用户名: 密码: 验证码:
有机污染物电化学氧化反应器的流体动力学和传质性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机污染物的电化学氧化指的是在外电场的作用下污染物在阳极表面上发生直接电化学反应,或利用在电极表面产生的强氧化性活性物种使污染物发生转化。电化学氧化法处理有机污染物具有无二次污染、环境兼容性好、反应条件温和、易于自动控制等优点,是一种具有应用前景的有机污染物处理技术。但是,该技术在实际应用过程中还存在一些亟待解决的问题,如电化学反应器的电流效率低、传质性能差等。因此,本论文以电化学法处理有机污染物的“绿色”技术实现工业化为目的,对有机污染物降解动力学、电化学反应器流动和传质的工程问题开展一系列应用基础研究。
     (1)电催化氧化技术处理实际化工废水的研究
     使用二维或三维电极反应器对某炼油厂的反渗透浓缩水和某氯醇法生产环氧丙烷过程中产生的皂化废水进行处理,取得了良好效果。反应器型式、电流密度、通电时间、电解液流速、电极材料和相对面积等都是影响处理效果的重要因素,但实际有机废水的处理过程中存在能耗高、电极“堵塞”、有机污染物的降解机理及降解过程动力学等问题,需要我们开展相关的电化学工程理论研究。
     (2)有机污染物的电催化氧化降解动力学的研究
     研究了有机物草酸在采用活性Ti/IrO2-Ta2O5电极为阳极的圆柱形电化学反应器中的整个降解过程。由于有机污染物的电催化降解包含两条都属于“直接电氧化”的反应路径,建立了能描述整个降解过程的瞬时电流效率与溶液本体有机物浓度的关系式,并通过有机物降解实验对上述模型进行了验证,实验结果与模型计算结果一致。另外,还通过参数分析探讨了有机污染物在电极表面直接电催化氧化降解的两条路径的竞争关系。
     研究了氯离子存在条件下,使用Ti/IrO2-Ta2O5阳极时,有机物草酸在圆柱形电化学反应器中的间接电氧化降解过程。有机物在该体系中的电催化降解是典型的电化学反应-化学反应串联过程。当氯离子的添加浓度太少时,反应体系发生的主要是直接电氧化或氧气析出反应,电流效率很低。只有当有机废水中含有适量的氯离子时,间接电氧化才能体现出明显的降解效果。降解过程的pH值变化表明,反应开始阶段电解液呈强酸性不变,直到草酸的去除率达到80%以上,反应体系的pH值才有明显的增大。
     草酸在圆柱形电化学反应器中的间接电氧化过程符合一级反应动力学规律。由于Hatta准数的大小在0.1左右,草酸与活性氯的反应主要发生在溶液本体和电极表面扩散层/反应层中,这为电化学反应器的选型、设计和优化提供了有用的信息。
     (3)电化学反应器的流动特性和传质性能研究
     使用常见的脉冲响应技术测定了实验室规模的滤压式电化学反应器的停留时间分布。停留时间分布的拖尾现象说明反应器存在“死区”,随着流速的增大,拖尾现象减弱;在两条流动路径的假设基础上建立的组合流动模型可以较好的描述具有双峰现象的停留时间分布。其中路径1是指穿过电极的流体,路径2是指是沿着滤压式电化学反应器的内部壁面流动的流体。组合流动模型的参数受流速和电极结构的影响。与具有较大平均停留时间的路径2有关的模型参数受流速的影响较大,这是由于反应器中的流体流动起强化对流和减小水力边界层厚度的作用,而电极结构对流动性能的影响体现在路径1上。
     用极限电流法对竖直放置的管式电极反应器的平均传质系数的测定结果表明,反应器的平均传质系数随着入口扩大系数的减小而增大,但与入口流道的数量和分布无关。CFD模拟结果解释了传质提高的原因:当入口扩大系数减小时,反应器入口的下游出现了射流,并且由于射流的卷吸和扩展,电解液的湍流程度加剧,起到了强化传质的作用。
     网状电极对管式平行电极反应器传质强化的研究表明,使用网状电极后,电解液的流动模式由平板电极的层流变为湍流,电极表面的水力边界层厚度减小网状电极通过强化对流提高了管式平行电极反应器的传质性能。
     CFD数值模拟结果与实验结果的比较表明,CFD模拟过程中所做出的关于Nernst扩散层的假设是正确的。CFD数值模拟方法可以弥补实验条件的不足,对电化学反应器单相流动的数值模拟能够较好的反映和预测反应器的传质性能。
     本论文基于有机污染物电化学降解机理,克服了已有文献中按照反应控制步骤分段讨论的缺点,建立了能描述整个降解过程的数学模型;并针对电催化氧化技术对反应器的特殊要求,提出了研究电极附近液层特征的新方法,完善了相关的电化学工程基础理论,为用于有机废水处理的电化学反应器的的设计和优化提供了有效的信息。
Electrochemical oxidation means conversion or destruction of organic substrates in wastewater under the influence of the electric field. It can take place through two different oxidation mechanisms:(1) direct anodic oxidation, where the pollutants are destroyed at the anode surface;(2) indirect oxidation where a mediator is electrochemically generated to carry out the oxidation. Electrochemical oxidation method is a perspective technology for organic wastewater treatment because its advantages such as free secondary pollution, environmental compatibility, mild reaction conditions, easy automation, etc. However, the practical application of this technology still faces some urgent problems such as low current efficiency and weak mass transfer performance. The purpose of this thesis is accelerating the industrialization of the "green" electrochemical wastewater treatment technology. Aiming to the above existing problems, we make a series of fundamental engineering researches on the electrochemical reaction kinetics for organic pollutant degradation, flow characteristic and mass transport process in the electrochemical reactor.
     (1) Application of electrochemical oxidation technology for practical chemical produce wastewater treatment
     Good effect was achieved by the treatment of reverse osmosis concentrated wastewater from refinery and saponification wastewater from propylene oxide production using two-dimension or three-dimension electrochemical reactor. Type of electrochemical reactor, current density, electrolysis time, electrolyte flow rate, electrode materials and their opposite area were important factors that effects the organic pollutant degradation results. However, some problem such as high energy consumption, block of three-dimension electrode, mechanism and kinetic of organic degradation was appeared. The solution of these problems needs our theoretical study about electrochemical engineering.
