用户名: 密码: 验证码:
两种渔药在沉积物中的微生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、通过室内模拟试验,研究孔雀石绿在养殖水体沉积物中的降解行为,结果显示孔雀石绿降解半衰期在12.9天-50.34天之间。降解过程中产生无色孔雀石绿,且消除时间比孔雀石绿消除时间长。沉积物中孔雀石绿浓度和温度均对孔雀石绿降解有影响,浓度上升,降解速率降低;温度上升,降解速率加快。沉积物孔雀石绿降解中微生物降解作用明显,光降解作用影响不明显。呋喃唑酮在沉积物中降解迅速,半衰期为33.39h。呋喃唑酮降解中会产生代谢产物AOZ,且在沉积物中消除时间长。AOZ在沉积物中降解半衰期为22.5天。
     2、从受孔雀石绿污染的养殖水体底泥中驯化分离到MJl菌株能有效降解孔雀石绿,经鉴定为假单胞菌(Pseudomonas sp.),该菌对无色孔雀石绿也具有降解能力。菌株MJl对孔雀石绿的24h和72h降解率为83.3%和93.6%,降解过程中有少量无色孔雀石绿代谢产物的产生。对5mg/L无色孔雀石绿的24h和72h降解率为72.9%和84.4%,降解效果相交孔雀石绿要略差。孔雀石绿浓度在低于10mg/L时,菌株MJl对孔雀石绿降解率都超过90%。在30-35℃降解率最佳,均能超过90%;pH7.0-9.0范围比较适合菌株对MG降解,pH7.0为最佳降解PH值。HPLC-MS对代谢产物进行初步研究分析,得到九个产物,并推断可能存在的裂苯环降解途径。
     3、从多次使用过呋喃唑酮的鱼塘底泥中富集驯化分离筛选得到菌株F1和F5对AOZ的降解效果较好,72h降解率分别为85.6%和89.7%。通过生理生化特征及16SrDNA测序结果鉴定F1菌株为苍白杆菌(Ochrobacterum sp.),F5为铜绿假单胞菌(Pseudomonas aeruginosa)。菌株F1对5mg/L的AOZ在20-40℃降解率均大于90%,适应温度范围宽,而菌株F5的最适温度在30-35℃。菌株F1适合的pH范围是7.0-8.0,而F5则是6.0-8.0,F5适应pH范围更宽。
     4、固定菌制备的最佳条件为:CaC12浓度5%,海藻酸钠浓度2%,胶联时间16h、包菌量600mg/kg。菌株MJ1和M3固定化后降解能力均有提高,MJl降解能力优于M3。MJl固定化后适应pH能力增强。混合固定菌对不同浓度孔雀石绿的底泥均有降解,且对低浓度(<1.0μg/g干重)底泥降解效果更好。固定菌的加入使得孔雀石绿降解半衰期缩短,表明固定菌对孔雀石绿的降解是有效的。适当增加固定菌的投菌量可提高降解速率和降解率,但这不是无限的。自然光照对孔雀石绿有一定降解作用,固定菌和自然光照联合作用后可以大大提高降解率,其中对降解起主要作用的是固定菌。
     5、大型溞急性毒性试验表明菌株MJ1和M3对大型溞的LC50均大于500mg/L。斑马鱼急性毒性试验表明两株菌对斑马鱼的LC50均大于500mg/L。1000mg/L高剂量组下,两株菌对鲫鱼抗氧化防御系统酶活未出现影响。表明两株菌具有相当的安全性。
1. The study of the degradation of the malachite green (MG) in the aquacultural sediment showed that the half-life of MG was from12.9days to50.34days. Leuomalachite green (LMG) was generate during the degradation. The elumination of LMG was slower than MG The decrease of initial concentration of MG and the increase of the temperature is benefit to the degradation of MG. The microbiodegradation was play an important role in the degradation, while the photodegradation was not important. The half-life of furazolidone in the sediment was33.39h.. The metabolite,3-amino-2-oxazolidone (AOZ), was detected during degradation. The half-life of AOZ was22.5days.
     2. Strain MJ1isolated from MG polluted fishery pond can degrada MG effectivly and was identified as Pseudomonas sp. This strain can also degrade LMG The24h and72h degradation rate of MG was8.33%and93.6%respectivly. The24h and72h degradation rate of LMG was72.9.%and84.4%respectivly. Degrdation ratio was more than90%if the initial concentration of MG was under10mg/L. The optimal degrdation temperature was30-35℃. The optimal degradation pH range was7.0-9.0. Nine main transformation products of MG degradated by strain MJ1were identified by liquid chromatography mass spectrometry. The possible metabolic pathway of degradation of MG by strain MJ1was cleavage of one benzene ring.
