用户名: 密码: 验证码:
黄瓜耐冷相关基因CsLDC的克隆分析及外源生长物质调节耐冷性的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是重要的设施蔬菜之一,也是典型的冷敏植物。在早春和秋冬季节,低温是产量和质量的限制因子,因此,黄瓜耐冷性的提高成为周年供应的一个关键环节,通过育种和栽培的综合手段克服黄瓜生产中的低温障碍是解决这个问题的主要手段,也是设施黄瓜的研究热点,而正确理解黄瓜的耐冷机制是耐冷育种和栽培的良好基础。为探明黄瓜耐低温胁迫的生理和分子生物学机制,本文以(8-15℃)亚适宜低温为胁迫因子,应用植物生理学、生物化学、分子生物学及功能基因分析的手段,研究低温影响黄瓜生长的机理,探明参与抗逆调控的重要植物生长类物质多胺(PAs)和水杨酸(SA)调节黄瓜耐冷性的生理生化作用机制,克隆分析了黄瓜耐冷相关基因CsLDC。
     取得了以下主要研究结果:
     1.黄瓜赖氨酸脱羧酶(CsLDC)的全长cDNA序列克隆和冷胁迫过程中CsLDC基因表达的初步研究
     高质量的RNA是研究基因表达以及后续下游试验的关键,常规的Trizol法对于种子和果实这类器官来说,很难提到理想的RNA。通过对几种方法的比较研究,对尿素-氯化锂法进行了改良,结果表明:对种子这类多糖、多酚以及蛋白质含量高的器官,改良尿素-氯化锂法能够获取高质量RNA,其28S、18S和5S电泳带型清晰完整,A260/A280值在2.0-2.1之间,用其进行其反转录的cDNA,不仅可以用作RT-PCR、也可以用做AFLP、RACE(快速扩增cDNA末端)以及Real time-PCR等后续研究。此外,该方法同样可以用于葫芦科其它作物如丝瓜、南瓜及甜瓜的种子,以及叶片RNA的提取。
     根据本课题组已报道的长度为132bp黄瓜耐冷相关基因(ccrtl32)片段序列(逯明辉,2005),运用RACE技术技术,克隆了长度为1069bp的全长cDNA序列。该序列的有效开放阅读框共含648个核苷酸编码一个长为215个氨基酸残基的蛋白质。经比对该全长cDNA及其编码的蛋白质序列,与几个植物的赖氨酸脱羧酶基因有较高的同源性,因此对该基因命名为黄瓜赖氨酸脱羧酶(Cucumis sativus Lysine Decarboxylase, CsLDC)。CsLDC含有高度保守的赖氨酸脱羧酶结构域以及一个高度保守的基序PGGXGTXXE,经预测,CsLDC蛋白的三级结构和已经报道的拟南芥赖氨酸脱羧酶晶体结构高度相似,与拟南芥赖氨酸脱羧酶进化关系较近。用RT-PCR和荧光实时定量PCR技术研究两个耐冷性不同的黄瓜品种在冷胁迫过程中基因表达的结果表明,低温胁迫下,耐冷品种长春密刺的种子及幼叶中CsLDC基因均能被强烈诱导表达,但在冷敏品种北京截头中表达量较低,提示该基因与黄瓜的耐冷性有关。
     2.外源多胺(PAs)调节抗氧化酶增强黄瓜耐冷性的研究
     低温处理后1d,耐冷品种长春密刺叶片中Put、Spd、Spm被诱导生成,Put含量达到最大,随后呈下降趋势,但Spd和Spm含量却持续上升,其中Spd含量始终高于Put和Spm含量。北京截头叶片中,Put含量在低温处理后1d增加,随后缓慢下降,而Spd含量一直呈下降趋势,Spm含量变化不大。外源Put和Spd处理均能提高两个品种内源三种多胺含量,但是长春密刺叶片中内源Put、Spd、Spm整体高于北京截头,外源Spd对提高内源多胺含量的影响大于外源Put,多胺抑制剂丙酮双脒腙(MGBG)却能抑制两个品种叶片中Spd、Sp(?)n的产生,但是对冷敏品种的影响大于对耐冷品种的影响。低温降低了两个品种可溶性蛋白的含量、抗氧化酶SOD、POD、CAT和抗坏血酸过氧化物酶(APX)活性,并影响细胞膜稳定性,但是对北京截头的影响大于长春密刺,这种影响可以通过外源Put和Spd而得到缓解,如减少了两个品种叶片由于冷害引起的电解质渗透和丙二醛含量,但是不同多胺种类所起作用因品种而异,多胺抑制剂MGBG预处理后可以抵消多胺(PAs)的作用。此外,组织化学染色和定量测定表明,应用外源Put和Spd可以消除或减少由低温胁迫引起的过氧化氢(H202)积累,而MGBG的作用刚好相反,这种情况在北京截头中尤为明显。值得注意的是,在低温胁迫下长春密刺叶片三种内源多胺含量均高于北京截头,低温处理前长春密刺和北京截头幼苗中SOD、POD和CAT活性没有明显差异,但低温处理整个过程前者APX始终高于后者。这些结果表明多胺(PAs)在黄瓜耐低温胁迫方面具有重要作用,而这种作用很有可能通过调节抗氧化系统而实现。
     3.水杨酸对低温胁迫黄瓜抗氧化系统和耐冷性的影响
     低温胁迫下两个品种叶片中内源SA含量明显高于种子,耐冷品种长春密刺的萌动种子和幼苗叶片内源SA含量均高于冷敏品种北京截头;长春密刺叶片中Pro和POD代谢水平高于冷敏品种北京截头,而MDA、电解质渗漏率和H202积累则低于北京截头,外源SA处理能显著提高低温胁迫条件下黄瓜叶片的POD活性及可溶性蛋白含量,降低MDA含量和电解质渗出率;相比北京截头来说,水杨酸对低温胁迫下长春密刺叶片中的H202积累具有更为明显的消除作用。结果提示品种间耐冷性不同导致了内源水杨酸代谢水平的差异,外源水杨酸可以提高黄瓜抵抗低温胁迫的能力,而且这种作用可能是通过调节体内的抗氧化系统来实现的。
Cucumber (Cucumis sativus L.) is one of the typical chilling-sensitive plants and is also being considered as one of the important vegetables. However, low temperature in the early spring and late autumn or winter is the most directly limited factor of cucumber yield and quality. Therefore, it is becoming the focus of current research on cucumber through breeding and culture approaches, and understanding the cold-tolerant mechanism is the basis of breeding for cold-resistant variety. To uncover the chilling tolerant mechanism by which involves growth of cucumber in terms of both physiological and molecular aspects, this study employs a combination of approaches involving plant physiology, biochemistry, molecular biology and functional analysis of target gene to examine the influence of chilling stress on cucumber, while considering 15℃as the stress factor under sub-optimal temperature. Moreover, this sudy investigates the physiological and biochemical mechanisms underlying the chilling-tolerance mediated by important phytohormones in cucumber. Meanwhile, a chilling-tolerant gene of cucumber, CsLDC, was cloned and identified.
     Specifically, this study is focusing on and has made progress in the followings
     1. Cloning of a full-length cDNA of Lysine Decarboxylase (CsLDC) from Cucumis sativus and gene expression study of CsLDC in cucumber upon chilling stress
     High quality of RNA is the key for gene expression and downstream studies. It is very difficult to obtain high quality ofRNA from geminating cucumber (Cucumis sativus) seeds using commercial Trizol kit. We improved the Urea-LiCl method by comparing several different protocols. The results clearly showed that we succeeded in obtaining high quality of RNA with clear and intact bands of 28S,18S and 5S, and with an A260/A280 at around 2.0. This RNA can be used not only for cDNA synthesis, but also other downstream studies such as RT-PCR, AFLP, RACE and even Real-time PCR. Moreover, using this improved Urea-LiCl protocol we could get high quality of RNA from seeds of other Cucurbitaceae varieties, including squash, melon and towel guard, and other tissues besides seeds.
