用户名: 密码: 验证码:
猴头菌锰过氧化物酶基因克隆及在构巢曲霉中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对猴头菌Hericium erinaceum(Bull.:Fr.)Pers.菌株CB1进行了系统发育分析和分类鉴定,对其主要木质素降解酶系统进行了的检测,用其酶液对4种不同类型的染料茜素红、中性红、刚果红、结晶紫进行了脱色处理;以菌株CB1为基因供体,克隆得到锰过氧化物酶(MnP)同工酶基因Hemnpl和Hemnp2的全长cDNA基因及基因组全长DNA基因,通过荧光定量PCR检测了Hemnp1和Hemnp2基因的差异表达,并构建了重组质粒,通过原生质体转化方法将2个MnP同工酶基因转化到了构巢曲霉中,最终获得2个有效表达的MnP同工酶基因的构巢曲霉工程菌株。
     主要研究结果如下:
     1.首先对猴头菌菌株CB1进行了培养特性的观察,结果表明,菌株的宏观培养特性与猴头菌子实体的颜色和形态非常相似。对包括猴头菌菌株CB1在内的5种猴头菌属17个菌株进行了基于ITS序列的系统发育分析,结果表明菌株CB1与猴头菌同种其他菌株遗传距离较近并聚类在一起,该菌属于猴头菌科、猴头菌属的猴头菌。
     2.明确了该菌株的分类地位后,采用低氮天冬酰胺-琥珀酸(LNAS)培养基,在填加不同浓度的Mn2+和木屑为底物的情况下,对其进行了木质素降解酶系统的检测。结果表明,猴头菌可同时产生MnP和漆酶,但不产生LiP。不同锰离子为底物的检测中,以Mn2+的浓度600μmol·L-1为底物,MnP酶活性最高达259.55U-Lq,表明Mn2+对MnP的酶活性起到诱导作用,是猴头菌产生MnP的必要因子。通过酶活性的检测,了解了菌株CB1木质素降解酶系统的主要酶系及其与培养基的成分和酶作用的底物等条件的关系。当胞外酶的酶活达到最佳时,将4种不同结构的染料加入培养体系进行共同培养,从猴头菌固/液体培养基对染料的脱色结果来看,在4个染料浓度5mg/L、20mg/L、50mg/L、100mg/L中,对茜素红和中性红的脱色效果最好,其次是刚果红,对结晶紫脱色效果表现出较难被降解。
     3.采用简并PCR、RT-PCR、RACE、Genome Walking-PCR等方法,克隆得到2个猴头菌MnP同工酶基因,命名为He-mnp1和He-mnp2。He-mnp1的cDNA基因含有1080bp,编码359aa;He-mnp2的cDNA基因含有1086bp,编码361aa.He-mnp1与He-mnp2两个同工酶DNA和cDNA基因之间同源性分别为67%和81%,He-mnp1和He-mnp2的基因组全长都含有11个外显子和10个内含子。使用BioEdit软件、ClustalW2.1软件、3D软件等预测并分析了猴头菌He-mnp1和He-mnp2的蛋白质序列。
     4.采用实时荧光定量PCR技术,检测了猴头菌2个MnP同工酶基因之间的差异表达水平。结果猴头菌He-mnp1基因在第10d Mn2+浓度为200μm/1的表达水平最高,He-mnp2基因在第7d Mn2+浓度为600μm/1下转录水平达到最高He-mnp2基因最高表达量比He-mnp1基因最高表达量高出8倍,可见He-mnp2基因受Mn2+的影响较大。猴头菌MnP同工酶基因之间存在不同的转录调控机制,随时间的变化He-mnp1和He-mnp2同工酶基因表达水平达到最高后,无论提高锰离子浓度或者增加诱导时间表达量都受到抑制,He-mnp1基因和He-mnp2基因都受锰离子浓度的不同程度的诱导调控。
     5.利用RT-PCR方法克隆得到猴头菌He-mnp1和He-mnp2完整MnP同工酶CDS基因转化于构巢曲霉中进行异源表达,构建了重组质粒pLB01/He-mnp1和pLB01/He-mnp2。采用PEG/CaCl2介导的原生质体转化方法,将两个重组质粒转入到了构巢曲霉缺陷体菌株TN02A7的原生质体中,获得了转化子菌株TN02A7-He-mnpl和TN02A7-He-mnp2。将2个转化子菌株、缺陷体菌株TN02A7、WJA01、猴头菌菌株CB1在相同的木质素环境下进行了MnP活性的检测,结果TN02A7-He-mnpl在有血红素存在的情况下,诱导96h后酶活最高为38.31U.L-1,比不加血红素的酶活力高出8.64倍;而TN02A7-He-mnp2在有血红素存在的情况下,诱导96h后酶活最高为64.06U-L-1,比不加血红素的酶活力高出15.88倍,结果表明血红素是重组MnP基因异源表达的限制性因素之一。但在144h时转化子菌株都比猴头菌菌株CB1的酶活低,而TN02A7与WJA01始终无MnP酶活性,证明基因He-mnpl和He-mnp2已经成功地被转化到构巢曲霉中,并在木质素环境下已得到表达。
The study on Hericium erinaceum (Bull.:Fr.) Pers. CB1strains were classified identification and phylogenetic analyses, its major ligninolytic enzymes were detected. Four different types dyes of Alizarin red, Neutral red, Congo red, Crystal violet were decolored treatment by enzyme liquid. Strain CB1for gene donor, cloning manganese peroxidase(MnP) isozyme genes Hemnpl and Hemnp2full length of cDNA genes and DNA genes, and through the fluorescence quantitative PCR Hemnpl and Hemnp2were detected differential expression,and then to construction recombinant plasmid,through the protoplast transformation methods two MnP isozyme gene transformation into the constitutive A. nidulans, They were obtained effectivee expression of two MnP isozyme Aspergillus nidulans engineering strain.The research conclusions of the present study as follows:
     1. Firstly, Cultural characteristic of H. erinaceum strain CB1was described. The results indicated that the appearance and microscopic characteristics of strain CB1and the color and forms of H. erinaceum fruiting body are very similar. The phylogenetic analysis of Hericium five species17different regional strains using the internal transcribed spacer (ITS) region, results showed that strain CB1and other strains from H. erinaceum were nearer in genetic distance and clustered together with them. The strain belongs to Hericiaceae, Hericium, Hericium erinaceum.
     2. The classification status of H. erinaceum strain CB1was fixed, Then,add the with different Mn2+concentrations and sawdust as the substrate by LNAS (Low Nitrogen Asparagine Succinic acid) culture solution in such situation,and its the major ligninolytic enzymes were detected.The results indicated that H. erinaceum could produce MnP and laccase simultaneously, but no LiP. Detection on different manganese ion as the substrate,The highest MnP activity were259.55U-L"1when sawdust was added to LNAS culture solution with600umol-L"1Mn2+substrates. Results indicated that Mn2+to MnP enzyme activity play induction.Mn2+was proved to be the essential factor for H. erinaceum to produce MnP,the lignin-degrading enzymes of the strain CB1and the relationships between enzyme activities and medium composition and substrates were gained. When the extracellular enzymes achieve optimum, the4different structure dyes add to the culture system for common culture, from H. erinaceum solid and liquid culture medium for dyes degradation decoloring, and results show that4dyes concentration5mg/L,20mg/L,50mg/L and100mg/L, Both alizarin red and neutral red are best decolorization effect, Congo red took second place, Crystal violet decolorization effect show the difficulty of degradation.
     3. Using degenerate PCR, RT-PCR, RACE, and Genome walking-PCR methods,etc. Molecular cloning of gene encoding two MnP isozyme genes from H. erinaceum. the full length cDNA were obtained then named He-mnpl and He-mnp2, respectively, He-mnpl and He-mnp2cDNA genes contains1080bp and1086bp,encoding for precursor polypeptide of359and361amino acids.Both two isozyme DNA and cDNA gene homology67%and81%,respectively. They genomes contain the11exon and10introns.Forecast and analysis amino acids of He-mnpl and He-mnp2by BioEdit、ClustalW2.1and3D software.
     4. The inequality expression levels of H. erinaceum two MnP isozyme genes were detected by quantitative Real-time PCR method. The results show that He-mnp1genes is the highest expression level for200μm/1Mn2+concentrations in10d, He-mnp2genes transcription level to reach the highest for600μm/1Mn2+concentrations in7d,He-mnp2gene expression than the highest amount He-mnpl gene expression highest amount was more than8times, Thus it can be seen that He-mnp2gene is strongly influenced by Mn2+.H. erinaceum MnP isozyme genes exist between different transcription regulation mechanism, He-mnp1and He-mnp2isozyme gene expression after reaching the highest level with time changes, regardless of the manganese ion concentration and increased induction time expression is restrained,He-mnp1and He-mnp2by Mn ion concentration of different process induction control.