     (2) Kinetic of organic electrochemical oxidation
     The whole degradation process of oxalic acid in a cylindrical electrochemical reactor with active Ti/IrO2-Ta2O5 anode was studied. The relation between instantaneous current efficiency and organic concentration was established base on the two paths for direct electrochemical oxidation, and the kinetic model was verified by experiments. The experimental results are consistent with the established kinetic model. Furthermore, the competition between the two paths was explored with model parameter analysis.
     The indirect electrochemical oxidation process of oxalic acid under the condition of chloride ion existence was studies. Organic degradation in this system is a typical series electrochemical-chemical process. When the amount of chloride ion is too little, the current efficiency is very low, that is because the reaction system occurs mainly direct electrochemical oxidation or oxygen generation. Only the indirect electro-oxidation reflects significant degradation effect when organic wastewater containing some amount of chloride ions. The variety of pH showed that, electrolyte maintains strong acid until the removal percentage of oxalic acid larger than 80%.
     The indirect electrochemical degradation of oxalic acid is agreed with the role of first order reaction kinetics. The value of the Hatta number, which approximated to 0.1 indicates that, most of the reactions between the organic and the active chlorine take place both in the bulk solution and in the reaction zone near the anode.
     (3) Flow characteristics and mass transfer performance of electrochemical reactor
     The residence time distribution in a laboratory scale filter-press type electrochemical reactor was determined using common impulse-response technique. The phenomenon of tailing indicated the existence of "dead zone" in the reactor. This phenomenon reduces and even disappears at high flow rate. The two peaks for RTD curves can be well expressed by the composite flow model about two paths. And path-1 is the flow moves through the holes of the electrode; path-2 is the fluid flows along the internal walls of the filter-press type electrochemical reactor. The effect of flow rate and electrode configuration on the flow model parameters was investigated. Because of the enhancement of convection and the decrease of boundary layer thickness, the parameters for path-2 are significantly influenced by flow rate. And the model parameters of path-1 reflected the effect of electrode configuration on the total flow characteristics.
     Determination of mass transfer coefficient for vertical tubular electrochemical reactor with parallel electrodes has shown that mass transfer coefficient increased with the decrease of expansion ratio, but it is little related to distribution and amount of circular arranged holes in baffles. The CFD simulation result showed the appearance of jet flow downstream the sudden expansion entrance. In effect, the high rates of shear induce the rotation of the solution and small eddies are formed, the level of electrolyte turbulence enhances and plays a role in improving mass transfer performance.
     The study of mass transfer enhancement for mesh electrode in a tubular electrochemical reactor indicated that, the insert of mesh electrode has changed the flow pattern from laminar to turbulence, and the thickness of boundary layer gets smaller. This leads to the improvement of force convection and enhancement of mass transfer performance.
     The comparison of CFD simulation and experimental results showed that the assumption related to Nernst diffusion layer is correct. The single-phase CFD simulation method is a useful tool to describe the flow characteristic and predict the local mass transfer performance in such an electrochemical reactor.
     In this thesis, a kinetic model described the whole degradation process of organic pollutants was established based on the mechanism of electrochemical oxidation. And this model overcomes the shortage of former literatures discussed by control steps. Furthermore, according to the special requirements for electrochemical oxidation reactor, we have raised a novel method investigating the electrolyte layer near the electrode. These studies have provided some useful information on the selection, design and optimization of electrochemical oxidation reactor for organic pollutants.
引文
[1]联合国教科文组织.世界水资源开发报告(第三版)[R].日内瓦:联合国教科文组织,2009.
    [2]刘学艺,何纪力,石勇等.经济增长方式与环境保护的战略转变[J].环境保护,2007,(6):41-45.
    [3]中华人民共和国水利部.中国水资源公报[M].北京:中国水利电力出版社,1999.
    [4]水利部松辽水利委员会.松辽流域水资源公报[R].北京:中华人民共和国水利部,2008.
    [5]戴树桂.环境化学[M].北京:高等教育出版社,1997.
    [6]丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社,2002.
    [7]徐美倩.废水可生化性评价技术探讨[J].工业水处理,2008,28(5):17-20.
    [8]柳荣展,石宝龙.轻化工水污染控制[M].北京:中国防治出版社,2008.
    [9]WUERTZ S, BISHOP P L, WILDERER P A. Biofilms in wastewater treatment:an interdisciplinary approach[M]. London:IWA Publishing,2005.
    [10]LIN S H, CHUANG T S. Combined treatment of phenolic wastewater by wet air oxidation and activated sludge[J]. Toxicological & Environmental Chemistry,1994,44 (33):243-258.
    [11]GONZALEZ G, HERRERA M G, GARCIA M T, et al. Biodegradation of phenol in a continuous process:comparative study of stirred tank and fluidized-bed bioreactors[J]. Bioresource Technology,2001,76 (3):245-251.
    [12]MUTHURAMAN G, TENG T T, LEH C P, et al. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant[J]. Journal of Hazardous Materials,2009,163(1):363-369.
    [13]CHIOU M S, KUO W S, LI H Y. Removal of reactive dye from wastewater by adsorption using ECH cross-linked chitosan beads as medium[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering,2003,38(11): 2621-2631.
    [14]MAJEWSKA-NOWAK K, KABSCH-KORBUTOWICZ M. Application of low-pressure membrane processes to dye effluents treatment[J]. Environment Protection Engineering,1999, 25(3):139-144.
    [15]王金梅,关荐伊.离子交换法从制药废水中回收土霉素[J].化学世界,2006,47(8):74-77.
    [16]李世忠,高冠道,张爱勇,等.化学絮凝法处理制药废水应用研究进展[J].工业用水与废水,2008,39(6):6-10.
    [17]魏在山,徐晓军,宁平,等.气浮法处理废水的研究及其进展[J].安全与环境学报,2001,1(4):14-18.
    [18]FRANKENBURG W G. Advances in catalysis and related subjects,Vol.28 [M]. New York: Academic Press,1952.