     A full-length cDNA sequence was cloned using RACE (Rapid Amplification of cDNA Ends) from cucumber (Cummis sativus) seeds, based on a 132bp fragment of cucumber cold related tolerance gene (ccrt132) reported previously by our group. This full-length cDNA contains an ORF (Open Reading Frame) of 648 nucleotides encoding a protein with 215 amino acid residues. Alignment analysis has shown that this cDNA sequence and its coded protein have high similarity of nucleotides and homology to reported plant Lysine Decarboxylase, respectively, thus it is named as Cucumis sativus Lysine Decarboxylase (CsLDC). CsLDC contains a highly conserved Lysine_decarboxy superfamily domain with a conserved motif PGGXGTXXE, and the crystal structure of CsLDC is predicted to be highly similar to that of reported Arabidopsis lysine decarboxylase x-ray A chain. The alignment of CsLDC with other plant LDCs suggested a closest relationship of CsLDC with Arabidopsis AtLDC. Moreover, the quantitative data of gene expression conduced by semi-quantitative RT-PCR and quantitative Real-Time PCR demonstrated that CsLDC is highly enhanced in cold-tolerant variety Changchun mici upon chilling stress, but not in cold-sensitive Beijing jietou, suggesting that CsLDC is highly associated with chilling tolerance of cucumber.
     2. Exogenous polyamines regulate chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system
     Upon chilling treatment, free spermidine (Spd), spermine (Spm) and putrescine (Put) were remarkably increased in the leaves of cv. Changchun mici 1 day after treatment. The induction of Put declined thereafter, whereas Spd and Spmlevels increased steadily. In the leaves of cv. Beijing jietou, Put content was increased only at 1 day after chilling, while Spd content decreased significantly upon chilling treatment and not much changes were detected for Spm. Exogenous PAs increased endogenous content of all three types of PAs, with higher levels in Changchun mici than that in Beijing jietou, and exougenous Spd showed much greater impact on endogenous PAs level than Put. The PAs biosynthetic inhibitor, methyglyoxal-bis-(guanylhydrazone) (MGBG), cancelled the effects of exogenous PAs on the endogenous PA levels, among which the effect of MGBG on chilling-sensitive variety was greater than on chilling-tolerant one. Chilling reduced soluble protein content, the activities of antioxidant enzymes, including superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) as well as ascorbate peroxidase (APX), and satiability of membrane; however, the reduction on Beijing jietou is much greater than Changchun mici, and the changes could be renovated by exogenous application of Put and Spd. It was also found that pretreatment with Put and Spd diminished the increased electrolyte leakage and malondialdehyde (MDA) content caused by chilling in the leaves of both cultivars. Hoever, the effects caused by PAs mostly depended on variety of cucumber, and pretreatment with MGBG could cancel the effect of PAs. Moreover, histochemical staining and quantitative measurements showed that exogenous application of Put and Spd eliminated but MGBG exaggerated the hydrogen peroxide (H2O2) accumulation caused by chilling stress, especially in leaves of Beijing jietou. Notably, Changchun mici was found to contain higher levels of all three types of endogenous free PAs compared to Beijing jietou. While no significant difference of SOD, POD and CAT activities was found between non-chilling stressed Changchun mici and Beijing jietou seedlings, the former exhibited higher APX activity than the latter. These results indicate that PAs play important roles in the tolerance of cucumber against chilling stress, which is most likely achieved by acting as oxidative machinery against chilling injury.
