under visible light were investigated using in situ infrared spectroscopy. The results showed that during the xenon lamp irradiation for6h, the photocatalytic activity of toluene over this complex was higher than that over commercial α-Fe2O3and hollow spindle-shaped α-Fe2O3. Furthermore, complete degradation of toluene into degradation products of CO2and water could be achieved and the degradation rate reached88%over this composite. The enhanced photocatalytic activity after loading Ag catalyst was mainly attributed to Ag and α-Fe203composite system improves the light-induced charge separation efficiency. We also found that Ag loadings had some influence on the degradation rate by Ag/α-Fe2O3to a certain extent. When Ag loading was about1.0wt%, Ag/α-Fe2O3had a highest degradation rate of88%.
     (3) Preparation of a composite system of α-Fe2O3and graphene based new carbon material α-Fe2O3/GO. The complex system has a stronger ability than a single α-Fe2O3in absorbing visible light, enhanced photo-induced carriers separation and stronger surface adsorption capabilities. The photocatalytic toluene degradation rate of80%could be achieved in6h using the composite catalyst compared with a single α-Fe2O3. By using in situ infrared spectroscopy for the detection of the reaction products, benzaldehyde, benzoic acid, CO2and water were identified. Increased degradation rate was mainly due to the superior adsorption characteristics of graphene, and the introduction of GO caused a shift of the conduction band of α-Fe2O3in the composite system towards the negative direction, thereby speeding up the effective separation of photo-generated carriers and improving the quantum efficiency.
     (4) Using a simple solvothermal method, we successfully loaded the α-Fe2O3nanoparticles onto g-C3N4to form a composite photocatalytic system g-C3N4/α-Fe2O3. The products over the composite system during the photocatalytic degradation of toluene were benzaldehyde, benzoic acid, CO2and water. The toluene degradation rate of91%in6h. Its high photocatalytic performance is mainly due to the synergistic effect between α-Fe2O3and g-C3N4and a large specific surface area of the complex structure. Meanwhile, the mass ratio of the components in the composite system also affect the photocatalytic activity. The results showed when the component g-C3N4content was70wt%, g-CjN4/a-Fe2O3composite system exhibited a highest photocatalytic activity and had a certain stability since the catalytic activity remained unchanged after repeated use for times.
     (5) By comoparison, the performance order of α-Fe2O3based composite materials for the photocatalytic degradation of toluene under visible light is g-C3N4/a-Fe2O3composite> Ag/a-Fe2O3composite> a-Fe2O3/GO composite>hollow spindle-shaped α-Fe2O3.
引文
[1]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature 1972,238(5358):37-38.
    [2]Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environment Contamination and Toxicology,1976, 16(6):697-701.
    [3]Hernandez-Alonso M. D., Fresno F., Suarez S., et al. Development of alternative photocatalysts to TiO2:challenges and opportunities [J]. Energy Environmental Science,2009,2(12):1231-1257.
    [4]Litter M. I., Navio J. A. Photocatalytic properties of ion doped titania semiconductors [J]. Journal of Photochemistry and Photobiology A,1996,98(3):171-181.
    [5]Choi W., Termin A., Hoffmann M. R.. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge ccarrier recombination dynamics [J]. Journal of Physical Chemistry,1994,98(51):13669-13679.
    [6]Iwasaki M., Hara M., Kawada H., et al. Cobalt ion-doped TiO2 photocatalyst response to visible light [J]. Journal of Colloid and Interface Science,2000,224(1):202-204.
    [7]Cong Y., Zhang J. L., Chen F., et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity [J]. Journal of Physical Chemistry C,2007,111(19): 6976-6982.
    [8]Nagaveni K., Hegde M. S., Ravishankar N., et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004,20(7):2900-2907.
    [9]Wang J., Yin S., Zhang Q., et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties [J]. Chemistry Letters,2003,32:540-541.
    [10]Wu Y. M., Xing M. Y., Tian B. Z., et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 mierosphere and photodegradation of acid orange 7 under visible light [J]. Chemical Engineering Journal,2010,162(2):710-717.
    [11]Cong Y., Zhang J. L., Chen F., et al. Preparation photocatalytic activity and mechanism of nano-TiO2 Co-Doped with nitrogen and iron [J].Journal of Physical Chemistry C,2007,111(28):10618-10626.
    [12]Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis on TiO2 surfaces:principles mechanisms and selected results [J]. Chemical Reviews,1995,95(3):735-758.
    [13]Chiarello G. L., Aguirre M. H., Selli E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2 [J]. Journal of Catalysis,2010,273(2):182-190.
    [14]Fu P. F., Zhang P. Y. Uniform dispersion of Au nanoparticles on TiO2 film via electrostatic self-assembly for photocatalytic degradation of bisphenol A [J]. Applied Catalysis B:Environmental, 2010,96(1-2):176-184.
    [15]Zhao W.,Chen C. C., Li X. Z. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst [J]. Journal of Physical Chemistry B,2002,106(19):5022-5028.
