用户名: 密码: 验证码:
土沉香(Aquilaria sinensis (Lour.)Gilg)结香机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土沉香(Aquilaria sinensis (Lour.) Gilg)为我国特有的生产高品质香料及国药沉香的植物,关于沉香的形成过程,国内学者以土沉香为研究对象做了一些相关研究,国外不少学者则以沉香属其它的种为研究对象,如Aquilaria agallocha、Aquilaria malaccensis、Aquilaria crassna等,也做了大量的相关研究。本研究从土沉香与真菌的关系入手,从植物生理的角度,开展了真菌的分离鉴定与分析、真菌对土沉香木材组织成分及化学性质的影响、土沉香与结香真菌互作中的生理代谢变化等方面的研究,试图解决沉香结香过程中的几个关键问题。主要的研究结果如下:
     1.土沉香(Aquilaria sinensis (Lour.) Gilg)树干受到创伤之后,包括可可毛壳色单隔孢(Lasiodiplodia theobromae)、茄病镰刀菌(Fusarium solani)、弯孢菌(Curvularia spp.)和拟盘多孢(Pestalotiopsis microspora)等致病菌种类会随之增加。这些致病菌在未创伤树干组织中并未发现,说明这些致病菌是通过创伤伤口侵入,物理创伤能够结香是多种致病菌侵染共同作用的结果。
     2.在不同结香程度样品中,真菌种类不尽相同,且按未结香→始结香→已结香顺利依次减少。说明沉香物质的形成对有些真菌有抑制作用,使得一些真菌难以生存,其它的真菌取而代之,沉香的形成过程并不是某些真菌自始至终的结果。在有沉香物质的部分,即始结香部分和已结香部分,都发现了致病菌层出镰刀菌(Fusarium proliferatum)和红褐肉座菌(Hypocrea jecorina)。
     3.土沉香(Aquilaria sinensis (Lour.) Gilg)树干滴注多变根毛霉(Rhizomucorvariabilis)、层出镰刀菌(Fusarium proliferatum)和红褐肉座菌(Hypocrea jecorina)三种菌剂后,脂肪酸的下降出现相似的规律,即前期(尤其是前2个月)下降较快,后期下降平稳,其中十八碳烯-[9]-酸下降幅度最大,其次是十八碳二烯-[10,2]-酸,棕榈酸降幅最小;三种菌剂中,多变根毛霉(Rhizomucor variabilis)对土沉香中脂肪酸成份的破坏最大,红褐肉座菌(Hypocrea jecorina)次之,而层出镰刀菌(Fusarium proliferatum)最小。
     4.土沉香(Aquilaria sinensis (Lour.) Gilg)树干滴注多变根毛霉(Rhizomucorvariabilis)、层出镰刀菌(Fusarium proliferatum)和红褐肉座菌(Hypocrea jecorina)三种菌剂后,6个月时层出镰刀菌(Fusarium proliferatum)组苄基丙酮含量最高,达到104.7ug·g~(-1),其次是红褐肉座菌(Hypocrea jecorina)组(33.38ug·g~(-1)),而多变根毛霉(Rhizomucorvariabilis)组极其微量,仅有1.94ug·g~(-1)。说明真菌种类对苄基丙醇含量的影响很大,多变根毛霉(Rhizomucor variabilis)对苄基丙酮的生成作用甚微,而层出镰刀菌(Fusariumproliferatum)效果最佳。
     5.本研究通过对比液体菌剂和真菌培养液对苄基丙酮含量的影响,发现无菌的真菌培养液与液体菌剂间对苄基丙酮含量的影响并无显著差异。说明,沉香的形成与真菌并无直接关系,但与真菌代谢物关系密切。
     6.土沉香(Aquilaria sinensis (Lour.) Gilg)树干滴注层出镰刀菌(Fusarium proliferatum)培养液6个月后,木材结香部分热水抽提物含量较白木部分增高了26.923%,说明层出镰刀菌培养液致使木材组织细胞壁受损,代谢物增多;木材结香部分苯-醇抽提物增高184.665%,为白木部分的2.85倍,表明木材中部分糖类化合物在木材向沉香变化过程中发生了降解作用,而萜类化合物、芳香族化合物等有机物含量随之增加;结香部分综纤维素含量比白木部分减少了21.737%,半纤维素减少9.986%,而木质素含量增加了38.316%,说明层出镰刀菌培养液可以降解综纤维素中的某些化学成分,但对木材的主要化学成分木质素无降解作用;与白木部分比较,结香部分木材组织中S元素增加了24.85%,其它矿物元素出现了不同程度的减少(7.92%~55.96%),说明木材组织受到了胁迫;溶性糖的含量增高了56.10%,淀粉下降了62.92%,说明土沉香(Aquilaria sinensis (Lour.)Gilg)正常的生长与呼吸平衡受到了损坏,致使淀粉向糖转化。
     7.沉香物质主要出现在导管和木射线薄壁组织。本研究的石蜡切片中沉香物质多的地方没有发现任何真菌。发现真菌菌丝体的地方沉香物质并不多,且所发现的菌不是研究中所采用的层出镰刀菌(Fusarium proliferatum)。说明,沉香物质不是层出镰刀菌(Fusarium proliferatum)在土沉香(Aquilaria sinensis (Lour.) Gilg)木材组织中生长繁殖的代谢产物。
     8.添加层出镰刀菌(Fusarium proliferatum)和红褐肉座菌(Hypocrea jecorina)菌液后,两组土沉香(Aquilaria sinensis (Lour.) Gilg)组培幼苗叶片细胞膜脂氧化、细胞膜透性和糖代谢均存在明显差异。从细胞膜脂氧化来看,更有利于沉香物质形成的层出镰刀菌(Fusarium proliferatum)引发的胁迫反应中叶片细胞膜脂氧化(MDA)较红褐肉座菌(Hypocrea jecorina)轻,尤其在前期(24h~48h);从细胞膜透性(相对电导率)的变化来看,层出镰刀菌组呈现逐渐上升的趋势,红褐肉座菌组则呈现先快后慢的上升趋势,说明层出镰刀菌(Fusarium proliferatum)对细胞膜的损害是一个渐近式的过程,而红褐肉座菌(Hypocrea jecorina)的损害更剧烈;从可溶性糖来看,两者在24h内均变化不大,48h时均出现了剧增,但红褐肉座菌组明显高于层出镰刀菌组,而72h后红褐肉座菌组下降幅度大于层出镰刀菌组,说明红褐肉座菌(Hypocrea jecorina)的侵染导致了糖代谢的不规律变化,而层出镰刀菌(Fusarium proliferatum)侵染后糖代谢相对平稳。
     9.从活性氧代谢来看,滴注两个结香真菌菌液后,在短期(0~24h)内土沉香(Aquilariasinensis (Lour.) Gilg)组培幼苗叶片均出现了活性氧剧增的现象,之后均持续上升,但增幅存在差异,导致后期(96h时)经红褐肉座菌(Hypocrea jecorina)菌液处理的土沉香组培幼苗O_2~-和H_2O_2分别高于层出镰刀菌(Fusarium proliferatum)4.42U·g~(-1)和26.55U·g~(-1)。两个结香真菌对土沉香组培幼苗叶片中活性氧清除酶活性的影响亦存在差异,主要表现在两方面:一方面表现在活性上,层出镰刀菌(Fusarium proliferatum)处理后活性氧清除酶活性(SOD、POD和CAT)要高于红褐肉座菌(Hypocrea jecorina);另一面表现在变化规律上,层出镰刀菌(Fusarium proliferatum)处理后活性氧清除酶活性的变化较缓,而红褐肉座菌(Hypocrea jecorina)的变化更为剧烈。
     10.以层出镰刀菌培养液为母液,根据生理胁迫形成沉香的机理,添加NaCl(X1)和茉莉酸甲酯(X2),研究结香诱导剂配比。采用均匀设计及多元逐步回归分析,结果表明:茉莉酸甲酯对沉香醇溶性浸出物含量的影响没有NaCl大,但其在低水平条件下有利于提高沉香醇溶性浸出物含量;以母液+1.8248%NaCl+0.0046%茉莉酸甲酯为结香诱导剂进行滴注,1年后沉香中醇溶性浸出物(Y)获得理论最大值13.6012%。
Aquilaria sinensis (Lour.) Gilg was a paticular tree for producing agarwood used ashigh-quality incense and traditional chinese medicine in china. At abroad, there were somestudies on agar formating mechanism of Aquilaria agallocha, Aquilaria malaccensis, Aquilariacrassna, etc.. In china, studies targeted on Aquilaria sinensis (Lour.) Gilg have been carried outsince1970s. In this paper, studies on agar formation mechanism started with relation betweenAquilaria sinensis (Lour.) Gilg and the involved fungi from the standpoint of plant physiology,which including separation, purification and identification on involved fungi, fungi effect onchemical composition and chemical property of the wood tissue, physiological and metabolicchanges in the interaction between Aquilaria sinensis (Lour.) Gilg and the fungi. The mainresults about agar formation were as follows:
     1. After wounding Aquilaria sinensis (Lour.) Gilg on the trunk, more pathogenic fungiwould appear, including Lasiodiplodia theobromae, Fusarium solani, Curvularia spp. andPestalotiopsis Microspora, etc.. The above pathogenic fungi were not found in the healthytrunk. It indicated that these pathogenic fungi were from outside through wound, and agarformation by physical wounding was the interaction results of various pathogenic fungiinfection.
     2. In the studies, it was found that fungal species respectively decreased in the order:no-agar wood→little-agar wood→agar wood. It indicated that the formation of agar materialhad inhibiting effect on certain fungi, and then other fungi would replace them, so the agarformation process was not the result of some specific fungi infecting from first to last.Fusarium proliferatum and Hypocrea jecorina were found in the two test sample: little-agarwood, agar wood.
     3. After instilling with the liquid inoculum of Rhizomucor variabilis, Fusariumproliferatum and Hypocrea jecorina, fatty acid in the timber of Aquilaria sinensis (Lour.) Gilgdecreased by similar rule, early (especially in the first2months) decreasing rapidly, and then steadily decreasing. The fatty acid consisted of octadecenic-[9]-acid, octadecenic-[10,2]-acidand palmitinic acid, among which, octadecenic-[9]-acid decreased at most, followed byoctadecenic-[10,2]-acid, and palmitic acid decreased at least. So the three fungi all coulddecompose the fatty acid in the timber of Aquilaria sinensis (Lour.) Gilg, the decompositiondegree in the order:Rhizomucor variabilis→Hypocrea jecorina→Fusarium proliferatum.
     4. From the view of the content of benzyl acetone, on the6thmonth, benzyl acetonecontent of the sample instilled with liquid Fusarium proliferatum inoculum was the highest,reaching104.7μg·g~(-1), followed by the sample instilled with liquid Hypocrea jecorina inoculum(33.38μg·g~(-1)), and the sample instilled with liquid Hypocrea jecorina inoculum was very low,only1.94μg·g~(-1). It had been shown that the fungus species had great effect on benzyl alcoholcontent, namely, Rhizomucor variabilis had little effect on the formation of benzyl acetone, andFusarium proliferatum the best effect.
     5. In this study, the effect of liquid inoculant on benzyl acetone content was comparedwith sterile fungal culture solution. The results had shown that there was little differencebetween liquid inoculant and sterile fungal culture solution. It indicated that there was notdirect relationship between agar formation and the fungal mycelium, on the contrary, there wasclose relationship between agar formation and mycelium metabolites.
     6. After instilled with the culture solution of Fusarium proliferatum, on the6thmonthhot-water extractives content in the agar wood was higher than that in no-agar wood by26.923%, which indicated that the cell wall of the timber tissue had been partially damaged andthe metabolites increased; Benzene-ethanol extractives in the agar wood was higher than that inno-agar wood by184.665%, which showed that a part of carbohydrate had been degradated,terpenoid compounds, aromatic compounds content increased accordingly; Holocellulosecontent in the agar wood was lower than that in no-agar wood by21.737%, pentosan(hemicellulose) also lower by9.986%, and lignose content higher by38.316%, which indicatedthat the culture solution could degradate Holocellulose, but not degradate lignose; Comparedwith the no-agar wood, mineral elements content, except for S(increased by24.85%), in theagar wood decreased by7.92%~55.96%, which showed that the timber tissue was under stress, the S content increasing may be the result of passive absorption for self-protection; In theprocess of agar formation, normal balance between growth and respiration had been striked,which resulted in starch conversing to sugar, so the soluble sugar content in the agarwoodincreased by56.10%and starch content decreased by62.92%.