     3. Effects of salicylic acid on the antioxidant system and chilling tolerance of Cucumis sativus
     Upon chilling stress, the endogenous SA levels in the leaves of two different chilling-responsive varieties were obviously higher that that in geminating seeds, and Changchun mici contains higher SA levels in both leaf and germinating seed compared to Beijing jietou. The Proline content and peroxidase (POD) activity in Changchun mici are higher than Beijing jietou, while MDA levels, electrolyte leakage and H2O2 production in the former is much lower than that in the latter. Exogenous application of SA increases significantly POD activity and soluble protein content whereas it decreases MDA content and electrolyte leakage in the leaves under chilling stress. Compared to Beijing jietou, exogenous SA treatment could eliminate the accumulation of H2O2 in leaves of Changchun mici, much greater than in Beijing jietou, upon chilling stress. The data clearly demonstrate that SA production varies due to the difference of chilling responsiveness, and that exogenous SA can enhance the chilling tolerance ability, which might be achieved through modulating antioxidant system in cucumber.
引文
1 Abreu M.E., Munne -Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 2009.60(4):1261-1271.
    2 Agarwal, S., Sairam, R.K., Srivastava, G.C. et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci,2005,169: 559-570.
    3 Allen, R. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol,1995,107: 1049-1054.
    4 Anderson, M.D., Prasad, T.K., Martin, B.A., et al. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol,1994,105:331-339.
    5 Anderea,B.D., and Rosalia,J.A.Cadaverine, an Essential Diamine for the Normal Root Development of Germinating Soybean (Glycine max) Seeds.Plant Physiology (1991)97:778-785.
    6 Anderson, M.D., Chen, Z., and Klessig, D.F. Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochem,1998,47:555-566.
    7 Apel, K., and Hirt, H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol,2004,55:373-399.
    8 Artus, N.N., Uemura, M., Steponkus, P.L., et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad.Sci. USA,1996,93:13404-13409.
    9 Asada, K. and Takahashi, M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition. Elsevier,1987,227-287.
    10 Asada K. Production and action of active oxygen in photosynthetic tissue. CRC Press, Boca Raton.FL,1994,77-104.
    11 Athwal, G.S., and Huber, S.C. Divalent canons and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J.,2002,29:119-130.
    12 Bagga, S., Rochford, J., Klaene, Z., et al. Putescine amino-propyltransferase is responsible for biosynthesis of decarboxylase activity in leaves of spinach. Plant Cell Physiol,2002,43,196-206.
    13 Bajji, M., Kinet, J.M., Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul,2002,36: 61-70.
    14 Baker, S.S., Wilhelm, K.S., Thomashow, M.F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol, 1994,24:701-713.
    15 Borsani, O., Valpuesta, V., Botella. M.A. Evidence for a role ofsalicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol,2001,126: 1024-1030.
    16 Borsani, O., Zhu, J., Verslues, P.E., et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123:1279-1291.
    17 Bouchereau A, Aziz A, Larher F. et al. Polyamines and environmental challenges:recent development. Plant Sci.1999.140:103-125.
    18 Bowler, C. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J,1991,10:1723-1732.
    19 Bowler, C., Montagu, M.V., Inze, D. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol,1992,43:83-116.
    20 Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem,1976,72:248-254.
    21 Bravo, L.A., Zuniga, G.E., Alberdi, M., et al. The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant,1998,103:17-23.
    22 Capell, T., Bassie, L, Christou, P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad Sci. USA,2004,101:9909-9914.
    23 Chen, H.H., Li, P.H., Brenner, M.L. Involvement of abscisic acid in potato cold acclimation. Plant Physiol,1983,71:362-365.
    24 Chen, Z.X., Silva, H., Hiessig, D.F. Active oxygen species in the induction of plant systematic acquired resistance by salicylic acid. Science,1993,262:1883-1886.
    25 Chinnusamy, V., Ohta, M., Kanrar, S., et al. ICE1:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development,2003,17:1043-1054.
    26 Chinnusamy, V., Zhu, J.H, Zhu, J.K. Cold stress regulation of gene expression in plants. Trends in Plant Sci,2007,12:444-451.
    27 Choi, D.W., Rodriguez, E.M., Close, T.J. Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol,2002,129:1781-1787.
    28 Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanatce-phenol-chloroform extraction. Anal Biochem,1987,162:156-159.
    29 Chung, S.M., Gordon, et al. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and susceptible cucumber lines. Genome,2007,50: 215-225.
    30 Clark, M.S. Plant molecular biology:A laboratory manual. Heidelberg:Springer,1997.
    31 Cuevas JC., Lopez-Cobollo R., Alcazar R., et al. Putrescine is involved in Arabidopsis freezingtolerance and cold acclimation by regulating ABA levels in response to low temperature. Plant Physiol,2008,148:1094-1105.
