用户名: 密码: 验证码:
黄土沟坡重力侵蚀过程模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原沟坡区重力侵蚀严重,研究重力侵蚀问题对于该地区的防灾减灾和可持续发展具有重大的现实意义。本文首先回顾了前人在黄土沟坡重力侵蚀成因机理、模型试验方法以及数值模拟等方面取得的研究成果,并根据研究背景区域现场调查结果和相关的文献资料,建立了黄土沟坡概化模型。然后利用沟坡模型试验的设备和技术,模拟研究了不同坡度、坡高组合条件下黄土沟坡的重力侵蚀过程。最后分析了黄土沟坡的重力侵蚀发生过程、重力侵蚀影响因素以及模型出水口的产流、产沙过程。研究取得了如下主要成果:
     (1)提出了一种适用于沟坡地形重力侵蚀动态、定量观测的方法——“MX-2010-G型地貌仪”观测法。该地貌仪可根据重力侵蚀发生前后坡体的体积差定量计算出重力侵蚀量。另外,由于地貌仪对沟坡地貌变化过程进行了全程录像,且地貌矢量图是根据录像截屏处理得到,因此,地貌仪又实现了对沟坡地形的动态观测。
     (2)采用模型试验方法成功地模拟了黄土沟坡的重力侵蚀过程。试验中发现:在模拟降雨条件下,黄土沟坡模型的重力侵蚀现象与原型接近;从试验中观测到的重力侵蚀发生时间,单次重力侵蚀发生量与坡面宽度、高度的对比关系等方面来看,模型试验的结果与原型都比较吻合。
     (3)研究了重力侵蚀与坡度、坡高以及下垫面含水量等影响因素之间的关系。坡度是重力侵蚀重要的限制性因素,坡度决定重力侵蚀发生的类型和规模;坡高是重力侵蚀重要的影响因素,当沟坡坡度相同时,崩塌量和重力侵蚀总量都与坡高成正相关趋势,滑塌侵蚀量则受坡高的影响较小;在其它降雨要素相同时,下垫面含水量是沟坡重力侵蚀重要的触发因素,其变化与沟坡地貌发育以及重力侵蚀过程基本一致。
     (4)观测了黄土沟坡的产流、产沙过程。累积径流量与降雨历时呈显著的线性函数关系,累积产沙量与降雨历时呈显著的幂函数关系;含沙量和输沙率均随降雨历时呈现上升趋势,特别是次降雨的中后期,含沙量和输沙率的增大趋势都比较明显;次降雨重力侵蚀总量与含沙量呈成正相关关系,重力侵蚀对高含沙水流的形成起着十分重要的作用。
The study of gravitational erosion in gully region is of great practical significance for its disaster prevention and mitigation, and sustainable development. This study presents an approach for simulating the gravitational erosion of loess gully that is different from any previously attempted. Firstly, the generalized scheme of loess gully is established, based on the previous laboratory studies, the field investigations of the background region, and the relevant literature. Then a series of model experiments in various initial dimensions are operated to simulate the process of gravitational erosion by the equipment and technology of gully model experiment. Finally, the process of gravitational erosion, the relationship between the gravitational erosion and its influence factors, and the process of the runoff and sediment yield are analyzed. The results can be summarized as follows:
     (1) This study proposes an observation method, which is suitable for the dynamic and quantitative observation of gravity erosion in gully terrain. The volume of gravity erosion can be quantitatively calculated by the MX-2010-G topography meter according to the topography before and after gravity erosion. Simultaneously, the dynamics of gully can be observed for the whole video recording by the MX-2010-G topography meter.
     (2) Model experiment method is successfully used to simulate the gravitational erosion of loess gully. According to the model experiment, we conclude that the model experiment and prototype of loess gully are similar, whether the phenomenon of gravitational erosion or the test results.