     5. The coding complete MnP isozyme CDS gene, He-mnp1and He-mnp2were cloned by RT-PCR from H. erinaceum, and heterologous expression in A nidulans. the recombinant plasmid pLB01/He-mnp1and He-mnp2were constructed. And, using PEG/CaCl2protoplast transformation method, He-mnp1and He-mnp2were successfully transferred to auxotrophic stain TN02A7of A.nidulans. The two new tranformant stains, Auxotrophic stain TN02A7, WJA01and stain CB1were detected the MnP activity in the same shaking medium containing lignin,result showed that TN02A7-He-mnpl could produce MnP activity in the absence and presence of heme, but the MnP activity was up to38.31U-L-1on96h with heme which was8.64times higher than that without heme;TN02A7-He-mnp2could produce MnP activity in the absence and presence of heme, but the MnP activity was up to64.06U-L-1on96h with heme which was15.88times higher than that without heme,but tranformant stains produce MnP activity less than that of H. erinaceum CB1on144h, Because of TN02A7and WJA01could not produce MnP activity at any time, indicating that the gene He-mnpl and He-mnp2had been successfully transformed into A.nidulans expressed in lignin environment. The results of heme was one of restrictive factor for rescombinant mnp gene to express in A.nidulans.
引文
[1]Dashtban M, Schraft H,.Syed T A, et al. Fungal biodegradation and enzymatic modification of lignin [J]. J Biochem Mol Biol,2010,1 (1):36-50
    [2]Hatakka, A. Biodegradation of lignin [J]. Weinheim:Wiley-VCH,2001,1 (51):129-180.
    [3]Alexander M A, Chapman T W. Continuous Ethanol Production from D-Xylose by Candida shehatae [J]. Biotechnology and Bioengineering,1987,30:685-691
    [4]卢雪梅,李越中,王蔚等.黄孢原毛平革菌木素过氧化物酶类在天然木素降解中作用的研究[J].菌物系统,1998,17(2):179-184
    [5]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J].菌物学报,2007,26(1):153-160
    [6]Dijkstra F A, Cheng W X. Interactions between soil and tree roots accelerate long-term soil carbon decomposition [J].Ecol Lett,2007,10:1046-1053
    [7]Patrick F, Mtui G, Mshandete A M, et al. Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajorcaju[J]. African Journal of Biotechnology,2011,10 (50):10166-10177
    [8]Koide R T, Sharda J N, Herr JR, Malcom G M. Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum[J]. New Phytol,2008,178:230-233
    [9]陈芙,谢更新,郁红艳等.基于木质素生物降解的堆肥化接种剂开发[J].生态与农村环境学报,2008,24(2):84-87
    [10]Martin F, Aerts A, Ahren D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis [J]. Nature,2008,452 (7183):88-92
    [11]Bajpai P. Biological bleaching of chemical pulps[J]. Crit Rev Biotechnol.2004,24 (1):1-58
    [12]Park, Gu H K, Ko H G, et al. Molecular identification of Asian isolates of medicinal mushroom Hericium erinaceum by phylogenetic analysis of nuclear ITS rDNA[J]. J.Microbiol. Biotechnol.2004,14:816-821
    [13]王俊,图力古尔,高兴喜.中国猴头菌属真菌分子系统学研究.中国食用菌[J].2011,30(4)51-53,60
    [14]Ko H G, Park H G, Park S H, et al. Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium [J]. Bioresource Technology,2005,96:1439-1444
    [15]李胜奇,商洛野生猴头菌资源分布特点的调查[J].西北林学院学报,2007,22(2):119-122
    [16]蓼凤艳.小刺猴头菌子实体化学成分研究[D]:[硕士学位论文].吉林:吉林农业大学,2004
    [17]李志超,猴头菌生产全书中国农业出版社[M].2004
    [18]Eriksson K E L, Blanchette R A, Ander P. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer-Verlag[J]. New York,1990
    [19]池玉杰.木材腐朽与木材腐朽菌.北京:科学出版社,2002:14
    [20]Gilbertson R L.North American Wood rotting Fungi That Cause Brown Rots[J]. Mycotaxom,1981,12:372-416
    [21]Huang S T, Tzean S S, Tsai B Y, et al. Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea[J]. Microbiology,2009,155,424-433
    [22](美)C.J.阿历索保罗,C.W.明斯,M.布莱克韦尔著;姚一建,李玉主译菌物学概论[M].中国农业出版社,2002,171,500,519
    [23]Kuwahara M, Glenn J K, Mogran MA, et al. Separation and characterization of two extraeellular H2O2-dePendent oxidase from ligninolytic cultuers of Phanerochaete chrysosporium[J].BStt,1984,169:247-250
    [24]孙迅.粗毛栓菌的木质纤维素降解酶及其基因克隆[D].[硕士学位论文].成都:四川大学,2004
    [25]Smith A T, Veitcht N C. Substrate binding and catalysis in heme peroxidases[J]. Current Opinion in Chemical Biology,1998,2(2):269-278
    [26]Bo "deker I T, Nygren C M, Taylor A F, et al. ClassII peroxidase-encoding genes arepresent in a phylogenetically wide range of ectomycorrhizal fungi [J]. International Society for Microbial Ecology,2009,3(12):1387-1395
    [27]Binder M, Hibbet DS, Larsson KH, et al. The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes) [J].System Biodivers,2005,3:113-157
    [28]Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs [J]. Nucleic Acids Res,2003,31:3497-3500
    [29]Hibbett D S, Gilbert L B, Donoghue M J. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes[J].Nature,2000,407:506-508
    [30]Morgenstern I, Klopman S, Hibbett D S. Molecular evolution and diversity of lignin degrading heme peroxidase s in the agaricomycetes[J]. J Mol Evol,2008,66:243-257.