    32 Cushman, J.C., and Bohnert, H.J. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology,2000,3:117-124.
    33 Daie, J., and Campbell, W.F., Response of tomato plants to stressful temperatures. Plant Physiol, 1981,67:26-29.
    34 Dat, J.F., Lopez-Delgado, H., Foyer, C.H., et al. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol, 1998,116:1351-1357.
    35 Dat J., Vandenabeele S., Vranova E., et al. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci,2000,57:779-795.
    36 Dhindsa, R.S., Pulmb-Dhindsa, P., Thorpe, R.S. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot,1981,32:93-101.
    37 Duan, J.J., Li, J., Guo, S., et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-termsalinity. J. Plant Physiol,2008,165: 1620-1635.
    38 Dubouzet, J.G., Sakuma, Y., Ito, Y., et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J,2003,33:751-763.
    39 Durmus, N., and Kadioglu, A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol. Plant,2005,27:515-522.
    40 El-Tayeb, M.A. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul,2005a,45:215-224.
    41 El-Tayeb, M.A. Differential response of two Vicia faba cultivars to drought:growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity. Acta Agron Hung,2006,54:25-37.
    42 Engelberth, J., Schemelz, E.A., Alborn, H.T., et al. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chrom atogra phy -chemical ionization-mass spectrometry [J]. Analyt. Biochem.2003,312(2):242-250.
    43 Eszter, H., Tibor, J., Gabriella, S., et al. In vitro salicylic acid inhibition of catalase activity in maize:differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci,2002,163:1129-1135.
    44 Evans, P.T., Malmberg, R.L. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol,1989,40:235-269.
    45 Fadzillah, N.M., Gill, V., Finch, R.P., et al. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta,1996,199:552-556.
    46 Feuerstein, B.G., Williams, L.D., Basu, H.S., et al. Implications and concepts of polyamine nucleic acid. J Cell Biochem,1991:46:37-47.
    47 Flowers, T.J., and Yeo, A.R. Breeding for salinity resistance in crop plants:Where next? Australian Journal of Plant Physiology,1995,22:875-884.
    48 Foolad, M.R., and Lin, G.Y. Relationship between cold tolerance during seed germination and vegetative growth in tomato:Germplasm evaluation. Journal of the American Society for Horticultural Science,2000,125:679-683.
    49 Fowler, S., and Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell,2002,14:1675-1690.
    50 Fryer M.J., Andrews, J.R., Oxborough, K., et al. Relationship between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol,1998,116(2):571-580.
    51 Fujita, M., Fujita, Y., Noutoshi, Y., et al. Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol, 2006,9:436-442.
    52 Gad, M., Vladimir, S., Ron, M. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum,2008,133:481-489.
    53 Galston, A.W., and Sawhney, R.K. Polyamine in plant physiology. Plant Physiol.,1990,94: 406-410.
    54 Ganesan, V., and Thomas, G. Salicylic acid response in rice:influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci,2001,160:1095-1106.
    55 Gechev, T., Gadjev, I., Van, B., et al. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell. Mol. Life Sci,2002,59:708-714.
    56 Gehrig, H.H., Winter, K., Cushman, J., et al. An imporved RNA isolation method for succulent plant species rich in polyphenols and polysaccharide. Plant Mol. Biol. Rep.2006,18:369-376.
    57 Gilmour, S.J., Sebolt, A.M., Salazar, M.P., et al. Thomashow. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology,2000,124:1854-1865.
    58 Gilmour, S.J., Zarka, D.G., Stockinger, E.J., et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal,1998,16:433-442.
    59 Gong, M., Li, Y.J., Chen, S.Z. Abscisic acid-induced thermo-tolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J. Plant Physiol,1998,153:88-96.
    60 Gong, Z., Lee, H., Xiong, L., et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl Acad. Sci. USA,2002,99:11507-11512.
    61 Gray, G.R., Chauvin, L.P., Sarhan, F., et al. Cold acclimation andfreezing tolerance (A complex interaction of light and temperature). Plant Physiol,1997.114,467-474.
    62 Groppa, M.D., and Benavides, M.P. Polyamines and abiotic stress:recent advance. Amino Acids, 2008,34:35-45.
    63 Groppa, M.D., Benavides, M.P., Tomaro, M.L. Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci,2003,161:481-488.
    64 Gunes, A., Inal, A., Alpaslan, M., et al. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol,2007,164:728-736.
    65 Gupta, A.S., J.L. Heinen, A.S. Holaday, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of theUnited States of America,1993,90:1629-1633.
    66 Guy, C.L. Cold acclimation and freezing stress tolerance:role of protein metabolism. Annu. Rev. Plant Physiol,1990,41:187-223.
    67 Guye, M.G., Vigh, L., Wilson, J.M. Polyamines titre in relation to chilling-sensitivity in Phaseolus sp. J. Exp. Bot,1986,37:1036-1043.
    68 Hamada AM.. Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activitiesof drought-stressed wheat plants. In:Garab G (ed), Photosyn- thesis: Mechanisms and Effects, Vol 4. Dordrecht:Kluwer Academic Publishers,1998,2581-2584.
    69 Hamana, K., Niitsu, M., Samejima, K. Occurrence of tertiary branched tetraamines in two aquatic plants. Can J Bot,2000,78:266-269.