    [19]STASINAKIS A S. Use of Selected Advanced Oxidation Processes (Aops) for Wastewater Treatment-A mini review[J]. Global NEST Journal,2008,10(3):376-385.
    [20]钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理,2002,22(1):1-5.
    [21]CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [22]AMAT A M, ARQUES A, MIRANDA M A, et al. Photo-fenton reaction for the abatement of commercial surfactants in a solar pilot plant[J]. Solar Energy,2004,77(5):559-566.
    [23]舒启溢,邱俊明,张玉英.光催化氧化降解处理有机废水研究进展[J].广东化工,2010,37(4):126-127.
    [24]LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today,1999,53(1):81-91.
    [25]付冬梅.高级氧化技术处理难降解有机废水的研究[D].北京:中国科学院大连化学物理研究所,2005.
    [26]向波涛,王涛.一种新兴的高效废物处理技术——超临界水氧化法[J].化工进展,1997,(3):39-44.
    [27]孙楹煌,李彦旭,陈佩仪,等.超临界水氧化法及其在有机废水处理中的应用[J].水资源保护,2005,21(6):75-78.
    [28]崔艳萍,杨昌柱.电化学氧化法在难降解有机废水处理中的应用[J].工业安全与环保,2004,30(6):12-14.
    [29]ANGLADA A, URTIAGA A, ORTIZ I. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications[J]. Journal of Chemical Technology & Biotechnology,2009,84(12):1747-1755.
    [30]李炳焕,黄艳娥,刘会媛,等.电化学催化降解水中有机污染物的研究进展[J].环境污染治理技术与设备,2002,3(2):23-27.
    [31]YOSHIDA K, YOSHIDA S, SEKI Y, et al. Basic study of electrochemical treatment of ammonium nitrogen containing wastewater using boron-doped diamond anode[J]. Environment & Resource,2007, (65):71-73.
    [32]CABEZA A, URTIAGA A, RIVERO M J, et al. Ammonium removal from landfill leachate by anodic oxidation[J]. Journal of Hazardous Materials,2007,144(3):715-719.
    [33]ANOTAI J, SU C, TSAI Y, et al. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes[J]. Journal of Hazardous Materials,2010, 183(1-3):888-893.
    [34]VLYSSIDES A, BARAMPOUTI E M, MAI S, et al. Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation[J]. Environmental Science and Technology, 2004,38(22):6125-6131.
    [35]VERA Y M, CARVALHO R J, TOREM M L, et al. Atrazine degradation by in situ electrochemically generated ozone[J]. Chemical Engineering Journal,2009,155(3):691-697.
    [36]FARMER J C, WANG F T, HAWLEY-FEDDER R A, et al. Electrochemical treatment of mixed and hazardous wastes:Oxidation of ethylene glycol and benzene by silver(Ⅱ)[J]. Journal of the Electrochemical Society,1992,139(3):654-662.
    [37]BRINGMANN F, EBERT K, GALLA U, et al. Electrochemical mediators for total oxidation of chlorinated hydrocarbons:formation kinetics of Ag(Ⅱ), Co(Ⅲ), and Ce(Ⅳ)[J]. Journal of Applied Electrochemistry,1995,25(9):846-851.
    [38]陈繁忠,傅家谟,盛国英,等.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,(3)24-26.
    [39]张成光,缪娟,符德学,等.电化学技术降解有机废水研究进展[J].应用化工,2006,35(10):798-801.
    [40]MARTINEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes[J]. Chemical Society Review,2006, 35(12):1324-1340.
    [41]CHEN G. Electrochemical Technologies in Wastewater Treatment[J]. Separation & Purification Technology,2004,38(1):11-41.
    [42]BRINGMANN J, EBERT K, GALLA U, et al. Electrochemical mediators for total oxidation of chlorinated hydrocarbons:formation kinetics of Ag(Ⅱ), Co(Ⅲ), and Ce(Ⅳ)[J]. Journal of Applied Electrochemistry,1995,25(9):846-851.
    [43]VYJAYARAGHAVAN K, AHMAD D, YUZRI A, et al. Electrolytic treatment of latex wastewater[J]. Desalination,2008,219(1-3):214-221.
    [44]ANGLADA A, URTIAGA A. ORTIZ I. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes[J]. Environmental Science & Technology. 2009,43(6):2035-2040.
    [45]CHO S H, LEE H J, MOON S H. Integrated electroenzymatic and electrochemical treatment of petrochemical wastewater using a pilot scale membraneless system[J]. Process Biochemistry,2008,43(12):1371-1376.
    [46]SERIKAWA R M, SENDA Y, SASAKI K. Proceedings of the 214th Meeting of ECS-The Electrochemical Society[C], Honolulu:2008.
    [47]CABEZA A, PRIMO O, URTIAGA A, et al. Definition of a clean process for the treatment of landfill leachates integration of electro-oxidation and ion exchange technologies[J]. Separation Science and Technology,2007,42(7):1585-1596.
    [48]ZAYAS T, ROMERO V, SALGADOL, et al. Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent[J]. Separation and Purification Technology,2007,57(2):270-276.
    [49]CABEZA A, URTIAGA A M, ORTIZ I. Proceedings of the 1st International Congress on Green Process Engineering[C], Toulouse:2007.
    [50]PULGARIN C, ADLER N, PERINGER P, et al. Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment[J]. Water Research,1994,28(4):887-893.
    [51]CANIZARES P, PAZ R, LOBATO J, et al. Electrochemical treatment of the effluent of a fine chemical manufactruring plant[J]. Journal of Hazardous Materials,2006, B138:173-181.
    [52]HAN W Q, WANG L J, SUN X Y, et al. Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor[J]. Journal of Hazardous Materials,2008,151(2-3):306-315.
    [53]WANG B, KONG W, MA H. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode[J]. Journal of Hazardous Materials,2007,146(1-2):295-301.
    [54]EL-ASHTOUKHY E S Z, AMIN N K, ABDELWAHAB O. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor[J]. Chemical Engineering Journal,2009, 146(2):205-210.
    [55]RAJKUMAR D, PALANIVELU K. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials,2004, B113(1-3):123-129.