     3. Strain F1and F5isolated from furazolidone polluted fishery pond can degrade AOZ efficiantly. Degradation ratio of strain F1and F5was85.6%and89.7%respectivly. Strain F1and F5were identified as Ochrobacterum sp. and Pseudomonas aeruginosa. The optimal condition of strain F1was20-40℃and pH7.0-8.0. the optimal condition of strain F5were30-35℃and pH6.0-8.0
     4. Strain MJ1(Pseudomonas sp.) and M3(Pantoea sp.) were immobilized by sodium alginate. Optimal immobilizing condition was:5%CaCl2,2%sodium alginate,16h calsifying time and600mg/kg bacterial biomass. Degradation ratio of strain MJ1and M3was increased after immobilization. The optimal condition of immobilzed strain MJ1was pH6.0-9.0and30-35℃, while strain M3was pH5.0-9.0and25-30℃. Mixed immobilized bacteria MJ1and M3can degrade MG in the sediment. The degaradation half-life of MG in the sediment was shortened if adding immobilized bacteria. Adding the biomass of the immobilized bacteria can increase the degradation rate and ratio. Sunlight can degrade some of MG in the sediment.
     5. Aute toxicity test of Daphnia magna showed that the LC50of strain MJ1and M3were both more than500mg/L. Aute toxicity test of Brachydanio rerio showed that the LC50of strain MJ1and M3were both more than500mg/L. strain MJ1and M3had no oxidative stress on Carassius auratus.
引文
Alderman, D.J., Polglase, J.L.. A comparative investigation of the effects of fungicides on Saprolegnia parasitica and Aphanomyces astaci. Trans. Br. Mycol. Soc.1984.83,313-318.
    Allison L Henderson, Thomas C Schmitt, Thomas M Heinze. Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol.1997,63(10):4099-4101
    Alok M. Adsorption kinetics of removal of a toxic dye, Malachite Green from wastewater by using hen feathers. Journal of Hazardous Materials,2006,133(1-3):196-202
    Amlacher, E.. The effects of malachite green of fish, fish parasites (Ichthyophthirius, Trichondina), small crustaceans and water plants. Deutsche Fisher. Zeitung.1961.8:12-15.
    Annalaura Stammati, Carlo Nebbia, Isabella De Angelis, et al. Effects of malachite green (MG) and it major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro.2005.19:853-858
    Backhaus T, Grimme LH. The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere,1999,38 (14):3291-3301
    Bills, T.D., Marking, L.L., Chandler Jr., J.H.,1977. Malachite green:its toxicity to aquatic organisms, persistence and removal with activated carbon. Investig. Fish Contr.75,6.
    Bound J P, Voulvoulis N. Pharmaceuticals,in the aquatic environment-a comparison of risk assessment strategies. Chemosphere,2004.56:1143-1155.
    Bumpus JA, Brock BJ. Biodegradation of Crystal Violet by the white rot fungus Phanerochaete chrysosporiumAppl Environ Microbial,1988,54:1143-1150.
    Bumpus, J. A., Brock, B. J. Biodegradation of Crystal Violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol.1988,54(1):143-150
    Canan Akmil BASAR. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste-apricot. Journal of Hazardous Materials, 2006,135(1-3):232-241
    Cha CJ, Doerge DR, Cerniglia CE. Biotransformation of Malachite Green by the Fungus Cunninghamella elegans. Appl. Environ. Microbiol.2001,67(9):4358-4360
    Cha CJ, Doerge DR, Cerniglia CE. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol,2001,67(9):4358-4360
    Chen, C. C. C. S. Lu, Y. C. Chung, et.al. UV light induced photodegradation of Malachite Green on TiO2 nanoparticles. Journal of hazardous materials.2007,141:520-528
    Chiing-Chang Chen, Hung-Ju Liao, Chiu-Yu Cheng. Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett.2007,29:297-296
    Clanville S D,Clark A G. Inhibition of human glutathiones-transferases by basic triphenylmethane dyes. Life Science.1997.18-.1535-1544
    Cooper K.M, Caddell A, Elliott C.T, et al. Production and characterisation of polyclonal antibodies to a derivative of 3-amino-2-oxazolidinone, a metabolite of the nitrofuran furazolidone. Analytica Chimica Acta.2004,520:79-86.
    Cooper K.M, Samsonova J.V, Plumpton L, et.al. Enzyme immunoassay for semicarbazide The nitrofuran metabolite and food contaminant. Analytica Chimica Acta,2007,592:64-71
    Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin.2005,51:218-223
    Coyne R, Hiney M, O'Conner B, Cazabon D, Smith P. Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture,1994,123(1-2):31-42
    Culp S J, Beland F A, HeXich R H, et al. Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutation Research.2002.506/507: 55-63
    Culp SJ, Mellick PW, Trotter RW, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem Toxicol,2006.44:1204-1212
    Daneshvar N, Ayazloo M, Khataee AR, et al. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp.. Bioresource Technology,2007,98: 1176-1182.
    Daneshvar N, Khataee AR, Rasoulifard MH, et al. Biodegradation of dye solution containing Malachite Green:Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials,2007,143:214-219.
    Dario Sorrentino.Nitrofuranzone disposition by perfused rat liver effect of dose size andglutathione depletion[J].Biochemical Pharmacology,1987,36(6):915.
    David W,et a 1.Depletion and bioavailability of [14C] furazolidone residues in swine tissues. J Agric Food Chem,1995,43:2520-2525.
    Dijek P V, Van de Voorde H. Sensitivity of environmental microorganism to antimicrobial agents. Applied& Environmental Microbiology.1976,31:332-336.