    70 He, L., Nada, K., Tachibana, S. Effects of Spd pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). J. Jpn. Soc. Hort. Sci.,2002,71: 490-498.
    71 He, Y., Kashiwagi, K., Fuhuchi, J., et al. Correlation between the inhibition of cell growth by accumulated polyamines and the decrease of magnesium and ATP. Eur J Biochem,1993,217(1): 89-96.
    72 Herner, R.C. The effects of chilling temperatures during seed germination and early seedling growth. In chilling injury of horticultural crops, C.Y. Wang (ed.). Boca Raton, FL:CRC Press, 1990,51-70.
    73 Hong, B., Uknes, S., Ho, T.D., Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Molecular Biology,1988,11:495-506.
    74 Houde, M., R.S. Dhindsa, and F. Sarhan. A molecular marker to select for freezing tolerance in Gramineae. Molecular and General Genetics,1992,234:43-48.
    75 Hsieh, T.H., Lee, J.T., Yang, P.T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology,2002,129:1086-1094.
    76 Jaglo, KR, Kleff, S, Amundsen, KL et al. Components of the Arabidopsis C-repeat/dehydration-res-ponsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology,2001,127:910-917.
    77 Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science,1998,280:104-106.
    78 Janda, T.G., Szalai, I.T., Padi, E. Hydroponic Treatment with saliclic acid decrease the effects of chilling injur in maize (Zea May.L) plant. Planta,1999,208:175-480.
    79 Janda, T., Szalai, I.T., Tari, E. Exogenous salicylic acid has an effect on chilling symptoms in maize (Zea mays L.) plants. In:Crop development for cool and wetEuropian climate, P., Sowinski, B., Zagdanska, A., Aniol, P., Klaus eds, ECSP-EEC-EAEC, Brussels, Belgium,1997,179-187.
    80 Jeon, W.B., Allard, S.T.M., Bingman, C.A., et al. X-ray crystal structures of the conserved hypothetical proteins from Arabidopsis thaliana gene At5g11950 and AT2g37210. Proteins.2006, 65:1051-1054.
    81 Jouve, L., Franck, T., Gaspar, T., et al. Poplar acclimation to cold during in vitro conservation at low non-freezing temperature:metabolic and proteic changes. JPlant Physiol,2000,157:117-123.
    82 Kakkar, R.K., and Sawhney, V.K. Polyamine research in plants—a changing perspective. Physiol. Plant.,2003,116:281-292.
    83 Kang, H.M., and Saltveit, M.E. Activity of enzymatic antioxidant defence systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant,2001,113:548-556.
    84 Kaplan, Fatma Guy, Charles L. β-Amylase Induction and the Protective Role of Maltose during Temperature Shock. Plant Physiology,2004,135 (3):1674-1684.
    85 Kasuga, M., Liu, Q., Miura, S., et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology,1999,17:287-291.
    86 Katsukabe, Y., He, L., Nada, K., et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol,2004,45:712-722.
    87 Kaur, S.R., Flores, H.E., Galston, A.W. Polyamine oxidase in oat leaves:A cell wall-localized enzyme. Plant Physiol,1981,68:494-498.
    88 Kerdnaimongkol, K., and Woodson, W. Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants. Journal of the American Society for Horticultural Science,1999,124:330-336.
    89 Klessig, D.F., Durner, J., Noad, R. Nitric oxid and salicylic acid signalling in plant defense. Proc. Natl. Acad. Sci. USA,2000,97:8849-8855.
    90 Klessing, D.F., and Malamy, J. The salicylic acid signai in plants. Plant Mol Biol,1994,26: 1439-1538.
    91 Knight, H., and Knight, M.R. Abiotic stress signaling pathways:specificity and cross-talk. Trends in Plant Science,2001,6:262-267.
    92 Kochba, J., Lavee, S., Spiegel-Roy, P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines. Plant Cell Physiol,1977, 18,463-467.
    93 Kornyeyev, D., Logan, B.A., Allen, A.D., et al. Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Science,2003,165:1033-1041.
    94 Kumer, A., Altabella, T., Taylor, M.A., et al. Recent advances inpolyamines research. Trends in Plant Sci,1997,2:124-130.
    95 Lalk, I., and DOrffing, K. Hardening abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant,1985,63:287-292.
    96 Lang, V., Mantyla, E., Welin, B., et al. Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol,1994,104:1341-1349.
    97 Lee, B.H., Kapoor, A., Zhu, J., et al. STABILIZED 1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell, 2006,18:1736-1749.
    98 Lee, B.H., Henderson, D.A., Zhu, J.K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell,2005,17:3155-3175.
    99 Lee, D.H., and Lee, C.B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays. Plant Sci.,2000,159:75-85.
    100 Lee, H., Guo, Y., Ohta, M., et al. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO Journal,2002,21:2692-2702.
    101 Lee, S.H., Singh, A.P., Chung, G.C., et al.Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.). Journal of Experimental Botany,2002, 53(378):2225-2237.
    102 Lee, T.M. Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro. Plant Sci,1997,122:111-117.
    103 Lewinsohn, E., Steele, C.L., Groteau, R. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol. Biol. Rep.1994,12:20-25.
    104 Li, C., Puhakainen, T., Welling, A., et al. Cold acclimation in silver birch (Betula pendula): Development of freezing tolerance in different tissues and climatic ecotypes. Physiol Plant,2002, 116:478-488.