    [16]Abe R., Takami H., Murakami N., et al. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J]. Journal of the American Chemical Society,2008,130(25):7780-7781.
    [17]Rosseler O., Shankar M. V., Du M. K. L., et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts:influence of noble metal and porogen promotion [J]. Journal of Catalysis,2010,269(1):179-190.
    [18]Cozzoli P. D., Curri M. L., Takami A. Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems [J]. Chemical Communications,2005, (25):3186-3188.
    [19]Han C., Li Z., Shen J. Photocatalytic degradation of dodecyl-benzene sulfonate over TiO2-Cu2O under visible irradiation [J]. Journal of Hazardous Materials,2009,168(1):215-219.
    [20]Shen Q., Arae D., Toyoda T. Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,164(1-3):75-80.
    [21]Sant P. A., Kamat P. V.. Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters [J]. Physical Chemistry Chemical Physics,2002,4(2):198-203.
    [22]Bessekhouad Y., Robert D., Weber J. Y. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):569-580.
    [23]Haque S. A., Handa S., Peter K., et al. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films:towards a quantitative structure-function relationship [J]. Angewandte Chemie International Edition,2005,44(35):5740-5744.
    [24]Liu Y. P., Fang L., Lu H. D., et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light [J]. Catalysis Communications,2012,17:200-204.
    [25]Ai Z. H., Lee S. C., Huang Y., et al. Photocatalytic removal of NO and HCHO over nanocrystalline ZnSnO4 microcubes for indoor air purification [J]. Journal of Hazardous Materials,2010,179 (1-3):141-150.
    [26]Hisatomi T., Otani M., Nakajim K., et al. Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate [J]. Chemistry of Materials,2010, 22(13):3854-3861.
    [27]Jia C. J., Sun L. D., Yan Z. G., et al. Single-crystalline iron oxide nanotubes [J]. Angewandte Chemie International Edition,2005,44:4328-4333.
    [28]Ge S., Shi X. Y., Sun K., et al. Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties [J]. Journal of Physical Chemistry C,2009,113:13593-13599.
    [29]Battishal K., Hamad A. B. A., Mahani R. M. Structure and dielectric studies of nano-composite Fe2O3:BaTiO3 prepared by sol-gel method [J]. Physica B:Condensed Matter,2009,404(16): 2274-2279.
    [30]Park C. D., Walker J., Tannenbaum R., et al. Sol-gel-derived iron oxide thin films on silicon:surface properties and interfacial chemistry[J]. ACS Applied Materials Interfaces,2009,1:1843-1846.
    [31]Han L. H., Liu H., Wei Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method [J]. Powder Technology,2011,207:42-46.
    [32]Aronniemi M., Saino J., Lahtinen J. Characterization and gassensing behavior of an iron oxide thin film prepared by atomic layer deposition [J]. Thin Solid Films,2008,516:6110-6115.
    [33]Sakurai S., Namai A., Hashimoto K., et al. First observation of phase transformation of all four Fe2O3 phases (γ→ε→β→α) phase [J]. Journal of the American Chemical Society,2009,131(51): 18299-18303.
    [34]Mohapatra S. K., John S. E., Banerjee S., et al. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays [J]. Chemistry of Materials,2009,21:3048-3055.
    [35]Miller E. L., Paluselli D., Marsen B., et al. Low temperature reactively sputtered iron oxide for thin film devices [J]. Thin Solid Films,2004,466:307-313.
    [36]Mira R., Svetozar M., Matjaz G.. Pmpenies of y-FeOOH, a-FeOOH and a-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions [J]. Journal of Alloys and Compounds,2006,417-292.
    [37]Pu Z. F., Cao M. H., Yang J., et al. Controlled synthesis and growth mechanism of hematite nanorhombohedra nanorods and nanocubes [J]. Nanotechnology,2006,17:799-804.
    [38]Wang X., Chen X. Y., Ma X. C., et al. Low-temperature synthesis of α-Fe2CO3 nanoparticles with a closed cage structure [J]. Chemical Physics Lerters,2004,384(4-6):391-393.
    [39]Liu L., Kou H. Z., Mo W. L., et al. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties [J]. Journal of Physical Chemistry B,2006,110: 15218-15223.
    [40]Li L. L., Ying C., Yang L. Synthesis and characterization of ring-like α-Fe2O3 [J]. Nanotechnology, 2007,18(10):105603-105615.
    [41]Mandal S., Muller A. H. E. Facile route to the synthesis of porous α-Fe2O3 nanorods [J]. Materials Chemistry and Physics,2008,111:438-443.
    [42]Song L. M., Zhang S. J., Chen B. et al. A hydrothermal method for preparation of α-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium prcholrate [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,360:1-5.
    [43]Xu X. J., Wang J., Yang C. Q., et al. Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites:effects of different iron raw material [J]. Journal of Alloys and Compounds,2009,468(1-2):414-420.