    Doerge, D.R., Chang, H.C., Divi, R.L., Churchewell, M.I.. Mechanism for inhibition of thyroid peroxidase by leucomalahchite green. Chem. Res. Toxicol.1998.11 (9),1098-1104
    Edhlund BL, Arnold WA, McNeill K. Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol,2006,40:5422-5427
    Fessard, V., Godard, T., Huet, S., Mourot, A., Poul, J.M.. Mutagenicity of malachite green and leucomalachite green in in vitro tests. J. Appl. Toxicol.1999.19 (6):421-430.
    George J.D., Fail P.A., Grizzle T.B., Heindel J.J. Nitrofurazone:Reproductive assessment by continuous breeding in Swiss mice. Fundamental and Applied Toxicology.1996,34:56-66
    Gerundo, N., Alderman, D.J., Clifton-Hadely, R.S., Feist, S.W. Pathological effects of repeated doses of malachite green:a preliminary study. J. Fish Dis.1991.14,521-532
    Glenn JK, Gold MH. Decolorization of several polymericdyes by the lignin-degrading Basidiomycete Phanerochaete Heteropneustes f ossilis [J]. Aquat Toxicol,1995a,31: 2412247.
    Gouranchat C. Malachite green in fish culture (State of the art and perspectives). Bibliographic Studies. Ecole Natl. Veterinaire ENVT, Nantes, France,2000,142
    Gray J S. Biomagnifcation in marine systems:the perspective of all ecologist. Marine Pollution Bulletin.2002,45:46-52.
    Hamscher G, Sczesny S, Hoper H, Nau H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid hromatography with electrospray ionization tandem mass spectrometry. Anal. Chem.,2002,74 (7):1509-1518
    Haruo Yoshimura, Yuuko S. Endoh. Acute toxicity to freshwater organisms of antiparasitic drugs for veterinary use. Environmental Toxicology.2005,20 (1):60-66
    Hirsch R, Ternes T A, Haberer K, et al. Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment.1999,225:109-118.
    Hoogenboom L A P, Berghmans M C J, Polman THG, Parker R, Shaw IC. Depletion of
    protein-bound furazolidone metabolites containing the 3-amino-2-oxazolidinone side chain from liver, kidney and muscle tissues from pig. Food Addi Contam,1992,9:623-630
    Ivana Eichlerova, Ladislav Homolka, Frantisek Nerud. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresource Technology,2006,97:2153-2159.
    Jacobsen P, Berglind L. Persistence of Oxytetracycline in sediments from fish farms. Aquaculture, 1988,70(4):365-370
    Jadhav J. P., S. P. Govindwar. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast,2006,23:315-323
    Jian-Shen Zhao and Owen P. Ward. Substrate Selectivity of a 3-Nitrophenol-Induced Metabolic System in Pseudomonas putida 2NP8 Transforming Nitroaromatic Compounds into Ammonia under Aerobic Conditions. Applied and Environmental Microbiology.2001,67 (3):1388-1391
    Jones JJ, Falkinham JO. Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob Agents Chemother,2003,47:2323-2326
    Kari Fw.Toxicity and carcinogenicity of nitrofurazone in F344/N rat and B6C3F1 mice.Chem Toxic,1989,27(2):129.
    Kari R. NTP technical report on the toxicology and carcinogenesis studies of NFZ in F344/N rats and B6C3F1 mice (feed studies). U.S.Department of Health and Human Services,1988, 1-186
    Kim S. K, Kong I, Lee B H, et al. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier. Aquactdtural Engineering,2000.(21):139-150
    Knapp JS, Newby PS, Reece LP. Decolorization of wood-rotting basidiomycete fungi. Enzyme Microb Technol,1995,17:664-668.
    Kwasniewska K. Biodegradation of Crystal Violet(hexamethyl-prosaniline chloride) by oxidative red yeasts.Bull Environ Contam Toxicol,1985,34:323-330.
    Lanzky PF, Halling-S(?)rensen B. The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere,1997,35(11):2553-2561
    Livingstone D R. The fate of organic xenobiofics in aquatic ecosystems:quantitative and qualitative 20 differences in biotransformation by invertebrates and fish. Comparative Biochernistry & Physiology, Part A.1998,120:43-49.
    Macri A, Staza AV, Dojmi di Delupis G. Acute toxicity of Furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus Larvae. Ecotoxicology and Environmental Safety,1988,16(2):90-94
    Mahudawala, D.M., Redkar, A.A., Wagh, A., Gladstone, B., Rao, K.V. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green:an agent of environmental importance. Indian J. Exp. Biol.1999.37 (9),904-918.
    Manjanatha M G, Shelton S D, Bishop M, et al. Analysis of mutations and bone marrow micronuclei in big blue rats fed leucomalacbite green. Mutat Res.2004.547:5-18
    Matsui. M, Nakabayashi.H., Shibata. K., et.al. Ozonization of triphenylmethane dyes. Bull. Chem. Soc. Jpn.1984,57,312-3316
    Mccracken R J, Mccoy M A, Kennnedy D G. Furazolidone residues in pigs:criteria to distinguish between treatment and contamination. Food addit contam.2000,17(1):75-82
    McCracken R.J.,W.J.Blanchflower,C.Rowan,M.A.McCoy,D.G.Kennedy,Analyst 120(1995)2347
    Mckay Getal. Absorbing dye wastewater with activated carbon[J]. Colorage,1988,73(10):35-36
    Meinelt T, Playle R, Schreckenbach K, et al. The toxicity of the antiparasitic mixture, FMC is changed by humic substances and calcium. Aquaculture Research.2001.32:405-410
    Meyer, F.P., Jorgensen, T.A. Teratological and other effects of malachite green on the development of rainbow trout and rabbits. Trans. Am. Fish. Soc.1983.112 (6),818-824
    Miranda C D, Zemelman R. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. The Science of the Total Environment.2002,293:207-218
    Mohindra JK.Increased cells killing by metronidazole and nitrofuranzone of hypoxic compared to aerobic mammalian cells[J].Cancer Research,1976,36(3):930.