    105 Li, C.Z., and Wang, G.X. Interactions between reactive oxygen species, ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress. Plant Growth Regul,2004,42: 55-60.
    106 Li, J.G., Chi, H.W., Zhang, M. The relationship between low-temperature germination and chilling tolerance in cucumber. Report Cucurbit Genetics Cooperative,1998,21:11-13.
    107 Liu, Q., Kasuga, M., Sakuma, Y., et al. Two transcription factors, DREB1 and DREB2, with an REBP/AP2 DNA binding domain separate two cellular signal transduction pathways indrought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10: 1391-1406.
    108 Logemann, J., Schell, J., Willmitzer, L. Improved method for the isolation of RNA from plant tissues. Anal Biochem.1987,163:16-20.
    109 Loik, M.E., and Nobel, P.S., Exogenous abscisic acid mimics cold acclimation for cacti differing in freezing tolerance. Plant Physiol,1993,103:871-876.
    110 Loomis, M.D. Overcomming problems of phenolics in the isolation of plant enzymes and organelles, Methods Enzymol,1974,31:528-545.
    111 Lu, M.H., Li, X.M., Chen, J.F., et al. Study on chilling tolerance of cucumber during germination and expression of lysine decarboxylase gene. Sci. Agric. Sin,2005,38:2492-2495.
    112 Lu, M.H., Lou, Q.F., Chen, J.F. A review on chilling injury and22w2w cold tolerance in Cucumis sativus L. Chin. Bull. Bot,2004,21:578-586.
    113 Lyons, J.M. Chilling injury in plants. Annual Review of Plant Physiology,1973,24:445-466.
    114 Maiale, S., Sanchez, D.H., Guirado, A., et al. Spermine accumulation under salt stress. J. Plant Physiol,2004,161:35-42.
    115 Malamy, J., Car, J.P., klessig, D.R. Salicylic acid:a likely endgenous signal in the resistance response of tobacco to viral infection. Science,1990,250:1002-1004.
    116 Manthe, B., Schulz, M., and Schnabl, H. Effects of salicylic acid on growth and stomatal movements of Vicia faba L.:Evidence for salicylic acid metabolization. J them Ecol,1992, 18:1525-1539.
    117 Maria Elizabeth Abreu and Sergi Munne -Bosch. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of E,2009.
    118 Mastrangelo, A.M., Belloni, S., Barilli, S., et al. Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta,2005,221:705-715.
    119 Matin-Tanguy, J. Metabolism and function of polyamines in plants:recent development (new approaches). Plant Growth Regul,2001,34:135-148.
    120 McKersie, B.D., and Leshem, Y.Y. Chilling stress. In Stress and stress coping in cultivated plants, Dordrecht, Netherlands:Kluwer Academic Publishers,1994,79-100.
    121 Medina, J., Bargues, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid ordehydration. Plant Physiol,1999,119:463-470.
    122 Metwally, A., Finkemeier, I., Georgi, M., et al. Salicylic acidalleviates the cadmium toxicity in barley seedlings. Plant Physiol,2003,132:272-281.
    123 Mishra, A., and Choudhuri, M.A. Ameliorating effects of salicylic acid on lead and mercury-induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci Technol,1997,25:263-270.
    124 Mittler, R., Merquiol, E., Hallak-Herr, E., et al. Living under a 'dormant' canopy:a molecular acclimation mechanism of the desert plant Retama raetam. Plant J.,2001,25:407-416.
    125 Mitsuhara, I., Malik, K.A., Miura, M., et al. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol,1999,9:775-778.
    126 Monroy, A.F., Dryanova, A., Malette, B., et al. Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol. Biol,2007,64:409-423.
    127 Monroy, A.F., Castonguay, Y., Laberge, S., et al. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiology,1993,102:873-879.
    128 Moore, K., and Roberts, L.J. Measurement of lipid peroxidation. Free Radic. Res,1998,28: 659-671.
    129 Mora-Herrera, M.E., Lopez-Delgado, H., Castillo-Morales, A., et al. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant, 2005,125:430-440.
    130 Moschou, P.N., Delis, I.D., Paschalidis, K.A., et al. Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol. Plant,2008a,133:140-156.
    131 Moschou, P.N., Paschalidis, K.A., Delis, I.D., et al. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell,2008b,20:1708-1724.
    132 Mullineaux, P., and Karpinski, S. Signal transduction in response to excess light:getting out of the chloroplast. Curr. Opin. Plant Biol,2002,5:43-48.
    133 Murata, N., Ishizaki-Nishizawa, O., Higashi, S., et al. Ceneticatly engineered alterionin in the chiliing sensitivity of plants. Nature,1992,36(6371):710-713.
    134 Nakano, Y., and Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880.
    135 Nanjo, T., Kobayashi, T.M., Yoshiba, Y., et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters,1999,461: 205-210.
    136 Nelson, D.E., Shen, B., and Bohnert, H.J. Salinity tolerance-mechanistic models and the metabolic engineering of complex traits. Genetic Engineering:Principlesand Methods,1998,20:153-176.
    137 Ne'meth, M., Janda, T., Horva'th, E., et al. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci,2002,162:569-574.
    138 Okamuro, J.K., Caster, B., Villarroel, R., et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl Acad. Sci. USA,1997,94:7076-7081.