    [31]Welinder K G. Superfamily of plant, fungal and bacterial peroxidases[J]. Curr. Opin. Struct. Biol,1992,2:388-393
    [32]Dunford H B. Heme Peroxidases, Wiley-VCH[J]. New York,1999,281-308
    [33]Hatakka A.Ligin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation[J].FEMS Microbiol Rev,1994,13:125-135
    [34]Morgenstern I, Klopman S, Hibbett D S.Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes [J]. J Mol Evol,2008, DOI 10.1007/s00239-008-9079-3
    [35]Martinez AT. Molecular biology and structure function of lignin-degrading heme peroxidases[J]. Enzyme Microb Technol,2002,30:425-444
    [36]关艳丽,华霜,赵新海,等.毛栓菌漆酶的分离纯化及酶学性质研究[J].微生物杂志,2011,31(4):64-68
    [37]胡国库.黄孢原毛平革菌木质素过氧化物酶基因lipC转录调控因子的研究[D]:[博士学位论文].四川大学,2006
    [38]Macarena S, Fernando L L, Monica V, et al. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium[J].Fems Microbiology Letters,2005,242:37-44
    [39]Gold M H, Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium[J].Microbiol. Rev,1993,57:605-622
    [40]Pribnow D, Mayfield M B, Nipper V J, et al. Characterization of a cDNA coding a Manganese Peroxidase from the Lignin-degrading Basidiomycete Phanerochaete chrysosporium[J].The Journalof Biologicaclh Emistry,1989,264(9):5036-5040
    [41]Ruttimann C, Schwember E, Salas L, et al. Ligninolytic enzymes of the white rot basidiomycetes Phelebia brevispora and Ceriporiopsis subvermispora [J].Biotechnol Appl Biochem,1992,16:64-76
    [42]Giardina P, Palmieri G, Fontanella B, et al. Manganese Peroxidase Isoenzymes Produced by Pleurotus ostreatus Grown on Wood Sawdust[J].Archives of Biochemistry and Biophysics,2000,376 (1):171-179
    [43]Hilden K, Martinez A T,Hatakka A, et al. The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogeneticallyand structurally divergent [J]. Fungal Genetics and Biology,2005,42:403-419
    [44]Ruiz-Dueйas F J, Morales M, Garcia E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases [J] Journal of Experimental Botany, 2009,60 (2):441-452
    [45]Chi, Y J, Hatakka A, Maijala P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? [J].International Biodeterioration and Biodegradation,2007,59 (1):32-39
    [46]Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium [J]. Fungal Genetics and Biology,2007, 44:77-87
    [47]Kudanga T, et al. Potential applications of laccase-mediated coupling and grafting reactions:a review[J]. Enzyme Microb Technol,2011,48 (3):195-208
    [48]Wariishi H, Valli K, Gold M H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium[J]. Kinetic mechanism and role of chelators. J. Biol. Chem,1992,267(33):23688-23695
    [49]Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP) [J].Enzyme and Microbial Technology,2002,30:454-466
    [50]Sollewijn M D,Young H L,Gold M H. Effects of cadmium on manganese peroxidase: Competitive inhibition of Mn2+ oxidation and thermal stabilization of the enzyme[J].Eur J Biochem,2000,267:1761-1769
    [51]Pe'rez-Boada M, Ruiz-Duenas F J, Pogni R, Basosi R, et al. Versatile peroxidase oxidation of high redox potential aromatic compounds:site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-ranged electron transfer pathways[J]. J Mol Biol,2005,354:385-402
    [52]Iimura Y, Ikeda S, Sonoki T, et al.Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation[J].Appl Microbiol Biotechnol,2002,59:246-251
    [53]Sollewijn Gelpke M D, Mayfield-Gambill M, Lin Cereghino G P, el al. Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium[J].Applied and Environmental Microbiology,1999,65(4):1670-1674