    Musa, S.O., Omoregie, E. Haematological changes in the mudfish, Clarias gariepinus (Burchell) exposed to malachite green. J. Aquat. Sci.1999.14,37-42
    Nelson, N.C., A review of the literature on the use of malachite green in fisheries. US National Technical Information Service, Washington, DC, Document No. PB 1974.88:235-450.
    Ole Bent Samuelsen, Einar Solheim and Bjorn Tore Lunestad. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. The Science of The Total Environment. 1991,108 (3):275-283
    Ollikka P, Alhonmaki K, Leppanen M, et al. Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium[J]. Appl.Environ.Microbiol.,1993,59:4010-4016
    Omoregie, E., Ofojekwu, P.C., Anosike, J.C., Adeleye, A.O. Acute toxicity of malachite green to the Nile tilapia, Oreochromis niloticus (L.). J. Aquat. Trop.1998.13 (4),233-237.
    Pointing. S B. Feasibility of bioremediation by white-rot fungi[J].Applied Microbiology Biotechnology,2001,57(1/2):20-33,
    Pomati F. Netting A G, Calamari D, et al. Efects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology,2004,67:387-396
    Porter, J. J, Spears, S. P. The photodecomposition of C.I. basic green 4. Tex. Chem. Color.1970,2, 191-195
    Raghavacharya C. Colour removal from industrial effluents-comparative review of available technologies[J]. Chemosphere,2003,50(4):517-528
    Raghavacharya C. Colour removal from industrial effluents-comparative review of available technologies[J]. Chemosphere,2003,50(4):517-528
    Rao, K.V.K. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green:A new liver tumor promoter. Toxicology Letters 1995.81:107-113
    Rao, K.V.K., Fernandes, C.L. Progressive effects of malachite green at varying concentrations on the development of N-nitrosodiethylamine induced hepatic preneoplastic lesions in rats. Tumori.1996.82 (3),280-286
    Ross, L.G., Ward, K.M.H., Ross, B. The effects of formaline, malachite green and suspended solids on the respiratory activity of rainbow trout, Salmo gairdneri Richandson. Aquacult. Fish. Manage.1995.16,129-138.
    Saito Tetal. Adsorption of dyes by activated carbon(SMAC). Mizu Gijutsu,1988,9(2):16-21
    Sandra J Culp, Lonnie R Blankenship, Donna F Kusewitt, et al. Toxicity and metabolism of malachite green and leucomalachite green during short2term feeding to Fischer344 rats and B6C3F1 mice. Chemico-Biological Interactions.1999.122:153-170.
    Sanghi R, Bhattacharya B.Review on decolorisation of aqueous dye solutions by low cost adsorbents.Coloration Technology,2002,118(5):256-269
    Sapkota A, Sapkota A R, Kucharski M, et al. Aquaculture practice and potential human health risks:Current knowledge and future priorities. Environment International, 2008, (34): 1215-1226.
    Sarnaik S,Kanekar P. Biodegradation of methyl violet by pseudomonas mendocina MCMB-402. Appllied Microbiol Biotechnolagy.1999(52):251-254
    Schnick R A. The impetus to register new therapeutants for aquaculture. Prog Fish Cult,1988,50: 190-196.
    Schnick, R.A., Meyer, F.P. Registration of thirty three-fishery chemicals:status of research and estimated costs of required contract studies. Invest. Fish. Contr.1978.86,19.
    Serrano P H. Responsible use of antibiotics in aquaculture. FAO Fisheries Technical Paper.2005, 469:97
    Smith, M.J., Heath, A.G. Acute toxicity of copper, chromate, zinc and cyanide to freshwater fish: effects of different temperature. Bull. Environ. Contain. Toxicol.1979.22,113-119.
    Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquatic Toxicology. 2004,66 (5):319-329.
    Srivastava, A.K. Sinha, R., Singh, N.D., Srivastava, S.J. Histopathological changes in a freshwater catfish, Heteropneustes fossilis following exposure to malachite green. Proc. Natl. Acad. Sci. India 1998b.68(1),23-27.
    Srivastava, A.K., Roy, D., Sinha, R., Singh, N.D., Srivastava, S.J. Dyes induced changes in the haematological parametersof a freshwater catfish, Heteropneutes fossilis. Ecol. Environ.Conserv.1996.2,155-158.
    Srivastava, A.K., Sinha, R., Singh, N.D., Roy, D., Srivastava, S.J. Malachite green induced changes in carbohydrate metabolism and blood chloride levels in the freshwater catfish, Heteropneustes fossilis. Acta Hydrobiol.1995b.37 (2),113-119.