    [44]Alexander E. G., Thomas M. T., Joe H., et al. Use of eporxides in the sol-gel syllthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts [J]. Chemistry of Materials,2001,13(3):999-1018.
    [45]Ouertani B., Ouerfelli J., Saadoun M., et al. Characterisation of iron oxide thin films prepared from spray pytolysis of irom trichloride-based aqueous solution [J]. Thin Solid Films,2008,516: 8584-8601.
    [46]Kay A., Cesaur I., Gratzel M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films [J]. Journal of the American Chemical Society,2006,128(49):15714-15732.
    [47]Niu M. T., Cheng Y., Wang Y. S., et al. Novel nanocrystal heterostructures:crystallographic oriented growth of SnO2 nanorods onto α-Fe2O3 nanohexahedron [J]. Crystal Growth & Design,2008,8(5): 1727-1729.
    [48]Sesigur H., Acma E., Addemir O., et al. The preparation of magnetic iron oxide [J]. Materials Research Bulletin,1996,31(12):1573-1579.
    [49]He F. J., Yao T., Qu B. D., et al. Gas sensitivity of Zn doped α-Fe2O3 (SO42-,Zn,Sn) to carbon monoxide [J]. Sensors and Actuators B,1997,40(2~3):183-186.
    [50]Zhang Z. H., Farukhossain M. D., Takayukimiyazaki, et al. Gas phase photocatalytic a ctivity of ultrathin Pt layer coated on a-Fe2O3 films under visible light illumination environ [J]. Sci Technol, 2010,44:4741-4746.
    [51]Wang X. H., Zhang L., Ni Y. H., et al. Fast preparation characterization and property study of α-Fe2O3 nanoparticles via a simple solution-combusting method [J]. Journal of Physical Chemistry C, 2009,113(17):7003-7008.
    [52]Kitaurah, Takahashi K, Mizuno F., et al. Mechanochemical synthesis of α-Fe2O3 nanoparticles and their application to all-solid-state lithium batteries [J]. Journal of Power Sources,2008,183(1): 418-421.
    [53]Liu H., Wang G. X., Park J., et al. Electrochemical performance of a-Fe2O3 nanorods as anode material for lithium-ion cells [J]. Electrochimica Acta,2009,54(6):1733-1736.
    [54]Reddy M. V., Yu T., Sow C. H., et al. α-Fe2O3 nanoflakes as an anode material for Li-Ion batteries [J]. Advanced Functional Materials,2007,17(15):2792-2799.
    [55]Zhang X. L., Sui C. H., Gong J., et al. Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, vdumbbell, and spindle microstructures [J]. Journal of Physical Chemistry C,2007,111(26),9049-9054.
    [56]Li Z. G., Cai W. P., Duan G. T., et al. Magnetic step regions in α-Fe2O3 nanostructured ring arrays [J]. Physica E,2008,40(3):680-683.
    [57]Kim C. H., Chun H. J., Kim D. S., et al. Magnetic anisotropy of vertically aligned α-Fe2O3 nanowire array [J]. Applied Physics Letters,2006,89(22):223103-1-223103-3.
    [58]Wu C. Z., Yin P., Zhu X., et al. Synthesis of hematite (α-Fe2O3) nanorods:diameter-size and shape effects on their applications in magnetism lithium ion battery and gas sensors [J]. Journal of Physical Chemistry B,2006,110:17806-17812.
    [59]Mitra S., Das S., Mandal K., et al. Synthesis of α a-Fe2O3 nanocrystal in its different morphological attributes:growth mechanism, optical and magnetic properties [J]. Nanotechnology,2007,18(27): 275608-1-275608-9.
    [60]Zeng S. Y., Tang K. B., Li T. W. Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption electrochemical and magnetic properties [J]. Journal of Colloid and Interface Science,2007,312(2):513-521.
    [61]Wang Y., Cao J. L., Wang S. R., et al. Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors [J]. Journal of Physical Chemistry C,2008,112(46):17804-17808.
    [62]Chen J., Xu L., Li W., et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J]. Advanced Materials,2005,17(5):582-586.
    [63]Hu X. L., Yu J. C., Gong J. N., et al. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties [J]. Advanced Materials,2007,19(17):2324-2329.
    [64]Jain G., Balasubramanian M., Xu J. J. Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3 compound [J]. Chemistry of Materials,2006,18(2):423-434.
    [65]Kalllmkaran C., Senthilvelan S. Fe2O3-photocatalysis with sunlight and UV light:oxidation of aniline[J]. Electrochemistry Communications,2006,8(1):95-103.
    [66]Wang X. H., Zhang L., Ni Y. H., et al. Fast preparation, characterization, and property study of a-Fe2O3 nanoparticles via a simple solution-combusting method [J]. Journal of Physical Chemistry C, 2009,113(17):7003-7009.
    [67]Yu J. G., Yu X. X., Huang B. B., et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres [J]. Crystals Growth & Design,2009,9(3): 1474-1479.