    [54]Maeda Y, Kajiwara S, Ohtaguchi K. Manganese peroxidase gene of the perennial mushroom Elfvingia applanata.cloning and evaluation of its relationship with lignin degradation[J]. Biotechnology Letters,2001,23:103-109
    [55]Li D, Li N, Ma B, et al. Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens[J]. Biochimica et Biophysica Acta, 1999,1434:356-364
    [56]Pribnow D, Mayfield M B, Nipper V J, et al. Characterization of a cDNA Encoding a Manganese Peroxidase from the Lignin-degrading Basidiomycete Phanerochaete chrysosporium[J].The Journalof Biologicaclh Emistry,1989,264 (9):5036-5040
    [57]I. Schneegau I,Hofrichter M, Scheibner K, et al. Purilcation of the main manganese peroxidase isoenzyme MnP2 from the white-rot fungus Nematoloma frowardii b19[J]. Appl Microbiol Biotechnol,1997,48:602-605
    [58]Pezzella C, Autore F, Giardina P, et al. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members[J].Curr Genet,2000,55: 45-57
    [59]Kajita S, Sugawara S, Miyazaki Y, et al. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor[J].Appl Microbiol Biotechnol, 2004,66:194-199
    [60]Faraco V, Ercole C, Festa G, et al. Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis[J]. Appl Microbiol Biotechnol,2008,77:1329 -1335
    [61]Goudopoulou A, Krimitzas A, Typas M A. Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater[J]. Appl Microbiol Biotechnol,2010,88:541-551
    [62]Ruttimann C, Schwember E, Salas L, et al. Ligninolytic enzymes of the white rot basidiomycetes Phelebia brevispora and Ceriporiopsis subvermispora[J]. Biotechnol Appl Biochem,1992,16:64-76
    [63]Gettemy J M, Li D, Alic M, et al. Gold.Truncated-gene reporter system for studying the regulation of manganese peroxidase expression[J]. Curr. Genet,1997,31(6):519-524.
    [64]孙晓红等.草菇gpd基因的克隆、序列分析和其启动子的推测以及冷诱导对其表达方式的影响[J].食用菌学报,2008,15(1):17-24
    [65]Ma B, Mayfield M B, Godfrey B J, et al. Novel Promoter Sequence Required for Manganese Regulation of Manganese Peroxidase Isozyme 1 Gene Expression in Phanerochaete chrysosporium[J].EUKARYOTIC CELL,2004,3 (3):579-588
    [66]闫洪波.偏肿酸菌锰过氧化物酶cDNA基因克隆及在毕赤酵母中的表达[D]:[博士学位论文].哈尔滨:东北林业大学,2009
    [67]吴书景,池玉杰,闫洪波Lenzites gibbosa锰过氧化物酶1基因启动子序列的克隆[J].东北林业大学报,2012,40(9):107-127
    [68]Janusza G, Katarzyna K H, Pawlik A,et al. Fungal laccase, manganese peroxidase and lignin peroxidase:Gene expression and regulation[J]. Enzyme and Microbial Technology, 2012,12:1-12
    [69]Mancilla R A,Canessa P, Manubens A, et al. Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora[J].Fungal Genetics and Biology,2010,47 (7):656-661
    [70]程晓滨.裂褶菌F17锰过氧化物酶的分离纯化及其对偶氮染料脱色的研究[D].安徽大学,2007
    [71]Lei Lu. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme[J]. Appl Microbiol Biotechnol, 2007,74:1232-1239
    [72]Zhang Bei-Bei. Characterization and decolorization ability of a laccase from white rot fungus Cerrena unicolor LS0547[J]. Mycosystema,2009,28(5):737-743
    [73]官敏.好食脉孢菌(N. sitophila)产锰过氧化物酶培养条件的优化、酶的纯化以及酶学性质的分析[D].广州:暨南大学生物化学与分子生物学专业,2006
    [74]张连慧.变色栓菌Trametes versicol产锰过氧化物酶的条件优化、酶的纯化及其性质研究[D].中国农业大学,2005
    [75]Sangcheol J, Kyunghoon K, Hyoung C, et al. Characterization of Mn-peroxidase Isoenzymes from the White-rot Fungus Trametes versicolor in Korea [J]华中农业大学 学报,2004,23(1):146-149
    [76]李坚,木材科学.高等教育出版社[M].2001
    [77]陈敏等.刺芹侧耳木质素降解酶纯化及对染料脱色作用[J].食品与发酵工业,2010,136(2):34-37
    [78]靳奇峰,时胜男,焦庆祝.真菌在染料脱色中的应用及其酶学研究进展[J].辽宁师范大学学报,2009,32(4):480-483
    [79]Sollewijn Gelpke M D, Mayfield-Gambill M, Lin Cereghino G P, et al. Homologous Expression of Recombinant Lignin Peroxidase in Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1999,65 (4):1670-1674.