    Srivastava, S.J., Singh, N.D., Sinha, R., Srivastava, A.K. Malachite green induced histopathological lesions in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). J. Adv. Zool.1998a.19 (1),46-49.
    Srivastava, S.J., Singh, N.D., Srivastava, A.K., Sinha, R. Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis. Aquat. Toxicol. 1995a.31,241-247.
    Sundarrajan, M., Frenandis, A.Z., Subrahmanyam, G., Prabhudesai, S., Krishnamurthy, S.C., Rao, K.V. Overexpression of Gl/S cyclins and PCNA and their relationship to tyrosine phosphorylation and dephosphorylation during tumor promotion by metanil yellow and malachite green. Toxicol. Lett.2000.116 (1-2),119-130
    Svobodova, Z., Groch, L., Hajshans, M., Vykusova, B., Machova,J. Effect of long-term therapeutic bath of malachite green on common carp (Cyprinus carpio). Acta Vet. Brno, 1997.66(2),111-116.
    Tanck, M.W.T., Hajee, C.A.J., Olling, M., Haagsma, N., Boon, J.H. Negative effect of malachite green on haematocrit of rainbow trout (Oncorhynchus mykiss Walbaum). Bull. Eur.Assoc. Fish. Pathol.1995.15 (4),134-136.
    Temes T. Pharmaceuticals and metabolites as contaminants of the aquatic environment:an overview. Journal of American Chemistry Society.2000,219:301-309.
    Toanne H.Toeher reductive activation of nitroheterocyclic compounds[J].Gen Pharmac,1997,28(4):485.
    Vasdev K, Kuhad RC, Saxena RK. Decolorization of triphenylmethane dyes by the bird's nest fungus, Cyarhusbulleri. Curr Microbial,1995,30:269-272.
    Wollenberger L. Halling-S(?)rensen B and Kusk K. O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere,2000.40:723-730
    Wright, L.D. Effect of malachite green and formaline on the survival of large mouth bass eggs and fry. Prog. Fish Cult.1976.38 (3),155-157.
    Yatome C, Ogawa T, Matsui M. Degradation of crystalviolet by Bacillus subrilis. J Environ Sci Health,1991,26:75-87.
    Yatome, C., Yamada, S., Ogawa, T, et.al Degradation of Crystal Violet by Nocardia coralline[J]. Appl. Microbiol. Biotechnol.1993,38,565-569
    Yesilada O. Decolourization of Crystal Violet by fungi. World J Microbial Biotechnol,1995,11: 601-602.
    Yesilada.O. Decolourization of Crystal Violet by fungi. World [J].Microbiol. Biotechnol.1995, 11,601-602
    Yildiz, H.Y., Pulatsu, S. Evaluation of the secondary stress response in healthy Nile tilapia (Oreochromis niloticus L.) after treatment with a mixture of formaline, malachite green and methylene blue. Aquacult. Res.1999.30 (5),379-383
    陈洪大.挪威水产养殖药物使用与药残控制及我们的思考.中国水产,2007,(6):24-25.
    陈杖榴,杨桂香,孙永学.兽药和饲料添加剂残留的毒性.广东饲料.2001,10(1):24-26
    成文,曾宝强.孔雀绿染料的微生物脱色研究[J].应用与环境生物学报,2000,6(4):3.70-373
    崔华平,林炜铁.固定化微生物在水产养殖中的应用.水产科学.2008.27(4):213-216
    崔明超,陈繁忠,傅家谟,盛国英.固定化微生物技术在废水处理中的研究进展.化工环保.2003.23(5):261-264
    刁晓平,孙振钧,沈建忠.兽药的生态毒理及其对环境影响的研究进展.应用生态学报.2004,15(2):32-25.
    董新姣,谢荣敏.固定化青霉X5对孔雀石绿的脱色研究.环境污染治理技术与设备,2006,7(1):45-49
    樊祥国,战文斌.我国渔药的发展概况和安全使用体系建设研究.上海水产大学学报.2007,16(3):287-292
    傅国,李宁毅.硝基呋喃类和硝基咪唑类药物的研究进展.青岛大学医学院学报,2003,39
    黄辉,弃振熊等.我国水产疫苗的研究现状.湖南农业科学.2010.(21):136-138,142
    黄英,柯才焕.几种药物对波部东风螺早期发育的影响.厦门大学学报:自然科学版.2001.40(3):821-826
    姜浩,高红梅.固定化微生物技术及其在养殖水体中的应用.水利渔业.2005.25(4):27-29
    黎小军,林陈水,许明,等.白腐菌ZJ-6的筛选及对合成染料的脱色研究.江西师范大学学报,2006,30(6):543-546
    李慧蓉.白腐真菌生物学和生物技术.北京:化学工业出版社,2005
    李凯年,逯德山.水产品药物残留对中国水产品出口的影响与对策.世界农业.2007,341:53-56
    梁利华,杨东虎,阚振荣.白腐真菌对染料废水脱色及降解的研究.生物学杂志,2003,20(3):5-8
    林群,梁旭方,王琳,程炜轩.孔雀石绿生态毒理学与水产品污染控制技术研究进展.环境与健康杂志.2008,25(7):654-657
    刘军,胡华军,张明洲,俞俊,俞晓平.渔药孔雀石绿的毒性、危害和检测现状.浙江农业学报.2006,18(5):397-400
    刘小云,舒为群.水中抗生素污染现状及检测技术研究进展.中国卫生检验杂志,2005,15(8):1011-1014.