    [56]VLYSSIDES A G, PAPAIOANNOU D, LOIZIDOY M, et al. Testing an electrochemical method for treatment of textile dye wastewater[J]. Waste Management,2000,20(7):569-574.
    [57]CHATZISYMEON E, XEKOUKOULOTAKIS N P, COZ A, et al. Electrochemical treatment of textile dyes and dyehouse effluents[J]. Journal of Hazardous Materials,2006, B137(2): 998-1007.
    [58]LIN S H, PENG C F. Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge[J]. Water Research,1996,30(3):587-592.
    [59]SZPYRKOWICZ L, KAUL S N, NETI R N, et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater[J]. Water Research,2005, 39(8):1601-1613.
    [60]PANIZZA M, CERISOLA G. Electrochemical oxidation as a final treatment of synthetic tannery WASTEWATER[J]. Environmental Science & Technology,2004,38(20):5470-5475.
    [61]PIYA-AREETHAM P, SHENCHUNTHICHAI K, HUNSOM M. Application of electro-oxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode[J]. Water Research,2006,40(15):2857-2864.
    [62]VYJAYARAGHAVAN K, AHMAD D, LESA R, Electrolytic treatment of beer brewery wastewater[J]. Industrial & Engineering Chemistry,2008,45(20):6854-6859.
    [63]VYJAYARAGHAVAN K, RAMANUJAM T K, BALASUBRAMANIAN N. In situ hypochlorous acid generation for the treatment of distillery spentwash[J]. Industrial & Engineering Chemistry,1999,38(6):2264-2267.
    [64]GIANNIS A, KALAITZAKIS M, DIAMADOPOULOS E, et al. Electrochemical treatment of olive mill wastewater[J]. Journal of Chemical Technology and Biotechnology,2007,82(7): 663-671.
    [65]MAVROS M, XEKOUKOULOTAKIS N P, Mantzavinos D, et al. Complete treatment of olive pomace leachate by coagulation, activated-carbon adsorption and electrochemical oxidation[J]. Water Research,2008,42(12):2883-2888.
    [66]GOTSI M, KALOGERAKIS N, PSILLAKIS E, et al. Electrochemical oxidation of olive oil mill wastewaters[J]. Water Research,2005,39(17):4177-4187.
    [67]DELIGIORGIS A, XEKOUKOULOTAKIS N P, DIAMADOPOULOS E, et al. Electro-chemical oxidation of table olive processing wastewater over boron-doped diamond electrodes:treatment optimization by factorial design[J]. Water Research,2008,42(4-5): 1229-1237.
    [68]FEKI F, ALOUI F, FEKI M, et al. Electrochemical oxidation posttreatment of landfill leachates treated with membrane bioreactor[J]. Chemosphere,2009,75(2):256-260.
    [69]DENG Y, ENGLEHARDT J D, Electrochemical oxidation for landfill leachate treatment J]. Waste Management,2007,27(3):380-388.
    [70]VLYSSIDES A G, KARLIS P K. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J]. Journal of Hazardous Materials,2002,95(1-2): 215-226.
    [71]PANIZZA M, CERISOLA G Electrochemical oxidation of 2-naphthol with in situ electro-generated active chlorine[J]. Electrochimica Acta,2003,48(11):1515-1519.
    [72]HU W K, YE Z, NOREUS D. Influence of MH electrode thickness and packing density on the electrochemical performance of air-MH batteries[J]. Journal of Power Sources,2001, 102(1-2):35-40.
    [73]FERRO S. The bromine electrode Part Ⅲ:reaction kinetics at highly boron-doped diamond electrodes[J]. Journal of Applied Electrochemistry,2005,35(3):279-283.
    [74]JOSE P I S, FRANCISCO J B R, Ines R M, et al. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy[J]. Journal of Electroanalytical Chemistry,1997,420(1-2):17-20.
    [75]NOVAK P, JOHO F, LANZ M, et al. The complex electrochemistry of graphite electrodes in lithium-ion batteries[J]. Journal of Power Sources,2001,97-98:39-46.
    [76]KALAKODIMI R P, NORIO M. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochemistry Communications,2004, 6(10):1004~1008.
    [77]马淳安,褚有群,朱英红,等.酸性溶液中硝基苯在WC电极上的电化学还原[J].电化学,2004,10(3):298-302.
    [78]COUPER A M, PLETCHER D, WALSH F C. Electrode materials for electrosynthesis[J]. Chemical Review,1990,90(5):837-865.
    [79]ITO Y, NOHIRA T. Non-conventional electrolytes for electrochemical applications[J]. Electrochimica Acta,2000,45(15-16):2611-2622.
    [80]吴辉煌,许书楷.电化学工程导论[M].厦门:厦门大学出版社,1994.
    [81]PANIZZA M, CERISOLA G. Influence of anode material on the electrochemical oxidation of 2-naphthol:Part Ⅰ. Cyclic voltammetry and potential step experiments[J]. Electrochimica Acta,2003,48,(23):3491-3497.
    [82]FOTI G., MOUSTY C, REID V, et al. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor[J]. Electrochimica Acta,1998,44(5): 813-818.
    [83]PELEGRINO R R L, VICENTIN L C, ANDRADE A R D, et al. Thirty minutes laser calcination method for the preparation of DSA type oxide electrodes[J]. Electrochemistry Communications,2002,4(2):139-142.
    [84]宋卫锋,林美强,倪亚明,等.DSA类电极催化降解硝基苯动力学及机理的研究[J].环境科学研究,2002,15(5):10-13,21.
    [85]CHEN X, Chen G, Gao F, et al. High-performance Ti/BDD electrodes for pollutant oxidation[J]. Environmental Science & Technology,2003,37(21):5021-5026.
    [86]CHIANG L, CHANG J, WEN T. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Water Research,1995,29(2):671-678.
    [87]MONTILLA F, MICHAUD P A, MORALLON E, et al. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes[J]. Electrochimica Acta,2002,47(21):3509-3513.
    [88]REISENER J, REUTER M A, KRUGER J, et al. Modelling of the mass transfer in gas-sparged electrolysers with neural nets[J]. Chemical Engineering Science,1993,48(6): 1089-1101.