     (3) There are many influence factors for the generation of the gravitational erosion. Based on the model experiments, some factors, such as the slope gradient, height and soil moisture of underlying surface and so on, are discussed in this paper. The conclusions are as follows:(a) The slope gradient is the restrictive factor which determines the type and intensity of the gravitational erosion; (b) When the grade are the same, the total volume of collapse and gravity erosion are positively correlated with the height, however the total volume of landslide is less affected by the height; and (c) The soil moisture of underlying surface is the important triggering factor for the occurrence of gravitational erosion, which is basically consistent with the landform development and the process of the gravitational erosion.
     (4) Combining the gravitational erosion and observation results of the outlet of the models, the process of runoff and sediment yield is researched in this study. The conclusions are as follows:(a) Cumulative runoff is significantly relative to rainfall duration in linearity, while cumulative sediment yield has a power function relationship with rainfall duration; (b) Sediment concentration and sediment transport rates increases with the rainfall duration, and it's more obvious in the late of each rainfall; (c) Gravitational erosion has a positive correlation with sediment concentration, and it also plays an important role in the hyperconcentrated flows.
引文
[1]曹银真.黄土地区重力侵蚀的类型和成因[J].中国水土保持,1985,(6):8-13.
    [2]张春山,张业成,张立海.中国崩塌、滑坡、泥石流灾害危险性评价[J].地质力学学报,2004,10(1):27-32.
    [3]冯玉涛,肖盛燮.崩滑流地质灾害链式机理及其优化防治[J].灾害学,2009,24(3):22-26.
    [4]王军,倪晋仁,杨小毛.重力地貌过程研究的理论与方法.应用基础与工程科学学报[J].1999,7(3):240-251.
    [5]王光谦,李铁键.流域泥沙动力学模型[M].北京:中国水利水电出版社,2009:15-17.
    [6]蒋德麟,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析[J].地理学报,1966,32(1):20-35.
    [7]蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(2):108-117.
    [8]朱同新,蔡强国,高平,等.黄土丘陵淘壑区洞穴侵蚀产流产沙规律初步研究[J].水土保持学报,1992,1:40-47.
    [9]肖培青,郑粉莉,姚文艺.坡沟系统侵蚀产沙及其耦合关系研究[J].泥沙研究,2007,(2):30-35.
    [10]中国科学院《中国自然地理》编辑委员会.中国自然地理地貌[M].北京:科学出版社,1980.
    [11]曹银真.黄土地区重力侵蚀的机理及预报[J].水土保持通报,1981,(4):19-23.
    [12]郑书彦.重力侵蚀分类研究[J].水土保持研究,2008,15(5):46-48.
    [13]刘秉正,吴发启.黄土源区沟谷侵蚀与发展[J].西北林学院学报,1993,8(2):7-15.
    [14]薛海,王文成,何沛华.黄河中游地区重力侵蚀影响因素分析[J].人民黄河,2008,30(5):61-62.
    [15]杨吉山,姚文艺,马三保,等.黄土高原沟壑区小型重力侵蚀影响因素分析[J].水土保持研究,2010,17(6):5-8.
    [16]党进谦,李靖.含水量对非饱和黄土强度的影响[J].西北农业大学学报,1996,24(1):57-60.
    [17]党进谦,郭月清.含水量对黄土结构强度的影响[J].西北水资源与水工程,1998,9(2):15-19.
    [18]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001(7):79-83.
    [19]胡在强,沈珠江,谢定义.结构性黄土吸力的试验研究[J].煤田地质与勘探,2004,32(3):43-45.
    [20]Edward Derbyshire. Geological hazards in loess terrain, with particular reference tothe loess regions of China [J]. Earth-Science Reviews,2001,54:231-260.
    [21]M.L. Chu-Agor, G.A. Fox, R.M. Cancienne, et al. Seepage caused tension failures and erosion undercutting of hillslopes [J]. Journal of Hydrology,2008,359:247-259.