    刘元兰,杜艳芳,陆嘉星.电生羟基自由基降解有机染料的研究.上海环境科学,2003,22(12):888-891
    马淞江,李方文.磁性磺化煤吸附水溶性有机染料的研究.湖南科技大学学报(自然科学版),2006,21(3):90-93
    倪柏锋,朱家新,陆国林,等.浙江地区动物细菌性病原结构及耐药性变迁的研究.中国畜牧兽医,2007,34(2):147-149.
    聂湘平,王翔,陈菊芳.水产养殖与有毒有害污染物残留及其环境影响.环境科学与技术.2007,30(4):106-110
    丘建华,陈瑞清.呋喃唑酮在动物体内的代谢及代谢物残留检测研究进展.福建畜牧兽医,2006,28(6):80
    曲甍甍,孙立伟,历以强.兽药添加剂阿散酸和土霉素的毒理学研究.农业环境科学学报,2004,23(2):240-242
    生威,李季,许艇.动物性产品中硝基呋喃类抗生素残留检测方法研究进展.农业环境科学学报.2006,25(增刊):429-434
    谭佑铭,等.固定化反硝化菌对富营养化水体脱氮的试验研究.中国卫生工程学.2003.2(2):65-68
    谭志军,郭萌萌等.苯扎溴胺和芳草中药对加速大菱鲆组织中硝基呋喃代谢物消除速率的作用初探.中山大学学报(自然科学版).2009,48(4):95-100
    谭志军,瞿毓秀等.呋喃西林和呋喃唑酮代谢物在大菱鲆组织中的消除规律.中山大学学报(自然科学版).2008,47:63-69
    王立华,战培荣,高为宇,等.固定化光合细菌应用于鲤鱼种运输的初步研究.淡水渔业,1997,27(4):11.12
    王习达,陈辉,左健忠,等.水产品中硝基呋喃类药物残留的检测与控制.现代农业科技,2007,18:152.
    王晓钰.纳米Ti02光催化氧化法处理碱性紫5BN染料废水的研究.新乡师范高等专科学校学报,2006,20(2):27-30
    王玉堂,吕永辉.目前允许使用的渔药构成与释析.中国水产.2008,61-67
    吴永宁,邵兵沈,建忠兽.药残留检测与监控技术.化学工业出版社,2007.461.
    吴子豹,黄妙良,杨嫒嫒,等.负载型Ti02复合材料对甲基橙的吸附行为及光催化降解动力学.精细化工,2007,24(1):21-26
    谢东海,韩奇,唐文浩.微生物固定化技术在污水处理中的应用.环境与可持续发展.2006.(4):48-50
    徐维海,林黎明,朱校斌,等.HPLC/MS法对呋喃唑酮及其代谢物AOZ在罗非鱼体内残留研究.上海水产大学学报,2005,14(1):36
    杨成对,宋莉晖,刘志弢,刘密新,张化一.呋喃唑酮代谢产物的去除方法研究.中国卫生检验杂志,2005,33(3):282-283
    杨守深.呋喃唑酮代谢物(AOZ)在日本鳗鲡体内的药物代谢动力学的研究及实物标准样品的制备.2009.福建农林大学硕士学位论文
    杨先乐,郑宗林.我国渔药使用现状、存在的问题及对策.上海水产大学学报.2007,16(4):374-380
    杨先乐.对孔雀石绿的禁用及其思考.水产科技情报,2005.32(5):210-213
    叶斌,李毅.对染料污水的吸滤一焚烧处理研究.工业水处理.1997,17(3):36-37
    叶佳林.“多宝鱼事件’’的思考.中国水产.2006,14-16
    叶金民,杨显祥,姜增华,王如愿,郑宗林,洪玉定.国内渔药使用现状、问题及合理化建议.中国水产.2007,(5):65-69
    叶赛,张奎文,姚子伟,等.环渤海水域磺胺类药物的含量特征.大连海事大学学报,2007,33(2):71-74.
    余志晟,文湘华.酵母Candida krusei对合成染料的脱色.环境科学,2005,26(5):137-142.
    余志晟,文湘华.酵母菌株Pseudozyma rugulosa对合成染料脱色的初步研究.环境化学,2005,24(2):186-188.
    翟毓秀,郭莹莹,耿霞,张翠,宁劲松,孔雀石绿的代谢机理及生物毒性研究进展.中国海洋大学学报.2007,37(1):27-32
    翟毓秀,张翠,宁劲松,耿霞.水产品中的孔雀石绿残留及其研究概况.海洋水产研究.2007,28(1):101-107
    张劲强,董元华,安琼,刘新程.兽药抗生素在土壤环境中的行为.土壤.2005,37(4):353-361
    张培培,任随周,许玫英,孙国萍.微生物对三苯基甲烷类染料脱色的研究进展.微生物学通报.2009.36(9):1410-1417
    张晓昱,颜克亮,王宏勋,等.稻草基质中白腐菌降解三苯甲烷类染料机制探讨.环境科学学报,2006,26(8):1284-1289.