    [68]Song L. M., Zhang S. J. Formation of a-Fe2O3/FeOOH nanostructures with various morphologies by a hydrothermal route and their photocatalytic propenies [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,348(1):217-225.
    [69]Gondal M. A., sayeed M. N., YaHmni Z. H., et al. Efficient removal of phenol from water using Fe2O3 semiconductor catalyst under UV laser irradiation [J]. Journal of Environment Science and Health, Part A,2009,44(5):515-524.
    [70]Chomoueka J., Drbohlavova J., Huska D., et al. Magnetic nanoparticles and targeted drug delivering [J]. Pharmaceutical Research,2010,62(2):144-149.
    [71]Lee H., Yu M. K., Park S., et al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo [J]. Journal of the American Chemical Society,2007,129(42):12739-12745.
    [72]Cesar I., Kay A., Martinez J. G., et al. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:nanostructure-directing effect of Si-doping [J]. Journal of the American Chemical Society,2006,128(14):4582-4583.
    [73]Ai Z. H., Lu L. R., Zhang L. Z., et al. Fe@ Fe2O3 core-shell nanowires as the iron reagent 2 an efficient and reusable sono-fenton system working at neutral Ph [J]. The Journal of Physical Chemistry C,2007,111:7430-7436.
    [74]Jang J. S., Yoon K. Y., Xiao X. Y., et al. Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy:effects of Ag-Fe2O3 nanocomposite and Sn Doping [J]. Chemistry of Materials,2009,21:4803-4810.
    [75]Hong H. Y., Hu L., Li M., et al. Preparation of Pt@Fe2O3 nanowires and their catalysis of selective oxidation of olefins and alcohols [J]. Chemistry-A European Journal,2011,17:8726-8730.
    [76]Linic S., Christopher P., Ingram D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature materials,2013, DOI:10.1038/NMAT3151.
    [77]Zhou X. M., Liu G., Yu J. G., et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light [J]. Journal of Materials Chemistry,2012,22: 21337-21354.
    [78]Luo J. H., Maggard P. A. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3 [J]. Advanced Materials,2006,18:514-517.
    [79]Wang L., Wei H. W., Fan Y. J., et al. One-dimensional CdS/a-Fe2O3 and CdS/Fe3O4 heterostructures:epitaxial and nonepitaxial growth and photocatalytic activity [J]. Jouranl of Physical Chemistry C,2009,113(22):14119-14125.
    [80]Xiong G., Alan G. Joly, Gary P., et al. Excited carrier dynamics of a-Cr2O3/α-Fe2O3 core-shell nanostructures [J]. Jouranl of Physical Chemistry B,2006,110:16937-16940.
    [81]Liu Y., Yu L., Hu Y., et al. A magnetically separable photocatalyst based on nest-like Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity [J]. Nanoscale,2012,4: 183-187.
    [82]Liao Y. H., Li H. Y., Liu Y., et al. Characterization of photoelectric properties and composition effect of TiO2/ZnO/Fe2O3 composite by combinatorial methodology [J]. Combinatorial Chemistry and High Throughput Screening,2010,12,883-889.
    [83]Luo W. J., Yu T., Wang Y. M., et al. Enhanced photocurrent voltage characteristics of WO3/Fe2O3 nano-electrodes [J]. Journal of Physics D:Applied Physics,2007,40(4):1091-1096.
    [84]Palanisamy B., Babu C. M., Sundaravel B., et al. Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst:Application for degradation of 4-chlorophenol [J].Journal of hazardous materials, 2013,252:233-42.
    [85]Katsnelson M. I. Graphene:carbon in two dimensions [J]. Materials Today,10(1-2):20-27.
    [86]Breusing M., Ropers C., Elsaesser T. Ultrafast carrier dynamics in graphite [J]. Physical Review Letters,2009,102(8):086809.
    [87]Mak K. F., Sfeir M. Y., Wu Y., et al. Measurement of the optical conductivity of graphene [J]. Physical Review Letters,2008,101(19):196405.
    [88]Park S., Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnology, 2009,4(4):217-224.
    [89]Cuong T. V., Pham V. H., Tran Q. T., et al. Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide [J]. Materials Letters,2010,64(3):399-401.
    [90]Pan D. Y, Zhang J. C., Li Z., et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J]. Advanced Materials,2010,22(6):734-738.
    [91]Ito J., Nakamura J., Natori A. Semiconducting nature of the oxygen-adsorbed graphene sheet [J]. Journal of Applied Physics,2008,103(11):113712-113729.
    [92]Yeh T. F., Syu J. M., Cheng C., et al. Graphite oxide as a photocatalyst for hydrogen production from water [J]. Advanced Functional Materials,2010,20(14):2255-2262.
    [93]Yan X., Cui X., Li B. S., et al. Large, Solution-processable graphene quantum dots as light absorbers for photovoltaics [J]. Nano Letters,2010,10(5):1869-1873.
    [94]Xu Y. F., Liu Z. B., Zhang X. L., et al. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property [J]. Advanced Materials,2009,21(12):1275-1279.