    [22]张信宝,柴宗新,汪阳春.黄土高原重力侵蚀的地形与岩性组合因子分析[J].水土保持通报,1989,9(5):40-44.
    [23]Schumm SA, Mosley MP, Weaver WE. Experimental Fluvial Geomorphology. A Wiley-Interscience Publication:New York, Chichester, Brisbane,1987,3-7.
    [24]韩鹏,倪晋仁,王兴奎.黄土坡面细沟发育过程中的重力侵蚀实验研究[J].水利学报,2003, (1):51-56.
    [25]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验[J].长安大学学报:自然科学版,2007,27(1):23-26.
    [26]许翼.城市透水面集水效应现场试验研究[D].辽宁省大连市:大连理工大学,2009.
    [27]Blanquies, J., Scharff, M., Hallock, B. International Erosion Control Association (IECA) [C],34th Annual Conference and Expo., Las Vegas, Nevada,2003,044.
    [28]Moriwaki, H., Inokuchi, T., Hattanji, T., et al. Failure processes in a full-scale landslide experiment using a rainfall simulator [J]. Landslides,2004,1:277-288.
    [29]Adams, R., Elliott, S. Physically based modelling of sediment generation and transport under a large rainfall simulator [J]. Hydrological Processes,2006,20:2253-2270.
    [30]Clarke, M. A., Walsh, R. P. D. A portable rainfall simulator for field assessment of splash and slopewash in remote locations [J]. Earth Surface Processes and Landforms,2007,32(13): 2052-2069.
    [31]王德甫,赵学英,马浩禄,等.黄土重力侵蚀及其遥感调查[J].中国水土保持,1993,(12):26-28.
    [32]Derbyshire E. T., Asch V., Billard A., et al. Modelling the erosional susceptibility of landslide catchments in thick loess:Chinese variations on a theme by Jan de Ploey [J]. Catena,1995,25: 315-331.
    [33]Guzzetti F., Ardizzone F., Cardinali M., et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy [J]. Earth and Planetary Science Letters,2009,279:222-229.
    [34]李裕厚,康学林,岳新发.罗玉沟流域重力侵蚀特征研究初报[C]//黄土丘陵沟壑第三副区水土流失原型观测及规律研究.郑州:黄河水利出版社,2004:32-37.
    [35]曾伯庆,马文中,张治国,等.三趾马红土泻溜侵蚀规律的研究[C]//陈永宗.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版社,1990:109-115.
    [36]张琳玲,王盛萍,王建军,等.黄土丘陵沟壑区吕二沟流域水土流失特征分析[J].人民黄河,2006,28(12):49-51.
    [37]叶浩.黄河中游陕蒙接壤地区劈砂岩重力侵蚀机理及定量评价[D].河北省正定县:中国地质科学院水文地质环境地质研究所,2004.
    [38]王健,罗志胜,侯宝健.声波测井确定滑坡滑动面的效果[J].中国地质灾害与防治学报,1998,9(增刊):359-363.
    [39]龙建辉.黄土滑坡勘测与监测技术研究[D].陕西省西安市:长安大学,2006.
    [40]王静,沈玉萍,刘福权,等.吉林省地质灾害及其防治的遥感应用[J].国土资源遥感,1998,(4):80-85.
    [41]徐永年.崩塌土流动化机理及泥石流冲淤特性的实验研究[D].北京:中国水利水电科学研究院,2001.
    [42]徐永年,匡尚富,黄永健,等.崩塌土流动化机理的实验研究[J].水利学报,2002,(10):87-90.
    [43]吴圣林.崩塌——推覆滑移地质体成因机理及其稳定性研究[D].江苏省徐州市:中国矿业大学,2009.
    [44]文安邦,张信宝,张一云,等.云南东川泥石流沟与非泥石流沟137Cs示踪法物源研究[J],泥沙研究,2003,(4):52-57.