    [80]Sugiura T,Yamagishi K, Kimura T, et al. Cloning and Homologous Expression of Novel Lignin Peroxidase Genes in the White-Rot Fungus Phanerochaete sordida YK-624[J]. Biosci.Biotechnol.Biochem,2009,73(8):1793-1798.
    [81]Mayfield M B, Kishi K, Alic M, et al. Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium[J]. Appl Environ Microbiol, 1994,60(12):4303-4309.
    [82]Ma B, Mayfield M B, Gold M H. Homologous expression of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistanceas a dominant selectable marker[J].2003,43:407-414.
    [83]Asada Y, Watanabe A, Irie T, et al. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese(Ⅱ) peroxidase.Biochim Biophys Acta[J]. 1995,1251 (2):205-209
    [84]Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Appl Microbiol Biotechnol, 2001,55:566-570
    [85]Kajita S, Sugawara S, Miyazaki Y, et al. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor[J]. Appl Microbiol Biotechnol, 2004,66 (2):194-199
    [86]Chen C Y, Opperman H, Hitzeman R A. Homologous versos heterologous gene expression in the yeast, Saccharomyces cerevisiae[J], Nucl Acids Res,1984,12:8951-8970
    [87]吴基威.异源基因在丝状真菌系统中的克隆表达[J].生命科学,1993,5(2):19-21
    [88]李晶,赵晓祥,沙长青等.甲醇酵母基因表达系统的研究进展[J].生物工程进展1999,19(2):17-20
    [89]路福平.木质素过氧化物酶和锰过氧化物酶基因的克隆及在甲醇毕赤酵母中的表达[D].天津:天津科技大学,2004
    [90]陈献忠,沈微,樊游等.后基因组时代的丝状真菌基因组学与代谢工程[J].遗传,2011, 33(10):1067-1078
    [91]刘丽,刘谨,仇润祥等.丝状真菌表达分泌系统中受体菌的构建[J].生物工程学报.2002,11.18(6):667-670
    [92]Conesa A,Jeenes D,Archer D B, et al. Calnexin Overexpression Increases Manganese Peroxidase Production in Aspergillus niger[J]. Applied and Environmental Microbiology, 2002,68(2):846-851
    [93]Johnson T M, Li J K. Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus[J].Arch Biochem Biophys,1991,291 (2):371-378
    [94]Whitwam R E, Gazarian I, Tien M. Expression of fungal Mn peroxidase in E. coli and refolding to yield active enzyme[J]. Biochem Biophys Res Commun,1995,216 (3):1013-1017
    [95]Doyle W, Smith A T. Expression of lignin peroxidase H8 in Escherichia coli:folding and activation of the recombinant enzyme with Ca2+ and haem[J]. Biochem J,1996,315:15-19
    [96]Gu L, Lajoie C, Kelly C.Expression of a Phanerochaete chrysosporium Manganese Peroxidase Gene in the Yeast Pichia pastoris[J]. Biotechnol. Prog.2003,19,1403-1409
    [97]Stewart P, Whitwam R E, Kersten P J, et al. Efficient Expression of a Phanerochaete chrysosporium Manganese Peroxidase Gene in Aspergillus oryzae[J]. Applied and Environmental Microbiology,1996,62 (3):860-864
    [98]Ruiz-duenas F J, Martinez M J, Martinez A T. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates[J]. Applied and Environmental Microbiology,1999,65 (10):4705-4707
    [99]Larrondo L F, Lobos S,Stewart P J, et al. Isoenzyme Multiplicity and Characterization of Recombinant Manganese Peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,2001,67 (5): 2070-2075
    [100]Wollkow T D, Harris S D, Hamei J. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis[J]. J Cell Sci,1996,109:2179-2188
    [101]王敏.白腐菌降解木质素研究进展[J].衡水学院学报,2011,13(1):51-53
    [102]Macarena S, Fernando L L, Monica V, et al. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium[J].Fems Microbiology Letters.2005,242:37-44
    [103]阮久莉,王勐,毛亮,等.白腐菌锰过氧化物酶对2,2’,4,4’-四溴联苯醚的降解[J].环境科学与技术,2012,35(1):20-14
    [104]Johansson T, Nyman P O, Cullen D. Differential regulation of mnp2, a new manganese peroxidase encoding gene from the ligninolytic fungus Trametes versicolor PRL 572[J]. Applied and Environmental Microbiology,2002,68:2077-2080
    [105]Lu'-Chau T A, Ruiz-Duen~as FJ, Camarero S, et al. Effect of pH on the stability of Pleurotus eryngii versatile peroxidase during heterologous production in Emericella nidulans[J]. Bioprocess Biosyst Eng,2004,26 (5):287-293
    [106]Scheel T, Hofer M,Ludwig S, et al. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds[J]. Appl Microbiol Biotechnol,2000,54:686-691
    [107]Moilanen A M, Lundell T, Vares T, et al. Hatakka Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata[J]. Appl Microbiol Biotechnol,1996, 45:792-799
    [108]Hatakka A, Uusi-r A K. Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi[J].Eur J Appl Microbiol Biotechnol,1983,17:235-242
    [109]Kirk T K, Schultz E, Conors W J, et al. Influence of culture parameters on lignin melabolism by Phanerochaete chrysosporium[J]. Arch. Microbiol,1978,117:277-285
    [110]Hakala T K, Hilden K, Maijala P, et al. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus[J]. Appl Microbiol Biotechnol,2006,73 (4):839-849
    [111]Rodrigo A, Mancilla, et al. Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora[J]. Fungal Genetics and Biology,2010,47:656-661.