     7. Agar material occurred mainly in parenchyma cell of the xylem tracheal and xylem rays.In paraffin sections, no fungi were found where abundant agar engendered, and agar was littlewhere the mycelium was found. Moreover, the fungus found in paraffin sections was notFusarium proliferatum. It had been shown that agar was not metabolites of growth andreproduction of Fusarium proliferatum in timber tissue of Aquilaria sinensis (Lour.) Gilg.
     8. After Added Aquilaria sinensis (Lour.) Gilg tissue culture seedling with culture solutionof Fusarium proliferatum and Hypocrea jecorina, there was significant difference in cellmembrane lipid oxidation, cell membrane permeability and glucose metabolism between thetwo groups of samples. From the view of cell membrane lipid peroxidation, the MDA contentin leaves of the samples added Hypocrea jecorina culture solution (H-group) increasedsignificantly, while the one of the samples added Fusarium proliferatum culture solution(F-group) increased less, especially in early phase (24h~48h), which showed that Fusariumproliferatum, as a fungus more conducive to agar formation, could cause Aquilaria sinensis(Lour.) Gilg physiologic stress reaction, but the cell membrane lipid oxidation was not asserious as Hypocrea jecorina. From the view of cell membrane permeability changes, REC(Relative Electrical Conductivity) in the leaves of H-group increased steadily, while F-group sREC increased rapidly at first and then increases slowly. which showed that culture solution ofFusarium proliferatum would damage leaves s cell membrane gradually, while culturesolution of Hypocrea jecorina would damage acutely; From the view of soluble sugar, theleaves’ soluble-sugar in the two groups of samples all changed little in24h, and then allincreased rapidly with H-group more quickly, at the48thhour soluble-sugar content in theH-group samples was significantly higher than that in F-group samples, after the72thhour, thesoluble-sugar content in H-group samples declined more than that in F-group samples, whichindicated that Hypocrea jecorina infection caused nutrient transport disorder and resulted in irregular change of glucose metabolism, while Fusarium proliferatum effect on glucosemetabolism relatively stable.
     9. After Added Aquilaria sinensis (Lour.) Gilg tissue culture seedling with culture solutionof Fusarium proliferatum and Hypocrea jecorina, ROS surge phenomenon all occurred in ashort period (0~24h). Later, at the96thhour the superoxide radical and hydrogen peroxide inthe H-group samples were higher than that of F-group samples by4.42U·g~(-1)and26.55U·g~(-1).There were significant differences in active-oxygen scavenging enzymes during thephysiologic stress phase caused by Fusarium proliferatum and Hypocrea jecorina. Thedifferences were manifested in two aspects:firstly, the enzymes activity (including SOD, PODand CAT) of F-group samples were higher than that of H-group samples;Secondly, changeregularity of the enzymes activity was different, enzymes activity in F-group samples changedrelative steadily, while the one in H-group changed acutely.
     10. In this study, the hypothesis “physiological stress causing agar” was brought forward.Based on the hypothesis, a trial about agar revulsant formula, including Fusarium proliferatumculture solution, NaCl and JAs, was carried out according to uniform design. The results hadbeen shown that NaCl had greater effect on agarwood quanlity than JAs; the best agarrevulsant formula was Fusarium proliferatum culture solution added1.8248%NaCl and0.0046%JAs. Instilling the trunk with the agar revulsant formula, one year later, maximizedalcohol-soluble extractive content in the wood would be13.6012%theoretically.
引文
[1]黎建雄,马华明.白木香产香研究进展[J].林业实用技术,2010,(3):38-39.
    [2]Blanchette R A,Heuveling V B H.Cultivated agarwood[P] EU:WO02094002,20012112281.
    [3]周开.白木香的研究概况[J].中国中医药现代远程教育,2007,5(10):46-48.
    [4]冯凤钜.沉香木与沉香[J].中国木材,2005,6:13-15.
    [5]Barden A,Awang A N,Mulliken T,et al.Heart of the Matter:Agarwood use and Trade and CITESImplementation for Aquilwia malaccensis[C].Cambridge,UK:TRAFFIC International2000:1-60.
    [6]周铁峰.中国热带主要经济树木栽培技术[M].北京:中国林业出版社,2001.
    [7]裘树平,刘仲荃.中国保护植物[M].上海:上海科技教育出版社,1994.
    [8]中国珍稀濒危保护植物名录(第一册)[M].北京:科学出版社,1987.
    [9]国家林业局,国家农业部令(第4号)[M].国家重点保护野生植物名录(第一批).1999.
    [10]中同科学院中国植物志编辑委员会.中同植物志(第52卷二分册)[M].北京:科学出版社,1999,289-292.
    [11]《广东中药志》编辑委员会编著.广东中药志(第一卷)[M].广州:广东科技出版社,1994,第l版:339.
    [12]肖培根.新编中药志(第二卷)[M].北京:化学工业出版社.2002,第1版:749.
    [13]唐·苏敬.新修本草[M].合肥:安徽科学技术出敝社.2004:179.
    [14]宋·唐慎微.证类本草[M].北京:华夏出版社,1993:363-365.
    [15]唐为萍,陈树思.沉香叶解剖结构的研究[J].广西植物,2005,25(3):229-232.
    [16]宋·寇宗夷.本草衍义[M].北京:人民卫生出版社,1990:81-82.
    [17]明·李时珍.本草纲目:下册[M].点校本.北京:人民卫生出版社,1982:1936-1940.
    [18]明·卢之颐.本草乘雅半偈[M].北京:人民卫生出版社,1986:450.
    [19]清·邢定纶.崖州志[M].广州:广东人民出版社,2011:74-78.
    [20]民国·叶觉迈修.东莞县志[M].隙伯陶纂修.铅印本.成文出版社影印,民国十年:398-402.
    [21]Bose S R.The Nature of Agar formation[J].Sci.&Cult..1934,4(2):89-91.