    [89]XU H, HUANG W, XING Y, et al. Effect of Configuration on Mass Transfer in a Filter-press Type Electrochemical Cell[J]. Chinese Journal of Chemical Engineering,2008,16(2): 198-202.
    [90]GOMAA H G. Interphase transfer at oscillatory rough surfaces[J]. International Journal of Heat and Mass Transfer,2008,51(21-22):5296-5304.
    [91]POLCARO A M, PALM AS S, RENOLDI F, et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants[J], Electrochimica Acta,2000,46(2-3): 389-394.
    [92]MATSUNO Y, TSUTSUMI A, YOSHIDA K, et al. Electrode performance of fixed and fluidized bed electrodes for a molten carbonate fuel cell anode[J]. International Journal of Hydrogen Energy,1996,21(8):663-671.
    [93]XIONG Y, HE C, AN T, et al. Removal of Formic Acid from Wastewater using Three-Phase Three-Dimensional Electrode Reactor[J]. Water, Air,& Soil Pollution,2003,144(1-4):67-79.
    [94]李明玉,熊林,张娜,等.三维电极对水中染料降解脱色处理[J].生态环境,2005,14(3):305-308.
    [95]王建信,李义久,曾新平,等.水中有机污染物超声强化氧化技术研究进展[J].环境污 染治理技术与设备,2003,4(4):66-69.
    [96]VINODGOPAL K, HOTCHANDANI S, KAMAT P V. Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol[J]. Journal of Physical Chemistry,1993,97(35):9040-9044.
    [97]汪群慧,张海霞,马军,等.三维电极处理生物难降解有机废水[J].现代化工,2004,24(10):56-59.
    [98]陈延禧.电解工程[M].天津:天津科学技术出版社,1993.
    [99]李荻.电化学原理(第三版)[M].北京:北京航天航空大学出版社,2008.
    [100]谢德明,童少平,楼白杨.工业电化学基础[M].北京:化学工业出版社,2009.
    [101]吴辉煌.电化学工程基础[M].北京:化学工业出版社,2008.
    [102]BAGOTSKY V S. Fundamentals of Electrochemistry (2nd edition)[M]. Canada:John Wiley and Sons,2006.
    [103]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004.
    [104]列维奇,戴干策,陈敏恒.物理-化学流体动力学[M].上海:上海科学技术出版社,1965.
    [105]罗大海,诸葛茜.流体力学简明教程[M].北京:高等教育出版社,1986.
    [106]PICKETT D J. Electrochemical Reactor Design (2nd edition)[M]. Amsterdam:Elsevier, 1979.
    [107]CUI Y H, FENG Y J, LI X Y. Kinetics and Efficiency Analysis of Electrochemical Oxidation of Phenol:Influence of Anode Materials and Operational Conditions[J]. Chemical Engineering & Technology,2011,34(2):265-272.
    [108]LI L, LIU Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics[J]. Journal of Hazardous Materials,2009,161(2-3):1010-1016.
    [109]POLCARO A M, MASCIA M, PALMAS S, et al. Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process[J]. Industrial & Engineering Chemistry Research,2002,41(12):2874-2881.
    [110]CANIZARES P, DIAZ M, DOMINGUEZ J A, et al. Electrochemical Oxidation of Aqueous Phenol Wastes on Synthetic Diamond Thin-Film Electrodes[J]. Industrial & Engineering Chemistry Research,2002,41(17):4187-4194.
    [111]COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica. Acta,1994,39(11-12): 1857-1862.
    [112]BENGOA C, MONTILLET A, LEGENTILHOMME P, et al. Characterization and modeling of the hydrodynamic behavior in the filter-press-type FM01-LC electrochemical cell by direct flow visualization and residence time distribution[J]. Industrial & Engineering Chemistry Research,2000,39(7):2199-2206.
    [113]POLCARO A, VACCA A, PALMAS S, et al. Electrochemical treatment of wastewater containing phenolic compounds:oxidation at boron-doped diamond electrodes[J]. Journal of Applied Electrochemistry,2003,33(10):885-892.
    [114]MARTINEZ-HUITLE C A, FERRO S, BATTISTI A. Electrochemical incineration of oxalic acid: reactivity and engineering parameters[J]. Journal of Applied Electrochemistry,2005, 35(11):1087-1093.
    [115]李成岳.化学工程学研究进展与展望[M].化工进展,2000,19(3):4-7.
    [116]冯骞,薛朝霞,汪翙.计算流体力学在水处理反应器优化设计运行中的应用[J].水资源保护,2006,22(2):11-15.
    [117]MAHER A R, SADIQ A. A CFD study of hygro-thermal stresses distribution in PEM fuel cell during regular cell operation[J]. Renewable Energy,2009,34(3):674-682.
    [118]ZHANG X, LI J, LI G, et al. Numerical study on the thermal characteristics in a tubular solid oxide fuel cell with indirect internal reformer[J]. International Journal of Thermal Sciences,2009,48(4):805-814.
    [119]VAZQUEZ L, ALVAREZ-GALLEGOS A, SIERRA F Z, et al. Simulation of velocity profiles in a laboratory electrolyser using computational fluid dynamics[J]. Electrochimica Acta,2010,55(10):3437-3445.
    [120]VAZQUEZ L, ALVAREZ-GALLEGOS A, SIERRA F Z, et al. Simulation of velocity profiles in a laboratory electrolyser using computational fluid dynamics[J]. Electrochimica Acta,2010,55(10):3446-3453.
    [121]SANTOS J L C, GERALDES V, VELIZAROV S, et al. Characterization of fluid dynamics and mass-transfer in an electrochemical oxidation cell by experimental and CFD studies[J]. Chemical Engineering Journal,2010,157(2-3):379-392.
    [1]李玉林,化工废水的治理[J].内蒙古石油化工,2002,28(4):116-117.
    [2]韩春来,王春芝.膜法炼油废水回用利用工艺及设备:中国,99112689.0[P].2002-09-18.
    [3]赵秀云,王永杰.工业污水回用于循环冷却水[J].工业用水与废水,2000,31(1):32-33.