    [112]Hibi M, Hatahira S, Nakatani M. Extracellular oxidasesof Cerrena sp. Complementarily functioning in artificial dye decolorization including laccase,Manganese peroxidase,and novel versatile peroxidases [J]. Biocatalysis and Agricultural Biotechnology,2012,1:220-225
    [113]张玉龙.偏肿革裥菌MnP发酵条件的优化和纯化以及对染料脱色的研究[D]:[硕士学位论文].哈尔滨:东北林业大学,2012
    [114]复旦大学物理化学教研室 物理化学(下册)[M]. 北京:人民教育出版社,1982,311-321
    [115]Irie T, Honda Y, Ha HC, et al. Isolation of cDNA and genomic fragments encoding the major manganese peroxidase isozyme from the white rot basidiomycete Pleurotus ostreatus[J]. J Wood Sci,2000,46:230-233
    [116]Sangcheol J, Kyunghoon K, Hyoung C, et al. Characterization of Mn-peroxidase Isoenzymes from the White-rot Fungus Trametes versicolor in Korea [J]. Journal Huazhong (Central China) Agricultural University 2004,23 (1):146-149
    [117]Lobos S,Larrain J,Salas L, et al. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignindegrading basidiomycete Ceriporiopsis subvermispora[J].Microbiology,1994,140:2691-2698
    [118]Sakamoto Y, Nakade K, Nagai M, et al. Cloning of Lentinula edodes lemnp2, a manganese peroxidase that is secreted abundantly in sawdust medium[J].Mycoscience 2009,50:116-122
    [119]Bendtsen J D, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0[J]. J. Mol. Biol,2004,340(4):783-795
    [120]Katoh K, Kuma K, Toh H, et al. MAFFT version 5:improvement in accuracy of multiple sequence alignment[J]. Nucleic Acids Res.2005,33:511-518
    [121]Bo"deker I T, Nygren C M, Taylor A F, et al. Class Ⅱ peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi[J]. ISME J,2009,3 (12):1387-1395
    [122]Hammel K E, Cullen D. Role of fungal peroxidases in biological ligninolysis[J].Curr. Opin. Plant Biol,2008,11 (3):349-355
    [123]张娱,曾光明,刘利锋.锰过氧化物酶的生物信息学分析[J].广州化工,2012,40(11):9-10,15
    [124]Hakala T K, Hilden K, Maijala P, et al. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology 2006,73:839-849
    [125]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol,1987,4 (4):406-425
    [126]Maijala P, Harrington T C, Raudaskoski M. A peroxidase gene family and gene trees in Heterobasidion and related genera[J]. Mycologia,2003,95 (2):209-221
    [127]Nagai M, Sakamoto Y, Nakade K, et al. Isolation and characterization of the gene encoding a manganese peroxidase from Lentinula edodes[S]. Mycoscience,2007,48 125-130
    [128]Ruiz-Duen-as F J, Marti'nez MJ, Marti'nez AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii[J].Molecular Microbiology,1999,31(1):223-235
    [129]Ruiz-Duen-as F J, Martinez A T. Microbial degradation of lignin:how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this[J]. Microb. Biotechnol,2009,2:164-177
    [130]Ruiz-Duen-as F J, Morales M, Garcia E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. J. Exp. Bot,2009,60:441 - 452
    [131]Ruiz-Duen-as F J, Pogni R, Morales M, et al. Protein radicals in fungal versatile peroxidase:catalytic tryptophan radical in both compound Ⅰ and compound Ⅱ and studies on W164Y, W164H, and W164S variants[J]. J. Biol. Chem,2009,284:7986-7994
    [132]Larrondo L, Gonzalez A, Perez-Acle T, et al. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features[J]. Biophysical Chemistry,2005,116 (2):167-173
    [133]Miki Y, Tanaka H, Nakamura M, et al. Isolation and characterization of a novel lignin peroxidase from the white-rot basidiomycete Trametes cervina[J]. J. Fac. Agr. Kyushu Univ,2006,51:99-104