    [22]Bose S R.Enzymes of wood-rotting fungi[J].Ergeb. Enzymforsch,1939,(8):267-276
    [23]Ng LT,Chang Y S,Kadir A A.A Review on Agar (gaharu) producing Aquilaria species[J],Journal ofTropical Forest Products,1997,2(2):272-285.
    [24]Jalaluddin,M.Disease of forest trees[J].Agar.Pakistan.1970,21(3):263-370.
    [25]Sadgopal.Explanatory studies in the development of essential oils and their constituents in AromaticPlants.Part1:Oil of Agarwood[J].SPC,2002,33:41-46.
    [26]Chaudhari D C.Agarwood from Aquilaria malaccensis,A.agallocha Roxb.[J].MFP News,1993,3:12-13.
    [27]广东省植物研究所.初步揭开沉香结香的秘密[J].植物学报,1976,18(4):287-291.
    [28]曾幻添,董文忠,吴质朴.沉香的人工结香[J].中草药通讯.1978,(12):38-40.
    [29]戚树源,陆碧瑶,朱亮锋,李宝灵.白木香中白木香醛形成的研究(简报)[J].物生理学通讯,1992,28(5):336-339.
    [30]戚树源,林立东,叶勤法.沉香中的苄基丙酮及其在黄绿墨耳真菌中的生物转化[J].生物工程学报,1998,14(4):464-467.
    [31]戚树源,林立东,胡厚才.白木香中色酮类化合物的形成[J].中草药,2000,31(9):658-659.
    [32]何梦玲,槭树源,胡兰娟.白木香悬浮培养细胞中2-(2-苯乙基)色酮类化合物的诱导形成[J].广西植物,2007,27(4):627-632.
    [33]Kalita J,Bhattacharyya P R,Nath S C. Heortia vitessoides Moore (Lepidoptera Pyralidae)-A seriousPest of Agarwood plant (Aquilaria malaccensis Lamk.)[J].Geobios-Jodhphur,2002,29(1):13-15.
    [34]Das D K. The Agar Industry in Pakistan.Pakistan Jour. Forestry,2000,13(2),194-197.
    [35]Rahman M A,Basak A C.Agar production in agar trees by artificia l inoculation and wounding[J].BanoBigan Patrika,1980,9(12):97-98.
    [36]Nobuchi T,Somkid Siripacanadilok. Preliminary observation of aquliaria crassna wood associatedwith the formation of aloeswood bult[J].Kyoto Univ. For.,2001,63:226-235.
    [37]Bhattacharya B.On the formation and development of agar in Aquilaria agallocha[J]. Sci Cul,1952,18(5):240-242.
    [38]Gibson I A S.The role of fungi in the origin of oleoresin deposits (Agaru) in the wood of Aquilariaagalocha(Roxb.)[J].Bano Biggyn Patrika,1977,6(1):16-26.
    [39]Jalaluddin,M.A useful pathological condition of wood[J].Economic Botany,1977,31:222-224.
    [40]Tamuli P,Boruah S,Samanta R.Biochemical changes in agarwood tree(Aquilaria malaccensisLamk.)during pathogenesis [J].J. Spices and Aroma.t Crops,2004,13:87-91.
    [41]Tamuli P,Boruah S C,Nath R,et al.Fungi from disease agarwood tree (Aquilaria agalochaRoxb.)[J].Advances in Forestry Research,2000,XX Ⅱe d,Ram Parkash:182-189.
    [42]Tabata Y, Widjaja E, Mulyaningsih T, et a1. Structural survey and artificial induction ofaloeswood[J].Wood Research,2003,90:11-12.
    [43]Subehan,Ueda JunYa,Fujino H,et a1.A field survey of agarwood in Indonesia[J].Journal ofTraditional Medicines,2005,22(4):244-251.
    [44]张争,杨云,魏建和等.白木香结香机制研究进展及其防御反应诱导结香假说[J].中草药.2010,41(1):157-159
    [45]冯乃宪,徐尔尼,幸锋等.沉香内生真菌分离鉴定的初步研究[J].中国酿造,2008,16:19-21.
    [46]张秀环,梅文莉,陈苹等.白木香内生真菌的分离鉴定及其抑菌活性[J].微生物学杂志,2009,29(3):6-10.
    [47]王磊,章卫民,潘清灵等.白木香内生真菌的分离及分子鉴定[J].菌物研究,2009,7(1):37-42.
    [48]Vasconsuelo A,Boland R.Molecular aspects of the early stages of elicitation of secondary metabolitesin plants[J].Plant Sci.,2007,5:861-875.
    [49]Michiho I,Ken-Ichiro O,Toru Y,et al.Induction of sesquiterpenoid production by methyl jasmonatein Aquilaria sinensis cell suspension culture[J].J. Essent Oil Res.,2005,17(2):175-180.
    [50]杨峻山,陈玉武.国产沉香化学成分的研究Ⅰ.白木香酸和白木香醛的分离和结构测定[J].药学学报,1983,18(3):191-198.
    [51]杨峻山,陈玉武.国产沉香化学成分研究Ⅱ.白木香醇和去氢白木香醇的分离和结构[J].药学学报,1986,21(7):516-520.
    [52]杨峻山,王玉兰,苏亚伦等.国产沉香化学成分的研究Ⅳ.2-(2-苯乙基)色酮类化合物的分离与鉴定[J].药学学报,1989,24(9):678-683.
    [53]杨峻山,王玉兰,苏亚伦等.国产沉香化学成分的研究Ⅴ.三个2-(2-苯乙基)色酮衍生物的分离与鉴定[J].药学学报,1990,25(3):186-190.
    [54]Konishi T,Konoshima T,et al.Six New2-(2-Phenylethyl) chromones from Agarwood [J].Chem.Pharm Bull,2002,50(3):419-422.
    [55]Yagura T,et al.Four New2-(2-Phenylethyl) chromone Derivatives from Withered Wood of Aquilariasinensis[J].Chem. Pharm Bull,2003,51(5):560-564.
    [56]刘军民,高幼衡,徐鸿华等.沉香的化学成分研究Ⅰ[J].中草药,2006,37(3):325-327.
    [57]IwagoeK,Kakae T,et al.Studies on the Agalwood (Jinko)Ⅷ.Structures of Bi-phenylethyl chromoneDerivatives [J].Chem. Pharm Bull,1989,37(1):124-128.