    [4]COMNINELLIS C, NERINI A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. Journal of Applied Electrochemistry,1995,25:23-28.
    [5]李晓萍,林海波,吴岩.Ti/PbO2阳极在氯化钠溶液中电解生成活性氯的研究[J].吉林大学学报(理学版),2005,43(3):358-363.
    [6]RAGNINI C A R, IGLIA R A D, BIZZO W, et al. Recycled niobium felt as an efficient three-dimensional electrode for electrolytic metal ion removal[J]. Water Research,2000, 34(13):3269-3276.
    [7]MARCO P, CARLO S, GIACOMO C. Electrochemical remediation of copper (Ⅱ) from an industrial effluent Part Ⅱ:three-dimensional foam electrodes[J]. Resources, Conservation and Recycling,1999,27(4):299-307.
    [8]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23(6):1-5.
    [9]POLCARO A M, PALMAS S, RENOLDI F, et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants[J]. Electrochimica Acta,2000,46(2-3): 389-394.
    [10]郝明松,周林,邱满意.TOC对离子膜的影响[J].氯碱工业,2009,45(11):18-20.
    [1]YANG J, WANG J, JIA J. Improvement of Electrochemical Wastewater Treatment through Mass Transfer in a Seepage Carbon Nanotube Electrode Reactor[J]. Environmental Science and Technology,2009,43(10):3796-3802.
    [2]CHEN J, SHI H, LU J. Electrochemical treatment of ammonia in wastewater by RuO2-IrO2-TiO2/Ti electrodes[J]. Journal of Applied Electrochemistry,2007,37(10): 1137-1144.
    [3]AREVALO E, CALMANO W. Studies on electrochemical treatment of wastewater contaminated with organotin compounds[J]. Journal of Hazardous Materials,2007,146(3): 540-545.
    [4]RAJKUMAR D, KIM J G. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment[J]. Journal of Hazardous Materials,2006,136(2):203-212.
    [5]PANIZZA M, CERISOLA G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater[J]. Environmental Science and Technology.2004,38(20):5470-5475.
    [6]SONG Z, WILLIAMS C J, EDYVEAN R G J. Treatment of tannery wastewater by chemical coagulation[J]. Desalination,2004,164(3):249-259.
    [7]CERON-RIVERA M, DAVILA-JIMENEZ M M, ELIZALDE-GONZALEZ M P. Degradation of the textile dyes Basic Yellow 28 and Reactive Black 5 using diamond and metal alloys electrodes[J]. Chemosphere,2004,55(1):1-10.
    [8]SHEN Z M, WU D, YANG J, et al. Methods to improve electrochemical treatment effect of dye wastewater[J]. Journal of Hazardous Materials,2006,131(1-3):90-97.
    [9]NAUMCZYK J, SZPYRKOWICZ L, ZILIO-GRANDI F. Electrochemical treatment of textile wastewater[J]. Water Science and Technology.1996,34(11):17-24.
    [10]TENNAKOON C L K, BHARDWAJ R C, BOCKRIS J O'M. Electrochemical treatment of human wastes in a packed bed reactor[J]. Journal of Applied Electrochemistry.1996,26(1): 18-29.
    [11]KORBAHTI B K, TANYOLAC A. Continuous electrochemical treatment of phenolic wastewater[J]. Water Research.2003,37(7):1505-1514.
    [12]SONOYAMA N, EZAKI K, SAKATA T. Continuous electrochemical decomposition of dichloromethane in aqueous solution using various column electrodes[J]. Advances in Environmental Research.2001.6(1):1-8.
    [13]Polcaro A M, Mascia M, Palmas S, et al. Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process[J]. Industrial & Engineering Chemistry Research, 2002,41(12):2874-2881.
    [14]Canizares P, Diaz M, Dominguez J A, et al. Electrochemical Oxidation of Aqueous Phenol Wastes on Synthetic Diamond Thin-Film Electrodes[J]. Industrial & Engineering Chemistry Research,2002,41(17):4187-4194.
    [15]CANIZARES P, GARCIA-GOMEZ J, LOBATO J, et al. Modeling of Wastewater Electro-oxidation Processes Part Ⅰ:General Description and Application to Inactive Electrodes[J]. Industrial & Engineering Chemistry Research,2004,43(9):1915-1922.
    [16]CANIZARES P, GARCIA-GOMEZ J, LOBATO J, et al. Modeling of Wastewater Electro-oxidation Processes Part Ⅱ:Application to Active Electrodes [J]. Industrial & Engineering Chemistry Research,2004,43(9):1923-1931.
    [17]PANIZZA M, MICHAUD P A, CERISOLA G. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes[J]. Journal of Electroanalytical Chemistry,2001,57(1-2): 206-214.
    [18]COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica. Acta,1994,39(11-12):1857-1862.
    [19]SCIALDONE O, GALIA A, GUARISCO C, et al. Electrochemical incineration of oxalic acid at boron doped diamond anodes:Role of operative parameters[J]. Electrochimica Acta,2008, 53(5):2095-2108.
    [20]SCIALDONE O, RANDAZZO S, GALIA A, et al. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl[J]. Water Research.2009,43(8):2260-2272.
    [21]SCIALDONE O, RANDAZZO S, GALIA A, et al. Electrochemical oxidation of organics at metal oxide electrodes:The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochimica. Acta,2009,54(4):1210-1217.
    [22]张招贤,蔡天晓.钛电极反应工程学[M].北京:冶金工业出版社,2009.
    [23]MARTINEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes[J]. Chemical Society Review,2006, 35(12):1324-1340.
    [24]SCIALDONE O. Electrochemical oxidation of organic pollutants in water at metal oxide electrodes:A simple theoretical model including direct and indirect oxidation processes at the anodic surface[J]. Electrochimica Acta,2009,54(26):6140-6147.
    [25]CHANG H, JOHNSON D C. Electrocatalysis of Anodic Oxygen-Transfer Reactions[J]. Journal of Electrochemical Society.1990,137(8):2452-2457.
    [26]CHANG H, JOHNSON D C. Electrocatalysis of Anodic Oxygen-Transfer Reactions[J]. Journal of Electrochemical Society.1990,137(10):3108-3113.