    [95]Liu Z. F., Liu Q., Huang Y., et al. Organic photovoltaic devices based on a novel acceptor material: graphene [J]. Advanced Materials,2008,20(20):3924-3930.
    [96]Tung V. C., Huang J. H., Tevis I., et al. Surfactant-free water-processable photoconductive all-carbon composite [J]. Journal of the American Chemical Society,2011,133(13):4940-4947.
    [97]Zhou H. Q., Qiu C. Y., Liu Z., et al. Thickness-dependent morphologies of gold on n-layer graphenes [J]. Journal of the American Chemical Society,2010,132(3):944-946.
    [98]Seger B., Kamat P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells [J]. Journal of Physical Chemistry C,2009,113(19):7990-7995.
    [99]Yoo E., Okata T., Akita T., et al. Enhanced electrocatalytic activity of Pt subnanoclusters on grapheme nanosheet surface [J]. Nano Letters,2009,9(6):2255-2259.
    [100]Xiong Z., Zhang L. L., Ma J., et al. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation [J]. Chemical Communications,2010,46(33): 6099-6101.
    [101]Zou F., Yu Y., Cao N., et al. A novel approach for synthesis of TiO2-grapheme nanocomposites and their photoelectrical properties [J]. Scripta Materialia,2011,64:621-624.
    [102]Li B. J., Cao H. Q.. ZnO@graphene composite with enhanced performance for the removal of dye from water [J]. Journal of Materials Chemistry,2011,21:3346-3349.
    [103]Wang H L, Robinson J T, Diankov G, et al. Nanocrystal growth on graphene with various degrees of oxidation [J]. Journal of the American Chemical Society,2010,132(10):3270-3271.
    [104]Zhang J. T., Xiong Z. G., Zhao X. S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. Journal of Materials Chemistry,2011,21:3634-3640.
    [105]Wu Z. S., Ren W., Wen L., et al. Graphene anchored with CO3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano,2010,4(6): 3187-3194.
    [106]Chen S., Zhu J., Wu X., et al. Graphene oxide-MnO2 nanocomposites for supercapacitors [J]. ACS Nano,2010,4(5):2822-2830.
    [107]Gao E. P., Wang W. Z., Shang M., et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Physical Chemistry Chemical Physics,2011,13:2887-2893.
    [108]Zhang H., Fan X. F., Quan X., et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light [J]. Environmental Science and Technology, 2011,45:5731-5736.
    [109]Fu Y. S., Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation [J]. Industrial and Engineering Chemistry Research,2011, 50:7210-7218.
    [110]Lightcap I. V., Kosel T. H., Kamat P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide [J]. Nano Letters,2010,10(2):577-583.
    [111]Liu J. C., Bai H. W., Wang Y. J., et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications [J]. Advanced Functional Materials,2010,20(23):4175-4181.
    [112]Zhu C., Guo S., Wang P., et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets [J]. Chemical Communications,2010,46(38):7148-7150.
    [113]Manga K. K., Zhou Y., Yan Y. L., et al. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties [J]. Advanced Functional Materials,2009,19(22):3638-3643.
    [114]Yin Z. Y., Wu S. X., Zhou X. Z., et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells [J]. Small,2010,6(2):307-312.
    [115]Hwang J. O., Lee D. H., Kim J. Y., et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission [J]. Journal of Materials Chemistry,2011,21(10):3432-3437.
    [116]Chen C., Cai W. M., Long M. C., et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano,2010,4(11):6425-6432.
    [117]Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts [J]. ACS Nano,2010,4(7): 4174-4180.
    [118]Zhang L. M., Diao S. O., Nie Y. F., et al. Photocatalytic patterning and modification of graphene [J]. Journal of the American Chemical Society,2011,133(8):2706-2713.
    [119]Delimaris D., Ioannides T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method [J]. Applied Catalysis B:Environmental,2008,84:303-312.
    [120]Duran F. G., Barbero B. P., Cadu's L. E., et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds [J]. Applied Catalysis B:Environmental,2009,92:19-201
    [121]Ge L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts [J]. Materials Letters,2011,65:2652-2654.
    [122]Ullah R., Sun H. Q., Ang H. M.,et al. Comparative investigation of photocatalytic degradation of toluene on nitrogen doped Ta2O5 and Nb2O5 nanoparticles [J]. Industrial and Engineering Chemistry Research,2013,52:3320-3328.
    [123]Zhang H., Fan X. F., Quan X.,et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible ligh [J]. Environmental Science and Technology, 2011,45:5731-5736.
    [124]Bachiller-Baeza B., Anderson J. A. FTIR and reaction studies of styrene and toluene over silica-zirconia-supported heteropoly acid catalysts [J]. Journal of Catalysis,2002,212:231-239.
    [125]Raciulete M., Afanasiev P. Manganese-containing VOC oxidation catalysts prepared in molten salts [J]. Applied Catalysis A:General,2009,368:79-86.