    [134]Pe'rez-Boada M, Ruiz-Duen-as F J, Pogni R, et al. Versatile peroxidase oxidation of high redox potential aromatic compounds:site-directed mutagenesis,spectroscopic and crystallographic investigation of three longrange electron transfer pathways[J]. J. Mol. Biol,2005,354:385-402
    [135]Morgenstern I, Robertson D L, Hibbett D S. Characterization of Three mnp Genes of Fomitiporia mediterrane and Report of Additional Class Ⅱ Peroxidases in the Order Hymenochaetales[J]. Applied and Environmental Microbiology,2010,76:6431-6440
    [136]Limongi P, Kjalke M, Vind J, et al. Disulfide bonds and glycosylation in fungal peroxidases[J]. Eur. J. Biochem,1995,227 (1-2):270-276
    [137]Fujihiro S, Higuchi R, Hisamatsu S, et al. Metabolism of hydroxylated PCB congeners by cloned laccase isoforms[J]. Appl Microbiol Biotechnol,2009,82:853-860
    [138]Johansson T, Nyman P O, Cullen D. Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572[J].Appl. Environ. Microbiol,2002,68 (4):2077-2080
    [139]Muller P Y, Janovjak H, Miserez A R, et al. Processing of gene expression data generated by quantitative real-time RT-PCR[J].Biotechniques,2002,32 (6):1372-1374, 1376,1378-1379
    [140]Cohen R, Hadar Y, Yarden O,et al. Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+[J]. Environmental Microbiology, 2001,3 (5):312-322
    [141]Cohen R, YardenO, Hadar Y. Lignocellulose Affects Mn2+ Regulation of Peroxidase Transcript Levels in Solid-State Cultures of Pleurotus ostreatus[J]. Appl. Environ. Microbiol,2002,3156-3158
    [142]Nayak T, Szewczyk E, Oakley CE, et al. A versatile and efficient gene-targeting system for Aspergillus nidulans[J]. Genetics,2006,172 (3):1557-1566
    [143]Chen S, Song Y, Cao J, et al.Localization and function of calmodulin in live-cells of Aspergillus nidulans[J]. Fungal Genetics and Biology,2010,47:268-278
    [144]Kafer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations[J]. Adv. Genet,1977,19,131-133
    [145]Wang J, Hu H, Wang S, et al. The important role of Actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans[J]. Microbiology,2009,155 (8):2714-2725
    [146]Wang G, Lu L, Zhang CY, et al. Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkorper in Aspergillus nidulans[J]. Protoplasma,2006, 228 (4):159-166
    [147]曹进玲.钙离子通道蛋白MidA在构巢曲霉中的功能特征研究[D].南京:南京师范大学硕士学位论文,2011
    [148]胡美美.偏肿革裥菌MnP基因在构巢曲霉中的转化与表达[D].哈尔滨:东北林业大学硕士学位论文,2013
    [149]Gao L, Song Y, Cao J, et al. Osmotic stabilizer-coupled suppression of NDR defects is dependent on the calcium-calcineurin signaling cascade in Aspergillus nidulans[J]. Cellular Signalling,2011,23:1750-1757
    [150]Romero B, Turner G, Olivas I, et al. The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen[J]. Fungal Genetics and Biology, 2003,40 (2):103-114
    [151]闫洪波.偏肿拟栓菌锰过氧化物酶cDNA基因克隆及在毕赤酵母中的表达[D].哈尔滨:东北林业大学博士学位论文,2009
    [152]孟祥锋.瑞氏木霉纤维二糖水解酶(CBHI)丝状真菌表达体系的构建[D].山东山东大学硕士学位论文,2010
    [153]Waring R B, May G S, Morris N R.Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes[J].Gene,1989,79:119-130
    [154]Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Appl Environ Microbiol,2000,66:3016-3023
    [155]Jiang F, Kongsaeree P, Charron R, et al. Production and separation of manganese peroxidase from heme amended yeast[J]. Cultures.Biotechnology and Bioengineering, 2008,99 (3):540-549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700