    [45]王书芳,徐向舟,徐飞龙.实验地貌的观测方法[C].水利量测技术论文选集(第七集).郑州:黄河水利出版社,2010:16-22.
    [46]付炜.土壤重力侵蚀灰色系统模型研究[J].土壤侵蚀与水土保持学报,1996,2(4):9-17.
    [47]叶浩,石建省,程彦培,等.“劈”砂岩重力侵蚀定量计算的GPS、GIS方法初探[J].地球学报,2004,25(4):479-482.
    [48]李容全,朱国荣,徐振源,等.黄土高原重力侵蚀与潜蚀的遥感分析[C]//黄土高原的遥感专题研究文集.北京:北京大学出版社,1990:114-121.
    [49]金鑫,郝振纯,张金良,等.考虑重力侵蚀影响的分布式土壤侵蚀模型[J].水科学进展,2008,19(2):157-262.
    [50]郭长宝,张永双.陕北砂黄土高边坡可靠度分析及边坡优化设计[J].中国地质灾害与防治学报,2005,16(4):5-10.
    [51]王光谦,薛海,李铁键.黄土高原沟坡重力侵蚀的理论模型[J].应用基础与工程科学学报,2005,13(4):335-344.
    [52]李铁键,王光谦,张成,等.黄土沟壑区流域重力侵蚀模拟[J].天津大学学报,2008,41(9):1136-1141.
    [53]张鹏,郑粉莉,王彬,等.高精度GPS,三维激光扫描和测针板三种测量技术监测沟蚀过程的对比研究[J].水土保持通报,2008,28(5):11-15.
    [54]Werner Jester, Andreas Klik. Soil surface roughness measurement——methods, applicability, and surface representation [J]. Catena,2005,64:174-192.
    [55]徐向舟,张红武,张立,等.水土保持模型试验中产沙量测量方法研究[J].中国水土保持,2007,(1):35-37.
    [56]徐向舟,张红武,张羽,等.坡面水土流失比尺模型相似性的试验研究[J].水土保持学报,2005,19(1):25-27.
    [57]孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1999:56-60.
    [58]Horton R E. Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin,1945,56(3):275-370.
    [59]曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报,1993,13(4):1-5.
    [60]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报,1999,54(4):347-356.
    [61]王军,杨小毛,倪晋仁.基于GIS的黄河中游河龙区间流域——重力侵蚀相对强度空间分布[J].应用基础与工程科学学报,2001,9(1):23-32.
    [62]孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1999:167-171.
    [63]徐永年,匡尚富,李文武,等.边坡形状对崩塌的影响[J].泥沙研究,1999(5):67-73.
    [64]丁文峰,李勉,张平仓,等.坡沟系统侵蚀产沙特征模拟试验研究[J].农业工程学报,2006,22(3):10-14.
    [65]王光谦,李铁键.流域泥沙动力学模型[M].北京:中国水利水电出版社,2009:62-75.
    [66]许炯心.黄土高原丘陵沟壑区坡面-沟道系统中的高含沙水流(Ⅰ)——地貌因素与重力侵蚀的影响[J].自然灾害学报,2004,13(1):55-60.
    [67]钱宁.高含沙水流研究[M].北京:清华大学出版社,1989:25-36.
    [68]赵文林.黄河泥沙[M].郑州:黄河水利出版社,1996:595-601.
    [69]齐璞,赵文林,杨关卿.黄河高含沙水流运动规律及应用前景[M].北京:科学出版社,1993:56-74.
    [70]闰云霞,许炯心,廖建华,等.黄土高原多沙粗沙区高含沙水流发生频率的时间变化[J].泥沙研究,2008,(4):27-33.
    [71]廖建华,许炯心,杨永红.黄土高原区高含沙水流发生频率空间分异及其影响因素[J].水科学进展,2008,19(2):160-170.
    [72]许炯心.黄土高原的高含沙水流侵蚀研究[J].土壤侵蚀与水土保持学报,1999,5(1):27-34,45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700