    张仲秋,郑明.畜禽药物使用手册.北京:中国农业大学出版社.2000.p74
    郑耀通,胡开辉.固定化光合细菌净化养鱼水质试验.中国水产科学.1999.6(4):56-58
    周立红,用微核技术研究孔雀石绿对鱼的诱变作用.集美大学学报.1997.2(2):55-57
    Abraham. R.T., J.E. Knapp, M.B. Minni,-il, L.K. Wong, M.A. Zematis and J.D. Alvin,1984.
    Axler R, TikkanenC. Medonald Metal.Water quality issues associated with aquaeulture:A case study in mine Pit lakes. Water Environ Res.1996,68:995-1011.
    Bjoerklund H V, Raabergh C M, Bylund G.Residues of oxytetraeyeline in wild fish and sediments from fish farms.Aquculture.1991,97:359-367
    Bryan, (Ed.), Antimicrobiai Drug Resistance. Academic Press, New York, pp.317-344.
    Chien Y H, LaiHT, Liu M.Modeling the effeets of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment. Sci Total Environ.1999.239:81-87
    Edhlund BL, Arnold WA, McNeill K. Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol,2006,40:5422-5427
    Henau De H. Hand book of eotoxicology. oxford:Blackwell Seienee.1998:885 pp.
    Perez-Estrada, LA; Aguera, A; Hernando, MD, et al. Photodegradation of malachite green under natural sunlight irradiation:Kinetic and toxicity of the transformation products.Chmoshpere. 2008,70(11):2068-2075
    Rabin, H.R. and D.L. Lockerby,1984. Resistance to nitrofuraas and nitroimidazoles, in:L.E.
    Reductive metabolism of furaxolidone by Escherichia Coil and rat liver in vitro. Drug Metab. Dispos.,12:732-741.
    Samuelsen O B. Degradation of oxytetracycline in seawater at two different light intensities, and the persistence of oxytetracycline on the sediment from a fish farm. Aquaculture. 1989,83:7-16
    Samuelsen O.B, Einar Solheim and Bjarn Tore Lunestad. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. The science of the total environment.1991, 108:275-283
    Washington, J.A.,1985. Susceptibility test:agar dilution In:E.H. Lennett (Ed.), Manual of Clinical Microbiology. American Society for Microbiology, Washington, DC, USA, pp.967-971.
    Wu RS.The envirorunental impact of marine fish culture towards a sustainable future.Mar Poll Bull.1995,31:159-166.
    黄玉英,彭爱,黄志勇等.呋喃唑酮及其代谢物3—氨基—2—恶唑烷酮在鲤鱼体内的残留规律.福建农林大学学报(自然科学版)2009,38(2):181-185
    金相灿,屠清瑛.湖泊富营养化调查规范.北京:中国环境科学出版社.1990.
    刘敏,任随周,许玫英和孙国屏.LMG在养殖水体中的残留及其在鱼肌肉中的积累.淡水渔业.2010,40(5):32-36
    罗玉双,艾晓辉,刘长征.多次口灌呋喃唑酮在草鱼体内残留研究.水产科学2006,25(2):75-78
    谭志军,瞿毓秀等.呋喃西林和呋喃唑酮代谢物在大菱鲆组织中的消除规律.中山大学学报(自然科学版).2008,47:63-69
    徐维海,林黎明,朱校斌等.HPLC/MS法对呋喃唑酮及其代谢物AOZ在罗非鱼体内残留研究.上海水产大学学报.2005,14(1):35-39
    徐英江,宫向红,田秀慧,刘慧慧,张世娟.UPLCMS/MS测定海水及沉积物中硝基呋喃类代谢物.环境化学.2009,28(4):606-607
    余培建.降解水体中孔雀石绿的药物的初步研究.水生态学杂志.2009,12(1):21-24
    户江涛.近岸养殖区中氟苯尼考环境行为的研究.大连海事大学硕士学位论文.2008
    鲍艳宇.四环素类抗生素在土壤中的环境行为.南开大学博士后研究工作报告.2008
    C. C. Chen, C. S. Lu, Y. C. Chung, et al. UV light induced photodegradation of Malachite Green on TiO2 nanoparticles. Journal of hazardous materials.2007,141:520-528
    CHANG-JUN CHA, DANIEL R. DOERGE, AND CARL E. CERNIGLIA-Biotransformation of Malachite Green by the Fungus Cunninghamella elegans APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001,67 (9) 4358-4360.
    Perez-Estrada, LA; Aguera, A; Hernando, MD, et al. Photodegradation of malachite green under natural sunlight irradiation:Kinetic and toxicity of the transformation products.Chmoshpere. 2008,70(11):2068-2075
    Sandra J. Culp, Paul W. Mellick, Ronald W. Trotter, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats [J]. Food and Chemical Toxicology,2006,44(8):1204-1212
    东秀珠,蔡妙英.常见细菌鉴定手册.北京:科学出版社,2001,128-132
    刘军,胡华军,张明洲,俞俊,俞晓平.渔药孔雀石绿的毒性、危害和检测现状.浙江农业学报.2006,18(5):397-400
    刘敏,任随周,许玫英和孙国屏.LMG在养殖水体中的残留及其在鱼肌肉中的积累.淡水渔业.2010,40(5):32-36
    萨姆布鲁克J,拉塞尔DW.分子克隆.第3版.北京:科学出版杜,2003,611-618
    Leitner A, Zollner P, Lindner W. Determination of the metabolites of nitrofuran antibiotiCS in animal tissue by high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatograph A,2001,939(1-2):49-58.