    139 Orozoco-Cardenas, M., and Ryan, C.A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A., 1999,96:6553-6557.
    140 Owens, C.L., Thomashow, M.F., Hancock, J.K., et al. CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. Journal of the American Society for Horticultural Science,2002,127:489-494.
    141 Pagter, M., Jensen, C.R., Petersen, K.K., et al. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in hydrangea species differing in cold hardiness. Physiol Plant,2008,134:473-485.
    142 Palusa, S.G., Ali, G.S., Reddy, A.S., et al. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins:regulation by hormones and stresses. Plant J,2007,49:1091-1107.
    143 Pan, Q., Zhan, J., Liu, H., et al. Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermo tolerance in pea plants. Plant Sci,2006,171:226-233.
    144 Paschalidis, K.A., Roubelakis-Angelakis, K.A.. Spatial and temporal distribution of polyamine levels and polyamine anabolismin different organs tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol,2005,138:142-152.
    145 Patterson, B.D., Mackae, E.A., Ferguson, I.B. Estimation of hydrogen peroxide in plant extracts using titanium. Anal. Biochem,1984,139:487^492.
    146 Paull, R.E. Chilling injury of crops of tropical and subtropical origin. In Chilling injury of horticultural crops, C.Y. Wang. (ed.). Boca Raton, FL:CRC Press,1990,17-36.
    147 Pennycooke, J.C., and Jones, M.L. Down- regulating- galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiology,2003,133:901-909.
    148 Perez-Amador, M.A., Leoon, J., Green, P.J., et al. Induction of the arginine decarboxylase ADC2 gene provides evidence for the in- volvement of polyamines in the wound response in Arabidopsis. Plant Physiol,2002,130:1454-1463.
    149 Polle, A. Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physil,2001,126:445-462.
    150 Prosad, T.K., Anderson, M.D., Martin, B.A., et al. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell,1994,6:65-74.
    151 Rashima, I. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem Ⅰ, not photosystem Ⅱ. Planta,1994,193:2,300-306.
    152 Raskin I. SalicyUc acid,A new plant hormone[J].Pluuant Physiol,1992,99:799-803.
    153 Rider, J.E., Hacker, A., Mackintosh, C.A., et al. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids,2007.33,:231-240.
    154 Riechmann, J.L., and Meyerowitz, E.M. The AP2/EREBP family of plant transcription factors. Biol. Chem,1998,379:633-646.
    155 Rodriguez-Garay, B., Phillips, G.C., Knchn, G.D. Detection of norspcrmidinc and norspcrmine in Medicago Sativa L. Plant Physiol,1989,89:525-529.
    156 Saltveit, M.E., Jr. and Morris L.L. Overview on chilling injury of horticultural crops. In Chilling injury of horticultural crops, Boca Raton, FL:CRC Press,1990,3-16.
    157 Sambrook, J., and Russell, D.W. Molecular cloning:a laborat orymanual.3rd ed. New York:Cold Spring Harbor Laboratory Press,2001,1138-1148.
    158 Scott, I.M., Clarke, S.M., Wood, J.E., et al. Salicylate accumulation inhibits growth at chilling temperature in Arabid-opsis. Plant Physiol,2004,135:1040-1049.
    159 Senaratna, T., Touchell, D., Bunn, E., et al. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul,2000,30:157-161.
    160 Seong,H.L., Adya,P. Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber(Cucumis sativus L.) Journal of Experimental Botany,2004,53(378):2225-2237.
    161 Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., et al. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci,2003,164:317-322.
    162 Sharma, Y.K., Leon, J., Rashin, I.,et al. Ozone-induced responses in Arabidopsis thaliana:The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA,1996,93:5099-5104.
    163 Shen, W., Nada, K., Tachibana, S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol,2000,124:431-439.
    164 Singh, B., and Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul,2003,39:137-141.
    165 Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M., et al. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology,2003,6:410-417.
    166 Steponkus, P.L. role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol,1984,5:543-548.
    167 Steponkus, P.L., Uemura, M., Joseph, R.A., et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA,1998,95:14570-14575.
    168 Stevens, J., Senaratna, T., Sivasithamparam, K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma):associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul,2006,49:77-83.
    169 Stockinger, E.J., Gilmour, S.J. Thomashow, M.F., et al. Arabidopsis thaliana CBF1 codes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a is-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA,1997,94:1035-1040.
    170 Sunkar, R., and Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16:2001-2019.
    171 Tabor, W.C., and Tabor, H. Polyaminees. Annu Rev Biochcm,1984,53:749-790.
    173 Tamot, B.K., Khurana, J.P., Maheshwari, S.C. Requirement of salicylic acid for short-Day induction of flowering in a New Duckweed, Wolffiella hyalina 7378. Plant Cell Physiol,1987,28:349-353.
    174 Tasgin, E., Atici, O., Nalbantoglu, B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul,2003,41:231-236.
    175 Tasgin, E., Atici, O., Nalbantoglu, B., et al. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry,2006,67:710-715.
    176 Thomashow, M.F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiology, 1998,118:1-7.
    177 Thomashow, M.F. Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:571-599.
    178 Thomashow, M.F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol,2001, 125:89-93.
    179 Tirard, A., Renucci, M., Provost, E., et al. Are Polyamines Involved in Olfaction? An EAG and biochemical study in Periplaneta Americana antennae. Chemical Senses,2002,27(5):417-423.