    [58]Konishi T,Iwagoe K,et al.Studies on Agalwood (Jinko) Ⅹ.Structures of2-(2-Phenylethyl) chromoneDerivatives [J].Chem. Pharm Bull,1991,39(1):207-209.
    [59]林立东,戚树源.国产沉香中的三萜成分[J].中草药,2000,31(2):89-90.
    [60]刘军民,高幼衡,徐鸿华等.沉香的化学成分研究Ⅱ[J].中草药,2007,38(8):1138-1140.
    [61]郭晓玲,田佳佳,高晓霞等.不同产区沉香药材挥发油成分GC-MS分析[J].中药材,2009,32(9):1354-1358.
    [62]中华人民共和国药典委员会.中国药典[S].一部.北京:中国医药科技出版社,2010:172.
    [63]王凌,季申.气相色谱法测定进口沉香中苄基丙酮的含量[J].中草药,2003,34(3):226-228.
    [64]Brahim S R.New2-(2-phenylethyl) chromone derivatives from the seeds of cucumis melo Lvar.reticulates [J].Nat. Prod. Commun,2010,5(3):403-406.
    [65]Wang T,Li L F,Zhang K,et al.New2-(2-phenylethyl) chromones from bothriochloa ischaemum [J].J.Asian Nat. Prod. Res.,2001,3(2):145-149.
    [66]Yoon J S,Lee M K,Sung S H,et al.Neuroprotective2-(2-phenylethyl) chromones of imperatacylindrical [J].J. Nat. Prod.,2006,69(2):290-291.
    [67]何梦玲,戚树源,胡兰娟.白木香离体侧根中色酮类化合物的诱导形成[J].中草药,2010,41(2):281-284.
    [68]陈亚,江滨,曾元儿.高效液相色谱法测定沉香药材中两种活性成分的含量[J].时珍国医国药,2007,18(7):1697-1698.
    [69]关斌.沉香以及混淆品的简易鉴别研究[J].中草药,2000,31(7):558-559.
    [70]何亚辉,蔡萍,杨永华,蔡光先.微粉化对沉香挥发油等成份的影响[J].湖南中医杂志,2002,18(5):50
    [71]李凤琴,王广林.一阶导数光谱法鉴别沉香及非习用进口沉香[J].中药材,1994,17(1):18-19.
    [72]杨小平,郭成坤,屈菊兰.沉香质量的微分热重法研究[J].中国现代应用药学,2000,17(5):370-371.
    [73]江向东,粟忠蓉.沉香质量的快速分析.中药材,1996,19(12):632
    [74]Stierle A Strobel G,Stierlc D.Taxol and taxane production by Taxomyces andFeanae,and endophyticfungus of Pacific yew[J].Science,1993,260:214-216.
    [75]陶美华,颜健,魏孝义等.白木香内生真菌Fimetariella rabenhorstii的甾体类代谢产物[J].热带亚热带植物学报2011,19(1):75-78
    [76]陈宏降,陈怀琼,张争等.中药沉香品质评价研究进展[J].中国医药导报,2011,8(26):8-10.
    [77]Kumar S,Tamura K,Nei M.MEGA3:Integrated software for molecular evolutionary genetics analysisand sequence alignment[J].Briefings in Bioinformatics,2004,5(2):150-163.
    [78]张继跃.化学修饰在质谱中的应用3:环丙烷脂肪酸的苯并噁唑衍生物的质谱特征[J],l988.15:33
    [79]秦特夫.酸雨及大气污染对马尾松木材材性影响的研究[J].林业科学1996,31(6):528-535.
    [80]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2000:267~268。
    [81]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55-57.
    [82]陈建勋,王小峰.植物生理学实验指导[M].广州:华南理工大学出版社,2006.
    [83]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.
    [84]石一珺,申屠旭萍,俞晓平.重寄生菌哈茨木霉的研究及其在植病生防中的应用.生物技术通报[J],2008年增刊:76-78.
    [85]Ahmad J S,Baker R.Can Of J. Microbiology,1988,34:807-814.
    [86]Loc T,Nelson E B,Harman R G,Plant Dis.,1996,80:736-741.
    [87]吕国忠.玉米弯孢菌叶斑病菌毒素的生物活性测定及对玉米叶片超微结构的影响[J].用农业大学学报,1999,30(3):212-214
    [88]Vian A.Macri F.Effect of Curvularia lunata Phytotoxin on membrane permeability of cornroots[J].Canadian Journal of Botany.1976,54(24):2918-2923
    [89]陈捷,蔺瑞明.高增贵等.玉米弯孢叶斑病菌毒索对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报,2002,32(1):43-48
    [90]李伶俐,韩正敏,吕明亮,等.杨树枯萎病菌茄类镰刀菌的牛物学特性[J].林业科技开发,2009,23(4):5l-54.
    [91]潘华奇,张淼,刘丽,等.牛蒡根际土壤致害菌Fusaryum solani分离鉴定[J].生物技术,2009,19(5):46-50.
    [92]丁文姣,李金花,柴兆祥.黄芪根腐病菌毒素滤液产生条件和生物活性的测定[J].中国中药杂志,2009,34(20):2571-2576.
    [93]Tomioka K,Hirooka Y,Takezaki A,et al.Fusarium root rot of prairie gentian caused by a speciesbelonging to the Fusarium solani species complex[J].J. Gen. Plant Pathol.,2011,77(2):132-135.
    [94]Koike S.Fusarium crown and root rot of tarragon in California caused by Fusarium solani[J].PlantDis.,2011,95(6):768.
    [95]Leslie J F,Summerell B A,Bullock S The Fusarium Laboratory Manual[M].lowa:Blackwell,2006:250-254.
    [96]Tatum J H,Baker R A,Berry R E.Metabolites of Fusarium solani[J].Phytochemistry,1989,28(1):283-284.
    [97]He C N, Ma B J, Peng Y. Chemical constituents of Fusarium solani from Panaxquinquefolium.[OL].[20ll-02-l8].
    [98]Ishii K,Sakai K.Ueno Y et al Solaniol:A toxic metabolite of Fusarium solani[J].Appl Microbiol,l97l,22(4):7l8-720.
    [99]Song H H,Lee H S,Lee C.A new cytotoxic cyclic pentadepsipeptide,neo-N-methyl sansalvamideproduced by Fusarium solani isolated from potato[J].Food. Chem.,2011,126(2):472-478.