    [126]Maira A. J., Coronado J. M., Augugliaro V., et al. Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene [J]. Journal of Catalysis,2001,202:413-420.
    [127]Ardizzone S., Bianchi C. L., Cappelletti G.,et al. Photocatalytic degradation of toluene in the gas phase:relationship between surface species and catalyst features [J]. Environmental Science and Technology,2008,42:6671-6676.
    [128]Bianchi C. L., Cappelletti G., Ardizzone S., et al. N-doped TiO2 from TiCl3 for photodegradation of air pollutants [J]. Catalysis Today,2009,144:31-36.
    [129]Fresno F., Hernandez-Alonso M. D., Tudela D., et al. Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2(M=Sn or Zr) nanocrystalline oxides:influence of the heteroatom distribution on deactivation [J]. Applied Catalysis B:Environmental,2008,84:598-606.
    [130]Mendez-Roman R. Cardona-MartoAnez N. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene [J]. Catalysis Today,1998,40:353-365.
    [131]Mills A., Hunte S. Le. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,108:1-35.
    [132]Pelaez M., Nolan N. T., Pillai S. C., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B:Environmental,2012,125: 331-349.
    [133]Laurent S., Forge D., Port M., et al. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chemical Reviews, 2008,108:2064-2110.
    [134]Mao A., Park N. G., Han G. Y., et al. Controlled growth of vertically oriented hematite/Pt composite nanoroute for the fabrication of porous hematite nanoflowers:its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties [J]. Journal of Physical Chemistry C,2008,112:4836-4843.
    [135]Li X. L., Wei W. J., Wang S. Z., et al. Single-crystad arrays:use for photoelectrochemical water splitting [J]. Nanotechnology,2011,22:175703.
    [136]Zeng S. Y., Tang K. B., Li T. W., et al.[J]. Facile rolline α-Fe2O3 oblique nanoparal lelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties [J]. Nanoscale,2011,3:718-724.
    [137]Sunkara M. K., Pendyala C., Cummins D., et al. Inorganic nanowires:a perspective about their role in energy conversion and storage applications [J]. Journal of Physics D:Applied Physics,2011,44: 174032-174038.
    [138]Melitz W., Shen J., Kummel A. C., et al. Kelvin probe force microscopy and its application [J]. Surface Science Reports,2011,66:1-27.
    [139]Escasain E., Lopez-Elvira E., Baro A. M., et al. Nanoscale surface photovoltage of organic semiconductors with two pass Kelvin probe microscopy [J]. Nanotechnology,2011,22: 375704-375711.
    [140]Gross D., Mora-Sero I., Dittrich T., et al. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy [J]. Journal of the American Chemical Society,2010,132:5981-5983.
    [141]Cheng K., He Y. P., Miao Y. M., et al. Quantum size effect on surface photovoltage spectra: alpha-Fe2O3 nanocrystals on the surface of monodispersed silica microsphere [J]. Journal of Physical Chemistry B,2006,110:7259-7264.
    [142]Peng L. L., Xie T. F., Fan Z. Y., et al. Surface photovoltage characterization of an oriented alpha-Fe2O3 nanorod array [J]. Chemical Physics Letters,2008,459:159-163.
    [143]Peng L. L., Xie T. F., Lu Y. C., et al. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts Physical [J]. Chemistry Chemical Physics,2010, 12:8033-8041.
    [144]Wei X, Xie T. F., Peng L. L., et al. Effect of heterojunction on the behavior of photogenerated charges in Fe3O4@Fe2O3 nanoparticle photocatalysts [J]. Journal of Physical Chemistry C,2011,115: 8637-8642.
    [145]Zhang X. L., Sui C. H., Gong J., et al. Preparation and formation mechanism of different hematite morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures [J]. Journal of Physical Chemistry C,2007,111:9049-9054.
    [146]Whitesides G. M., Mathias J. P., Seto C. T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures [J]. Science,1991,254:1312-1319.
    [147]Xie H., Li Y. Z., Jin S. F., et al. Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity [J]. Journal of Physical Chemistry C,2010,114:9706-9712.
    [148]Li X. L., Wei W. J., Wang S. Z., et al. Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties [J]. Nanoscale, 2011,3:718-724.
    [149]Wang J. H., Ma Y. W., Wang D. L., et al. Templating synthesis of waxberried hematite hollow spheres [J]. Materials Letters,2009,63:209-211.
    [150]Apte S. K., Naik S. D., Sonawane R. S., et al. Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity [J]. Journal of the American Ceramic Society,2007,90:412-414.
    [151]Grosvenor A. P., Kobe B. A., Biesinger M. C., et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surface and Interface Analysis,2004,36:1564-1574.
    [152]Zhao Q. D., Xie T. F., Peng L. L., et al. Size- and orientation-dependent photovoltaic properties of ZnO nanorods [J]. Journal of Physical Chemistry C,2007,111:17136-17145.