    [1]MARTINEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes[J]. Chemical Society Review,2006, 35(12):1324-1340.
    [2]DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N. Decolorization of basic dye solutions by electro-coagulation:an investigation of the effect of operational parameters[J]. Journal of Hazardous Materials,2006,129(1-3):116-122.
    [3]FORGACS E, CSERHATI T, OROS G. Removal of synthetic dyes from wastewaters:a review[J]. Environment International,2004,30(7):953-971.
    [4]SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton Reagent[J], Water Research,2001,35(9):2129-2136.
    [5]SLOKAR Y M, MARECHAL A M L. Methods of decolouration of textile wastewaters[J]. Dyes and Pigments,1998,37(4):335-356.
    [6]MOHAN N, BALASUBRAMANIAN N. In situ electrocatalytic oxidation of acid violet 12 dye effluent[J]. Journal of Hazardous Materials,2006,136(2):239-243.
    [7]PANIZZA M, CERISOLA G Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009,43(2):339-344.
    [8]ARELLANO C A P, MARTINEZ S S. Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode[J]. International Journal of Hydrogen Energy,2007,32(15):3163-3169.
    [9]DHAMO N. Electrochemical oxidation of cyanide in the hydrocyclone cell[J]. Waste Management,1996,16(4):257-261.
    [10]EL-ASHTOUKHY E S Z, AMIN N K. Removal of acid green dye 50 from wastewater by anodic oxidation and electro-coagulation-A comparative study[J]. Journal of Hazardous Materials,2010,179(1-3):113-119.
    [11]PARSA J B, REZAEI M, SOLEYMANI A R. Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics[J]. Journal of Hazardous Materials,2009,168(2-3):997-1003.
    [12]SZPYRKOWICZ L, RADAELLI M, DANIELE S. Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants[J]. Catalysis Today,2005,100(3-4):425-429.
    [13]苏静,徐红,林海波,等.滤压式电解槽间接电氧化处理污染物的过程模拟[J].吉林大学学报(工学版),2009,39(4):997-1001.
    [14]徐红,苏静,项新亮,等.在滤压式电解槽中氨氮间接电氧化的反应动力学研究[J].高等学校化学学报,2008,29(7):1416-1419.
    [15]RAJKUMAR D, PALANIVELU K, MOHAN N. Electrochemical oxidation of resorcinol for wastewater treatment using Ti/TiO2-RuO2-IrO2 electrode[J]. Journal of Environmental Science and Health, Part A-Environmental Science & Engineering,2001,36(10):1997-2010.
    [16]CHATZISYMEONA E, FIERRO S, KARAFYLLIS I, et al. Anodic oxidation of phenol on Ti/IrO2 electrode:Experimental studies[J]. Catalysis Today,2010,151(1-2):185-189.
    [17]CHATZISYMEON E, DIMOU A, MANTZAVINOS D, et al. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes:1. The case of Ti/IrO2 anode[J]. Journal of Hazardous Materials,2009,167(1-3):268-274.
    [18]RENGARAJAN B, BALASINGAM S K, JOTHINATHAN L N S, et al. An alternative approach to selective sea water oxidation for hydrogen production[J]. Electrochemistry Communications,2009,11(8):1700-1702.
    [19]YAN L, LIANG L, RAMESH G. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions[J]. Journal of Hazardous Materials,2009, 167(1-3):959-965.
    [20]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [21]RAJKUMAR D, KIM J G, PALANIVELU K. Indirect electrochemical oxidation of phenol in the presence of chloride or wastewater treatment[J]. Chemical. Engineering.& Technology, 2005,28(1):98-105.
    [22]SZPYRKOWICZ L, CHERBANSKI R, KELSALL G H. Hydrodynamic Effects on the Performance of an Electrochemical Reactor for Destruction of Disperse Dyes[J]. Industrial & Engineering Chemistry Research,2005,44(7):2058-2068.
    [23]SZPYRKOWICZ L. Application of electrochemical oxidation for treatment of industrial wastewater-the influence of reactor hydrodynamics on direct and mediated processes[J]. Journal of Chemical Technology and Biotechnology,2006,81(8):1375-1383.
    [24]SCIALDONE O, RANDAZZO S, GALIA A, et al. Electrochemical oxidation of organics in water:role of operative parameters in the absence and in the presence of NaCl[J]. Water Research,2009,43(8):2260-2272.
    [25]BOXALL C, KELSALL G H. Hypochlorite electrogeneration Ⅱ. Thermodynamics and kinetic model of anode reaction layer. Electrochemical Engineering[J]. Institution of Chemical Engineers Symposium Series,1992,127:59-70.
    [26]RAJKUMAR D, KIM J G. Oxidation of various reactive dyes with in situ electro-generated activechlorine for textile dyeing industry wastewater treatment[J]. Journal of Hazardous Materials,2006,136(2):203-212.
    [27]SCOTT K. Electrochemical Reaction Engineering[M]. London:Academic Press,1991.
    [28]KIM K W, KIM Y J, KIM I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen[J]. Water research,2006,40(7):1431-1441.
    [29]SZPYRKOWICZ L, RADAELLI M, DANIELE S, et al. Application of Electro-Catalytic Mediated Oxidation for the Treatment of a Spent Textile Bath in a Membrane Reactor[J]. Industrial & Engineering Chemistry Research,2007,46(21):6732-6736.
    [1]PLETCHER D, WALSH F. Industrial Electrochemistry (2nd edition)[M]. London:Springer, 1990.
    [2]陈甘棠.化学反应工程[M].北京:化学工业出版社,2008.
    [3]曲虹霞,钟秦,刘桂涛.计算机控制停留时间分布实验系统的研制[J].实验技术与管理,2003,20(1):31-34.
    [4]DAVIS M E, DAVIS R J. Fundamentals of chemical reaction engineering[M]. New York: McGraw-Hill Higher Education,2003.
    [5]WRAGG A A, LEONTARITIS A A. Local mass transfer and current distribution in baffled and unbaffled parallel plate electrochemical reactors[J]. Chemical Engineering Journal,1997, 66(1):1-10.