    [100]彭杰,吴晓鹏,黄惠琴.镰刀菌毒素研究进展[J]中国农学通报,2009,25(2):25-27.
    [101]张梅,徐良雄,薛璟花等.一株茄病镰刀茵的代谢产物研究[J].热带业热带植物学报.2012,20(6):585-590
    [102]吴国昭,曾任森.外源水杨酸甲酯和茉莉酸甲酯处理对挺立型普通野生稻保护酶活性的影响[J].西北农业学报2007,16(3):82-84
    [103]董小梅.龙眼焦腐病菌细胞壁降解酶及其致病机理的研究[D].福建农林大学硕士论文.2010.
    [104]Sembdner G, Parthier B. the biochemistry and the physiological and molecular action ofjasmonates[J].Ann. Rev. Plant. Physiol. Plant Mol. Bio.,1993,44:569-589.
    [105]徐维娜.真菌侵染诱导沉香形成关键技术效果评价及结香机制初步研究[D].广东药学院硕士论文.2011
    [106]刘军民,徐鸿华.国产沉香研究进展[J].中药材,2005,28(7):627-632.
    [107]Yu C H,Liang Y H.Anatomical and histochemtical studies on oleoresin formation in the wood ofAquilaria sinensis (Lour.) Gilg [A].Fourth Asian Symposium on Medical Plants and Spiceo-ASOMPSIV[C],Thailand:Bangkok,1980.
    [108]王兴红,杨玲玲.层出镰刀菌[P].2010,CN101928672A.
    [109]黄思良,卢维宏,陶爱丽等.南阳市玉米穗腐病致病镰刀菌种群结构分析[J].南阳师范学院学报,2012,11(3):55-57.
    [110]姬志勤,吴文君,王明安,等.苦皮藤内生真菌层出镰刀菌中杀菌成分的结构鉴定[J].西北农林科技大学学报.2005,33(5):61-64.
    [111]Audhya T K,Russell D W.Production of enniatins by Fusarium sambulinum:selection of high yieldconditions from liquid surface culture[J].Journal of General Microbiology,1974,82:181-196.
    [112]Blaekwell B A,Miller J D,Apsimin J W,et a1.Isolation and characterijatim of enniatins fromFusarium Avenaceum DAOM196490[J].Canadian Journal of Chemistry,1992,70:5-10.
    [113]Sauriol F,Hynes R C,Xu X J,et a1.Novel Quinajolinones and enniat|ns from Fusarium LateriumNees[J].Canadian Journal of Chemistry,1993,71:9-16.
    [114]Wellburn A.Air pollution and acid rain:The Biological Impacts[C].longman Scientific&Technical,New York,1988.
    [115] Pozgaj A, S Kurjatko. Wood properties of spruce from forests affected by pollution inCzechoslvakia[J].IAWA,Bulletin,1986,7(4):405-409
    [116]宾克利.酸降与森林土壤[C].中国环境科学出版社,1993.
    [117]马连祥,周定国,徐魁梧.酸雨对树木生长和木材材性的影响[J].世界林业研究.2000,12(1):27-31,
    [118]王文兴,丁国安.中国降水酸度和离子浓度的时空分布[J].环境科学研究.1997,10(2):1-10
    [119]马连祥,周定国,徐魁梧.酸雨对杨树生长和木材化学性质的影响[J].林业科学,2000,11(6):95-99.
    [120]陈树思,张君诚,唐为萍等.沉香(Aquilaria agallocha Roxb.)茎次生木质部结构的研究[J].三明学院学报,2005,22(4):416-419.
    [121]Keppler L D,Novacky A.The initiation of membrane lipid peroxidation during bacteria-inducedhypersensitive reaction.Physiol.Mol. Plant Pathol.,1987,30:233-245
    [122]Devlin WS,Gustine DL.Involvement of the oxidative burst in phytoalexin accumulation and thehypersensitive reaction.Plant Physiol.,1992,100:1189-1195
    [123]李忠光,李江鸿,杜朝昆等.在单一提取系统中同时测定五种植物抗氧化酶.云南师范大学学报,2002,22(6):44-48.
    [124]吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化与脱酯化[J].中国科学(c辑),1996,260):26-30
    [125]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2).84-90
    [126]万佐玺,朱晶晶,强胜.链格孢菌毒紊对紫茎泽兰的致病机理[J].植物资源与环境学报,2001,10(3):47-50
    [127]潘华珍,冯立明,许彩民等.丙二醛对红细胞的作用[J].生物化学与生物物理进展,1984,2:34-37
    [128]Lindquist S,Craig EA.The heat-shock proteins[J].Annu. Rev. Genet.,1988,22:631-677
    [129]王广金,孙光祖,李学湛等.小麦赤霉病菌毒素对小麦抗病突变体及其亲本细胞超微结构的影响.植物病理学报,1997,27(3):215-219
    [130]章元寿.植物病理生理学[M].南京:江苏科学技术出版社。1995:51-52.
    [131]杨斌,叶建仁,包宏.林木病原菌毒素研究进展[J].林业科学研究进展,2000,13(3):316-322.
    [132]Holden J H.Sze H.Helminthosporium maydis T toxin increased membrane permeability to Ca2+insusceptible corn mito chondria[J].Plant Physiol.,1984,75:225.
    [133]KimberA,Sze H.Helminthosporium maydis T toxin decreased calcium transport into mito chondria ofsusceptible corn[J].Plant Physiol..1984,74:804.
    [134]Damann K E,J R Gardner,J M,Scheffer R P.An assay for Helminthosporium victoriae toxin basedon induced leakage of electrolytes from oat tissue[J].Phytopathol,1974.64:652-654.
    [135]Gardner J M.Scheffer R P.Effects of eyeloheximide and sulfhydry binding compounds on sensityivityof oat tissues to Helminthosporium victoriae toxin[J].Plant Pathol.,1973,3:147-157.
    [136]陈绍江.大豆紫斑病菌毒素的研究[J].植物病理学报,1996。26(1):45-48.
    [137]宋凤鸣.活性氧及膜脂过氧化在植物一病原物互作中的作用[J].植物生理学通讯,1996,32(5):377-385.