    Mark S. Chadfield and Mike H. Hinton. Effects of furazolidone pretreatment of Salmonella enteritidis PT4 at sub-and suprainhibitory concentrations on phagocytosis and intracellular survival in chicken macrophages. Veterinary Immunology and Immunopathology.2004, 100(1-2):81-97
    Pereira A. S., L. C. Pampana, et.al. Analysis of nitrofuran metabolic residues in salt by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta.2004,514(1):9-13
    东秀珠,蔡妙英.常见细菌鉴定手册.北京:科学出版社,2001,128-132
    郭桢,连瑾,吴淑君.动物源性食品中呋喃唑酮及其代谢物的检测.广东农业科学.2005,5:57-59
    林黎明,林回春,高彦惠,刘心同,田进国,张鸿伟.液相色谱/串联质谱线性组合法测定动物组织中硝基呋喃代谢产物[J].分析化学研究报告,2005,33(8):1081-1086
    罗玉双,艾晓辉,刘长征.多次口灌呋喃唑酮在草鱼体内残留研究.水产科学,2006,25(2):75-78
    彭涛,储晓刚,杨强.高效液相色谱/串联质谱法测定奶粉中的硝基呋喃代谢物.分析化学研究报告,2005,33(8):1073-1076
    丘建华.呋喃唑酮在动物体内的代谢及代谢物残留检测研究进展.福建畜牧兽医.2006,28(6):80-81
    萨姆布鲁克J,拉塞尔DW.分子克隆[M].第3版.北京:科学出版杜,2003,611-618
    吴富忠,欧阳立群.水产品中呋喃唑酮、呋喃西林药物残留的HPLC法测定.中国卫生检验杂志,2006,16(7):812-813
    徐维海,林黎明,朱校斌,王新亭,张干.HPLC/MS法对呋喃唑酮及其代谢物AOZ在罗非鱼体内残留研究.上海水产大学学报.2005,14(1):35-39
    杨成对,宋莉晖,刘志弢,刘密新,张化一.呋喃唑酮代谢产物的去除方法研究.中国卫生检验杂志,2005,33(3):282-283
    杨成对,宋莉晖,刘志涛,刘密新,张化一。电子束辐照下呋喃西林代谢产物降解的质谱检测.分析测试学报.2005,24(6):96-98
    喻海忠,苏兆亮,陈建国,张驰宇,许化溪.1porD和oorD基因突变与幽门螺杆菌对呋喃唑酮耐药的关系.江苏大学学报.2007,17(2):167-170
    Annalaura Stammati, Carlo Nebbia, Isabella De Angelis, et al. Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro,2005,19(7):853-858
    C. C. Chen, C. S. Lu, Y. C. Chung, et al. UV light induced photodegradation of Malachite Green on TiO2 nanoparticles[J]. Journal of hazardous materials.2007,141:520-528
    Culp S J, Beland F A. Malachite green:a toxicological review. Am Coll Toxicol, 1996.15: 219.238.
    Daneshvar, N. Ayazloo, M. Khataee, A.R. et al. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp.. Bioresource Technology,2007, 98(6):1176-1182 Rajesh Kumar Sani, Uttam Chand Banerjee. Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme and Microbial Technology,1999.24(7): 433-437
    Roberta A. Mittelstaedt, Nan Mei, Peggy J. Webb, et al. Genotoxicity of malachite green and leucomalachite green in female Big Blue B6C3F1 mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2004,66(1-2):127-138
    Sandra J. Culp, Paul W. Mellick, Ronald W. Trotter, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food and Chemical Toxicology,2006,44(8):1204-1212
    Shivaji Srivastava, Ranjana Sinha, D. Roy. Toxicological effects of malachite green. Aquatic Toxicology,2004,66(3):319-329
    李超敏,韩梅,张良,陈锡时.细胞固定化技术—海藻酸钠包埋法的研究进展.安徽农业科学。2006.34(7):1281-282,1284
    刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水.中国给水排水,2003.19(5):53-55.
    任倩,蒋丽娟,宋炜等.孔雀石绿降解菌M3的分离鉴定及降解特性研究.生态与农村环境学报.2007.23(3):65-69
    万红,宋碧玉,杨毅等.水产养殖废水的生物处理技术及其应用.水产科技情报.2006.33(3):99-103
    Bradford, M.M., A rapid and sensitive method for the quantisation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Anal. Biochem.1976.72:248-254.
    Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferases:the first enzymatic stepin mercapturic acid formation. J. Biol. Chem.1974.249:7130-7139.
    Marklund, S., Marklund, G., Involvement of the superoxide anion radical in theautooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem.1974.47: 469-474.
    环保用微生物菌剂环境安全评价导则.中华人民共和国环境保护行业标准HJ/T 415-2008
    徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性及活性抑制的紫外分光光度法测定.环境化学.1997.16(1):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700