    [153]Zhang Y., Wang D. J., Pang S., et al. A study on photo-generated charges property in highly ordered TiO2 nanotube arrays [J]. Applied Surface Science,2010,256:7217-7221.
    [154]Stanger K. J., Tang Y., Anderegg J., et al. Arene hydrogenation using supported rhodium metal catalysts prepared from [Rh(COD)H]4, [Rh(COD)2]+BF4, and [Rh(COD)CI]2 adsorbed on SiO2 and Pd-SiO2 [J]. Journal of Molecular Catalysis A,2003,202:147-161.
    [155]Takai A., Kamat P. V. Capture, store, and discharge shuttling photo generated electrons across TiO2-silver interface [J]. American Chemical Society,2011,5(9):7369-7376.
    [156]Chen L., Ma D., Barbara P., et al. Carbon-supported silver catalysts for CO selective oxidation in excess hydrogen [J]. Journal of Natural Gas Chemistry,2006,15:181-190.
    [157]Park J. H., Park J., Shin H. The preparation of Ag/mesoporous silica by direct silver reduction and Ag/functionalized mesoporous silica by in situ formation of adsorbed silver [J]. Materials Letters, 2007,61:156-159.
    [158]Iliopoulou E. F., Evdou A. P., Lemonidou A. A., et al. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants [J]. Applied Catalysis. A:General,2004, 274:179-189.
    [159]Li X. S., Fryxell G. E., Wang C. M., et al. The synthesis of Ag-doped mesoporous TiO2 [J]. Microporous and Mesoporous Materials,2008,111:639-642.
    [160]Xie H., Li Y. Z., Jin S. F., et al. Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity [J]. Journal of Physical Chemistry C,2010,114(21):9706-9712.
    [161]Park E. Y., Kwon O. S., Park S. J., et al. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application [J]. Journal of Materials Chemistry,2012,22,1521-1526.
    [162]Fuerte A., Hernandez-Alonso M. D., Maira A. J., et al. Visible light-activated nanosized doped-TiO2 photocatalysts [J]. Chemical Commununications,2001,2718-2719.
    [163]Tian Y., Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at films loaded with gold nanoparticles [J]. Journal of the American Chemical Society,2005,127(20): 7632-7637.
    [164]Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:relationships between surface morphology and chemical behaviou [J]. Applied Catalysis A:General,2000,200: 275-282.
    [165]Marci G., Addamo M., Augugliaro V., et al. Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160: 105-114.
    [166]Zhang H. J., Li X. Y., Chen G. H. et al. Uniform alpha-Fe2O3 supported on TiO2 [J]. Journal of Materials Chemistry,2009,19:8223-8231.
    [167]Hoflund G. B., Hazos Z. F., Salaita G. N. Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy [J]. Physical Review B,2000,62(16):11126-11133.
    [168]Xiang Q. J., Yu J. G., Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chemical Society Reviews,2012,41:782-796.
    [169]Zhu J. X., Lu Z. Y., Oo M. O., et al. Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures [J]. Journal of Materials Chemistry,2011,21:12770-12776.
    [170]Xue X. Y., Ma C. H., Cui C. X., et al. High lithium storage performa nce of α-Fe2O3/graphene nanocomposites as lithium-ion battery anodes [J]. Solid State Sciences,2011,13:1526-1530.
    [171]Zhao Y., Li J. X., Ding Y. H., et al. Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+[J]. Journal of Materials Chemistry,2011, 21:19101-19105.
    [172]Fan D. Q., Liu Y., He J. P., et al. Porous graphene-based materials by thermolytic cracking [J]. Journal of Materials Chemistry,2012,22:1396-1402.
    [173]Kim Y. R., Bong S., Kang Y. J., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes [J]. Biosensors and Bioelectronics,2010,25:2366-2369.
    [174]Bong G. C., HoSeok P., Tae J. P., et al. Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode [J]. Electrochemistry Communications,2009,11(3):672-675.
    [175]Vivekchand S. R. C., Rout C. S., Subrahmanyam K. S.,et al. Graphene-based electrochemical supercapacitors [J]. Journal of Chemical Sciences,2008,120:9-13.
    [176]Li F. H., Song J. F., Yang H. F., et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors [J]. Nanotechnology,2009,20:455602-455608.
    [177]Zhang M., Lei D., Yin X. M.,et al. Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries [J]. Journal of Materials Chemistry,2010,20:5538-5543.
    [178]Zhang M., Qu B. H., Lei D. N., et al. A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties [J]. Journal of Materials Chemistry,2012,22:3868-3874.
    [179]Yin Z. Y., Wu S. X., Zhou X. Z., et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells [J]. Small,2010,6:307-312.
    [180]Yang M. H., Choi B. G., Park H. S., et al. Directed self-assembly of gold nanoparticles on graphene-ionic liquid hybrid for enhancing electrocatalytic activity [J]. Electroanalysis,2011,23(4): 850-857.