    [138]赵江涛,李晓峰,李航等.可溶性糖在高等植物代谢调节中的生理作用.安徽农业科学,2006,34(24):6423-6425,6427.
    [139]郑殿峰,粱喜龙,左豫虎等.大豆根腐病菌对大豆幼苗生理生化指标的影响.中国油料作物学报,2004,26(3).57-61
    [140]张建军,李祥,侯明生.小麦植株内可溶性糖含量与对梭条斑花叶病毒抗性的关系.植物保护,1997,23(5):16-18.
    [141]Morcuende R,Krappe A,Hhrry V,et al.Sucrose feeding leads to increased rates of nitrateassimiiation,increased rates of α oxoglutarate synthesis,and increased synthesis of a wide spectrum ofamino acids in tobacco leaves [J].Plants,1998,(206):394-409.
    [142]Graham I A,Denby J K,Leaver C J.Carbon catabolite repression regulates giyoxylate cycle geneexpression in cucumber[J].Plant Cell,1994,(6):761-772.
    [143]Jang J C,Sheenh J.Sugar sensing in higher plants [J].Trends Plant Sci,1997(2):208-214.
    [144]Loreti E,Bellis L D,Alpi A,et al.Why and how do plant cells sense sugars[J].Ann. Bot.,2001,(88):803-812.
    [145]Koch K E,Ying Z,Wu Y,et ai.Multipie paths of sugar sensing and a sugar/oxygen overlap for genesof sucrose and ethanoi metabolism[J].J. Exp. Bot.,2000,(51):417-427.
    [146]Gazzarrini S,Court P M C.Genetic interactions between ABA ethylene and sugar signaling pathways[J].Current Opinion in Plant Biology,2001,(4):38-39.
    [147]Martin T,Oswald O,Graham I A.Arabidopsis seedling growth,storage lipid mobilization,andphotosynthetic gene expression are regulated by carbon:Nitrogen availabiIity[J].Plant Physiol.,2002(l28):472-48l.
    [148]Cheng W H,Endo A,Zhou L.et al.A unigue short Chain dehydrogenase/reductase in Arabidopsisabscisic acid biosynthesis and glucose signaling[J].Plant Cell,2002,(14):2723-2743.
    [149]Gray W M,Kepinski S,Rouse D,et al.Auxin regulates SCF dependent degradation of Aux/IAAproteins [J].Nature,2001,(414):271-276.
    [150]Ohto M,Onai K,Furukawa Y,et al.Effects of sugar on vegetative development and floral transitionin Arabidopsis thailana[J].Plant Physiol.,2001,(127):252-261.
    [151]Rizhsky L,et al.Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive tooxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J].Plant.2002,32,329-342.
    [152]Ron Mittler,Sandy Vanderauwera,Martin Gollery,et al.Reactive oxygen gene network ofplants[J].Trends in Plant Science,2004,9(10).
    [153]Ron Mittler.Oxidative stress, antioxidants and stress tolerance.Trends in Plant Science,2002,7(9).
    [154]Sagi M,et al.plant respiratory burst oxidase homologs impinge on wound responsiveness anddevelopment in Lycopersicon esculentum.Plant Cell,2004,(16):616-628.
    [155]Steven Neill,Radhika Desikan,John Hancock.Hydrogen Peroxide Signaling[J].Current Opinion inPlant Biology,2002,(5):388-395.
    [156]葛秀春,宋凤鸣,郑重.水稻一稻瘟病菌互作中抗氧化物质含量及相关酶活性的变化.浙江农业大学学报,1998,24(4):339-343
    [157]Agrawal S B,Agrawal,M Eds.Environmental pollution and plant responses[C].1ewis Publishers,Boca Raton,FL,2000.
    [158]Lee E H.Upadhyaya A,Agrawal M,et a1.Mechanisms of ethylenediurea (EDU) induced ozoneprotection:Reexamination of free radical scavenger systemsin snap bean exposed to O3-[J].Environ.Exp. Bot.,1997,38(2):199-209.
    [159]Du X M,Yin W X,Zhao Y X,Zhang H.The production and scavenging of reactive oxygen speciesin plants[J].Chin. J. Biotec.,2001,17(2):121-125.
    [160]Asada K The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excessphotos[J].Annu. Rev. Plant Physio.l Plant. Mol. Biol.,1999,50:601-639
    [161]Foreman J,et al.Reactive oxygen species produced by NADPH oxidase regulate plant cellgrowth.Nature,2003,(442):442-446.
    [162]童富淡,胡家恕,陈进红等.不同育秧方式对早稻叶片SOD活性、电解质渗透率和发根力的影响[J].浙江农业大学学报,1997,23(6):682-686.
    [163]Youngman R J,Dpdge A D.On the mechanism of paraguat resistance in conyza sp.[A].In:Photosynthesis Ⅵ:Photosynthesis and productivity,photosynthesis and environment[C].BalabanInternational Science Services Philadelphia,1981:537-544.
    [164]Foyer J C,Rowell J,Waler D.Measurement of the ascorbate content of spinach leaf protoplasts andchloroplasts during illumination[J].Planta,1983,157:239-244.
    [165]孔祥瑞.自由基及其分子生物学研究进展[J].生物科学动态,1984,4:11-18.
    [166]Hu F,Kong C-H,Xu X H,et a1.Inhibitory effect of flavones from Ageratum conyzoides on the majorpathogens in citrus orchard.Chin. J. Appl. Ecol.,2002,13(9):1166-1168.
    [167]Ju H Y,Han L M,Wang S Q,et a1.Allelopathic effect of root exudates on pathogenic fungi of rootrot in continuous cropping soybean[J].Chin. J. Appl. Ecol.,2002,13(6):723-727.
    [168]Kong C H,Xu T,Hu F.Allelopathy of Ageratum conyzoides Ⅱ.Releasing mode and activity of mainallelochemicals[J].Chin. J. Appl. Ecol.,1998,9(3):257-260.
    [169]Liu D Y,Wang Y B,Lars E.Relationship between resistance and growth of Trifolium yepen plants andtheir disease history[J].Chin. J. Appl. Ecol.,2003,14(1):35-42.