    [6]GONZALEZ-GARCIA J, FRIAS A, EXPOSITO E, et al. Characterization of an Electro-chemical Pilot-Plant Filter-Press Reactor by Hydrodynamic and Mass Transport Studies[J]. Industrial & Engineering Chemical Research,2000,39(5):1132-1142.
    [7]FRIAS-FERRER A J, GONZALEZ-GARCIA V, SAEZ C, et al. The effects of manifold flow on mass transport in electrochemical filter-press reactors [J]. AIChE Journal,2008,54(3): 811-823.
    [8]SARAVANATHAMIZHANA R, PARANTHAMANA R, BALASUBRAMANIAN N, et al. Residence time distribution in continuous stirred tank electrochemical reactor[J]. Chemical Engineering Journal,2008,142(2):209-216.
    [9]BENGOA C, MONTILLET A, LEGENTILHOMME A, et al. Flow visualization and modelling of a filter-press type electrochemical reactor[J]. Journal of Applied Electrochemistry,1997,27(12):1313-1322.
    [10]SZPYRKOWICZ L, RADAELLI M. Scale-up of an electrochemical reactor for treatment of industrial wastewater with an electrochemically generated redox mediator[J]. Journal of Applied Electrochemistry,2006,36(10):1151-1156.
    [11]TRINIDAD P, WALSH F C. Hydrodynamic Behavior of the FM01-LC reactor[J]. Electrochimca Acta,1996,41(4):493-502.
    [12]TRINIDAD P, WALSH F. Conversion expressions for electrochemical reactors which operate under mass transport controlled reaction conditions, Part I:Batch Reactor, PFR and CSTR[J]. International Journal of Engineering Education,1998,14:431-441.
    [13]CARPENTER N G, ROBERTS E P L. Mass transport and residence time characteristics of an oscillatory flow electrochemical reactor[J]. Chemical Engineering Research & Design. 2007,77(3):212-217.
    [14]SCOTT K. The continuous stirred tank electrochemical reactor: an overview of dynamic and steady state analysis for design and modeling[J]. Journal of Applied Electrochemistry,1991, 21(11):945-960.
    [15]VIJAYASEKARAN B, BASHA C A. Modeling in electrochemical engineering-a critical review[J]. Transactions of the SAEST,2005,40(1):1-13.
    [16]熊辉,冯连勋,方辉,等.物料停留时间分布测试方法及装置进展[J].橡塑技术与装备,2007,33(11):26-30.
    [17]XU H, HUANG W M, XING Y, et al. Effect of Configuration on Mass Transfer in a Filter-press Type Electrochemical Cell[J]. Chinese Journal of Chemical Engineering,2008, 16(2):198-202.
    [18]SPEIGHT J G, OZUM B. Petroleum refining processes[M]. New York:Marcel Dekker, 2002.
    [19]SCOTT K. Electrochemical Reaction Engineering[M]. London:Academic Press,1991.
    [1]RIZK T Y, THOMPSON G E, DAWSON J L. Mass transfer enhancement associated with sudden flow expansion[J]. Corrosion Science,1996,38(10):1801-1814.
    [2]TAGG D J, PATRICK M A, WRAGG A A. Heat and mass transfer downstream of abrupt nozzle expansions in turbulent flow[J]. Transactions of The Institution of Chemical Engineers, 1979,57:176-181.
    [3]DJATI A, BRAHIMI M, LEGRAND J, et al. Entrance effect on mass transfer in a parallel plate electrochemical reactor[J]. Journal of Applied Electrochemistry,2001,31(8):833-837.
    [4]葛蔚,赵辉,王军武,等.化学工程中的计算流体力学[J].计算机与应用化学,2006,23(1):9-14.
    [5]WANG Y, OUYANG M. Three-dimensional heat and mass transfer analysis in an air-breathing proton exchange membrane fuel cell[J]. Journal of Power Sources,2007,164(2):721-729.
    [6]SAIDI M S, HAJALIGOL M R, MHAISEKAR A, et al. A 3D modeling of static and forward smoldering combustion in a packed bed of materials[J]. Applied Mathematical Modelling, 2007,31(9):1970-1996.
    [7]VAZQUEZ L, ALVAREZ-GALLEGOS A, SIERRA F Z, et al. Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling[J]. Electrochim Acta,2010,55(10):3446-3453.
    [8]BROWN C J, PLETCHER D, WALSH F C, et al. Studies of three-dimensional electrods in the FM01-LC laboratory electrolyser[J]. Journal of Applied Electrochemistry,1994,24(2): 95-106.
    [9]LIPP L, PLETCHER D. Extended area electrodes based on stacked expanded titanium meshes[J]. Electrochimica Acta,1997,42(7):1101-1111.
    [10]RODRIGUEZ M G, MARTINEZ S A. Removal of Cr(Ⅵ) from wastewaters in a tubular electrochemical reactor[J]. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology,2005,40(12):2215-2225.
    [11]KORBAHTI B K, TANYOLAC A. Electrochemical treatment of simulated industrial paint wastewater in a continuous tubular reactor[J]. Chemical Engineering Journal,2009,148(2-3): 444-451.
    [12]LIANG W, QU J, WANG K, et al. Electrochemical Degradation of Cyanobacterial Toxin Microcystin-LR Using Ti/RuO2 Electrodes in a Continuous Tubular Reactor[J] Environmental Engineering Science,2008,25(5):635-642.
    [13]ROSS T K, WRAGG A A. Electrochemical mass transfer studies in annuli[J] Electrochimica Acta.,1965,10(11):1093-1106.
    [14]SELMAN J R. Techniques of Mass-Transfer Measurements in Electrochemical Reactors[J]. Tutorial Lectures in Electrochemical Engineering and Technology, American Institute of Chemical Engineers symposium series.1981.204:88-102.
    [15]ODUOZA C F, WRAGG A A, PATRICK M A. The effects of a variety of wall obstructions on local mass transfer in a parallel plate electrochemical flow cell[J]. Chemical Engineering. Journal,1997,68(2-3):145-155.
    [16]GRIFFITHS M, LEON C P, WALSH F C. Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor)[J]. AIChE. Journal,2005,51(2):682-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700