    [181]Park G., Bartolome L., Lee K. G., et al. One-step sonochemical synthesis of graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate) [J]. Nanoscale,2012,4(13):3879-3885.
    [182]Zhou G. M., Wang D. W., Li F., et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for Lithium Ion Batteries [J]. Chemistry of Materials,2010, 22:5306-5313.
    [183]Zou Y. Q., Kan J., Wang Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ionstorage [J]. Journal of Physical Chemistry C,2011,115:20747-20753.
    [184]Xu C., Chen Z. X., Fu X. Z. Graphene oxide-mediated formation of freestanding, thickness controllable metal oxide films [J]. Journal of Materials Chemistry,2011,21:12889-12893.
    [185]Zhang C. M., Zhu J. X., Rui X. H., et al. Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties [J]. CrystEngComm,2012,14:147-153.
    [186]Shou Q. L., Cheng J. P., Zhang L., et al. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors [J]. Journal of Solid State Chemistry,2012,185:191-197.
    [187]Hummers W. S., Offeman R. E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [188]Xiang Q. J., Yu J. G., Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chemical Society Reviews,2012,41:782-796.
    [189]Xu Y. X., Bai H., Lu G. W., et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of the American Chemical Society,2008, 130:5856-5857.
    [190]Wang G., Liu T., Luo Y. J., et al. Preparation of Fe2O3/grapheme composite and its electrochemical performance as an anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2011,509:L216-L220.
    [191]Reddy M. V., Yu T., Sow C. H. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries [J]. Advanced Functional Materials,2007,17:2792-2799.
    [192]Zhu J. X., Zhu T., Zhou, X. Z., et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability [J]. Nanoscale,2011,3:1084-1089.
    [193]Xu Y. X., Bai H., Lu G. W., et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemistry Society,2008, 130:5856-5857.
    [194]Matthew J. A.,Vincent C. T., Richard B., et al. Honeycomb carbon:a review of graphene [J]. Chemical Reviews,2010,110:132-145.
    [195]Yang J., Tian C. G., Wang L., et al. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation [J]. Journal of Materials Chemistry,2011,21:3384-3390.
    [196]Sun B., Horvat J., Kim H. S., et al. Synthesis of mesoporous γ-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries [J]. Journal of Physical Chemistry C,2010,114:18753-18761.
    [197]Chen D., Tang L. H., Li J. H. Graphene-based materials in electrochemistry [J]. Chemical Society Reviews,2010,39:3157-3180.
    [198]Pumera M. Graphene-based nanomaterials for energy storage [J]. Energy Environmental Science, 2011,4:668-674.
    [199]Kawaguchi M., Yagi S., Enomoto H. Chemical preparation and characterization of nitrogen-rich carbon nitride powders [J]. Carbon,2004,42(2):345-350.
    [200]Khabashesku V., Zimmerman J., Margrave J. Powder synthesis and characterization of amorphous carbon nitride [J]. Chemistry of Materials,2000,12(11):3264-3270.
    [201]Huynh M., Hiskey M., Archuleta J., et al. Preparation of nitrogen-rich nanolayered nanoclustered and nanodendritic carbon nitrides [J]. Angewandte Chemie International Edition,2005,44(5): 737-739.
    [202]Pevida C., Drage T., Snape C. Silica-templated melamine-formaldehyde resin derived adsorbents for CO capture [J].Carbon,2008,46 (11):1464-1474.
    [203]Ge L., Han C. C., Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange [J]. Applied Catalysis B:Environmental,2011,108 (1-2): 100-107.
    [204]Wang X., Maeda K., Thomas A., evt al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials,2009,8:76-80.
    [205]Maeda K., Wang X. C., Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light [J]. Journal of Physical Chemistry C, 2009,113:4940-4947.
    [206]Wang X. C., Maeda K., Chen X. F., et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light [J]. Journal of the American Chemical Society,2009,131:1680-1681.
    [207]Yang H. J., Yang H. X. TiO2-g-C3N4 composite material for photocatalytic H2 evolution under visible light irradiation [J]. Journal of Alloys and Compounds,2011,509:26-29.
    [208]Yan S. C., Li Z. S., Zou Z. G., et al. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009,25:10397-10401.
    [209]Yan S. C., Lu S. B., Li Z. S., et al. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities [J]. Dalton Transactions,2010,39:1488-1491.
    [210]Ge L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts [J]. Materials Letters,2011,65 (17-18):2652-2654.
    [211]Bojdys M. J., Mouller J. O., Antonietti M., et al. Ionothermal synthesis of crystalline condensed graphitic carbon nitride [J]. Chemistry-A European Journal,2008,14:8177-8182.
    [212]Marc'G., Addamoa M., Augugliaro V., et al. Photocatalytic oxidation of toluene on irradiated TiO2: comparison ofdegradation performance in humidified air, in water and in water containing a zwitterionic surfactant [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160: 105-114.
    [213]Wang Y., Shi R., Lin J., et al. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization [J]. Applied Catalysis B,2010,100:179-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700