    [170]Dong J G,Fan M z,Han J M,et a1.The effect of A B-Toxin from Alternaria brassicae on membranepermeability and the activities of SOD and POD in cell of Chinese cabbage leaves[J].Acta. PhytopatholSin.,1999,29(2):138-141.
    [171]Kan G F,Zhang G M,Fang B H,et al.The effect of Pseudomonas syringae pv.tabaci on the defendantenzymes in tobacco cell.J. Shandong Agric. Univ..2002,33(1):28-31.
    [172]Li J,Li R Q,Yuan W J.Changes of enzyme activity of the cucumber leaves after the infection ofPeronospora parasitica.Acta. Phytopathol Sin..1991,21(4):277-282.
    [173]Wan z x,Zhu J J,Oiang s.The phathogenie mechanism of toxin of Alternarla alternate(Fr.) Keisslerto Eupatorlum adenophoFum Spreng.J. Plant Resour. Environ..2001,10(3);47-50.
    [174]金文姗.中药质量评价的新技术——指纹图谱[J].中药研究与信息,2001,3(5):19-23.
    [175]方开泰.均匀设计法[M].北京:科学出版社,1994.
    [176]夏之宁,谌其亭,穆小静等.正交设计与均匀设计的初步比较[J].重庆大学学报:自然科学版,1999,22(5):112-117.
    [177]堵盘兴.均匀设计法[J].陕西化工,1989,18(3):23-26.
    [178]方开泰,全辉,陈庆云.实用回归分析[M].北京:科学出版社,1988.
    [179]罗国安,王义明,曹进等.建立我国现代中药质量标准体系的研究[J].世界科学技术一中药现代化,2002,4(4):5-11.
    [180]程翼宇,陈闽军,吴永江.化学指纹图谱的相似性测度及其评价方法[J].化学学报,2002,60(11):2017-2021.
    [181]陈宏降,陈怀琼,张争等.中药沉香品质评价研究进展[J].中国医药导报,2011,8(26):8-10.
    [182]Munns and Sharp.Involvenent of abscisic acid in controlling plant growth in soils of low waterpotential[J].Aust. J. Plant Physiol.,1993,20:425-437.
    [183]马建华,郑海雷,赵中秋等.植物抗盐机理研究进展[J].生命科学研究,2001,5(3):175-179.
    [184]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [185]Cohen A,Bray EA.Characterization of three mRNAs that accumulate in wilted tomato leaves inresponse to elevated levels of endogenous abscisic acid[J].Planta,1990,182:27-33.
    [186]杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展.2006,8(4):70-76.
    [187]Gols R,Posthumus M A,Dicke M.Jasmonic acid induce s the production of gerbera volatiles thatattract the biological control agent Phytoseiulus persimilis[J].Entomol. Expt. Appl.,1999,93:77-86.
    [188]Heil M.Induction of two indirect defences benefits Lima bean (Phaseolus lunatus,Fabaceae) innature[J].J. Ecol.,2004,92(3):527-536.
    [189]Wang Y,Ge F,Li Z Y.Spatial-tempetial trends of induced chemical change in pinePinusmassoniana[J].Acta Ecologica Sinica,2001,21(4):1256-1261.
    [190]Pieterse C M J,Loon L C van.Salicylic acid-independent plant defence pathways[J].Trends Plant Sci.,1999,4:52-58.
    [191] Walling L L.The myriad plant responses to herbivores[J].J. Plant Growth Regul.,2000,19:195-216.
    [192]Traw M B,Bergelson J.Interactive effects of jasmonic acid,Salicylic Acid,and Gibberellin onInduction of Trichomes in Arabidopsisl[J].Plant Physiol.,2003,133(3):1367-1375.
    [193]Sembdner G,Parthier B.The biochemistry and the physiological and pmolicular actions ofjasmonates.Ann. Rev. Plant. Physiol. Plant Mol. Bio.,1993,44:569-589.
    [194]Creelman R A,Mullet J E.Biosynthesis and action of jasmonates in plants.Annu.Rev.PlantPhysiol[J].Ann. Rev. Plant. Physiol. Plant Mol. Bio.,1997,48:355-381.
    [195] Sun D Y,Guo Y L,Ma LG,et al.Cellur Signal Transduction,Third eidtion[M].Beijing:SciencePress,2001.284-285.
    [196]Greelman R A,Tierney M L,Mullet J E.Jasmonic and methyl jasmonate accumulate in woundedsoybean and modulate wound geneexpression in plants[J].Proc. Natl. Acad. Sci.,1992,89:4938-4941.
    [197] Wasternack C,Parthier B.Jasmonate-signalled plant gene expression[J].Trends Plant Sci.,1997,2:302-309.
    [198]Dam N M van,Hadwich K,Baldwin I.Induced responses inNicotiana attenuataaffect behaviour andgrowth of the specialist herbivore Manduca sexta[J].Oecologia,2000,122(3):371-379.
    [199] Saedler R,Baldwin I T.Virus-induced gene silencing of jasmonate-induced direct defences,nicotineand trypsin proteinase-inhibitors in Nicotiana attenuata[J].J. Exp. Bot.,2004,55:395,151-157.
    [200]Martin D,Dorothea T,Jonathan G,et al.Methyl jasmonate induces traumatic resin ducts,terpenoidresin biosynthesis,and terpenoidaccumulation in developing xylem of Norway Spruce stems[J].PlantPhysiol.,2002,129(7):1003-1018.
    [201]Miller B,Madilao L L; Ralph S,et al.Insect-induced conifer defense.White pine weevil and methyljasmonate induce traumatic resinosis,de novo formed volatile emissions,and accumulation of terpenoidsynthase and putative octadecanoid pathway transcripts in Sitka spruce[J].Plant Physiol.,2005,137(1):369-382.
    [202]Alfaro R I.An induced defense reaction in white spruce to attack by the white pine weevil,Pissodesstrobi[J].Can J. For. Res.,1995,25:1725-1730.
    [203]Tomlin E S,Antonejevic E,Alfaro R I,et al.Changes in volatile terpene and diterpene resin acidcomposition of resistant and susceptiblewhi te spruce leaders exposed to simulated white pine weevildamage[J].Tree Physiol.,2000,20:1087-1095.
    [204]Kessler A,Baldwin I T.Defensive function of herbivore-induced plant volatile emissions innature[J].Science,2001,291(5511):2141-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700