    180 Tittarelli, A., Santiago, M., Morales, A., et al. Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset.2009,22:9-121.
    181 Uemura, M., and Steponkus, P.L. Effect of cold acclimation on membrane lipid composition and freeze-induced membrane destabilization. SeeRe,1997,68:171-179.
    182 Urano, K., Yoshiba, Y., Nanjo, T., et al. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ, 2003,26:1917-1926.
    183 Van Breusegem, F., Slooten, L., Stassart, J., et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. Journal of Experimental Botany, 1999a,50:71-78.
    184 Van Breusegem, F., Slooten, L., Stassart, J.M., et al. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiology,1999b,40: 515-523.
    185 Vergnolle, C., Vaultier, M.N., Taconnat, L., et al. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol,2005,139:1217-1233.
    186 Verslues, P.E., Guo, Y., Dong, C.H., et al. Mutation of SAD2, an importin beta-domain protein in Arabidopsis, alters abscisic acid sensitivity. Plant J.2006,47:776-787.
    187 Vicient C.M., and Delseny, M. Isolation of total RNA from Arabidopsis thaliana seeds. Anal. Biochem,1999,268:412-413.
    188 Wahid, A., Perveen, M., Gelani, S., et al. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol,2007,164:283-294.
    189 Walden, R., Cordeiro, A., Tiburcio, A.F. Polyamines:small molecules triggering pathways in plant growth and development. Plant Physiol,1997,113:1009-1013.
    190 Wang, L.J., and Li, S.H. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul,2006, 48:137-144.
    191 Wang, C.Y. Alleviation of chilling injury of horticultural crops. In Chilling Injury of Horticultural Crops, C.Y. Wang (ed.). Boca Raton, FL:CRC Press,1990,281-301.
    192 Weishing, K., Nybom, H., Wol, K., et al. in:DNA Isolation and Purification, DNA Fingerprinting in Plants and Fungi, CRC Press, Boca Raton, FL,1995,44-59.
    193 Xie Z., Zhang ZL., Hanzlik S., Cook E., Shen QXJ. Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic acid-inducible WRKY gene. Plant Molecular Biology.2007.64:293-303.
    194 Xiong L, Lee, B.H., Ishitani, M., et al. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes and Development, 2001,15:1971-1984.
    195 Xiong, L., Schumaker, K.S., Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14:S165-S183.
    196 Xu, P.L., Guo, Y.K., Bai, J.G., et al. Effects of long-termchilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant,2008,132:467-478.
    197 Yamaguchi, K., Takahashi, Y., Berberich, T., et al. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys. Res. Commun,2007,352:486-490.
    198 Yamaguchi-Shinozaki K, and Shinozaki, K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci.2005.10:88-94.
    199 Yamaguchi-Shinozaki, K., and Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994, 6:251-264.
    200 Yamaguchi-Shinozaki, K., and Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol,2006,57:781-803.
    201 Yamasaki, S., Fujii, N., Matsuura, S., et al. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiology,2001,42(6):608-619.
    202 Yoshimura, K., Miyao, K., Gaber, A., et al. Enhancement of stress tolerance in transgenic tobacco plants everexpressing Chlamydomonas glutathione peroxidase in chloplasts or cytosol. Plant Journal,2004,37:21-33.
    203 Yang and Wang. Salicylic acid-induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta,2003,217:168-174.
    204 Yu, X.M., Griffith, M., Wiseman, S.B. Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol,2001,126:1232-1240.
    205 Zhou, Y.H., Yu, J.Q., Mao, W.H., et al. Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol,2006,47:192-199.
    206艾希珍,于贤昌,王绍辉,等.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化.植物生理学通讯,1999,35(1):26-28.
    207布坎南,格鲁依森姆,等.植物生物化学与分子生物学.科学出版社,2004:744-747.
    208蔡新忠,郑重,宋凤鸣.水杨酸对水稻幼苗抗瘟性的诱导作用.植物病理学报,1996,26:7-12.
    209曹翠玲,刘林丽,田强兵.水杨酸对玉米幼苗抗旱性的影响.玉米科学,2004,12(增刊):103-104.
    210杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系.植物生理学通讯,2005,41:19-22.
    211高夕全,刘爱荣,叶梅荣.水杨酸对水稻幼苗硝酸还原酶活性和根系生长的影响.安徽农业技术师范学院学报,2000,14(1):13-15.
    212韩涛,李丽萍.水杨酸处理对桃贮藏期间活性氧代谢的影响.北京农学院学报,2000,15(4):41-47.
    213韩涛,李丽萍.外源水杨酸对桃果实采后生理的影响.园艺学报,2000,27(5):367-368.
    214洪剑明,邱泽生.植物的抗性生理.生物学通报,1997,5:13-15.
    215黄学林,李筱菊.多胺和乙烯的生物合成与植物体细胞胚胎发生.植物生理学通讯,1995,31(2):81-85
    216黄爱霞,佘小平.水杨酸对黄瓜幼苗抗冷性的影响.陕西师范大学学报(自然科学版),2003,31(3):107-109.
    217江玲.水杨酸对葛芭初生根、侧根根原基的形成和内源激素的影响.植物生理通讯,2002,36(5):401-404.
    218康国斌,许勇,雍伟东,等.低温诱导的黄瓜ccrl8基因的cDNA克隆及其表达特性分析.植 物学报,2001,43(9):955-959.
    219康国章,段中岗,王正询,等.水杨酸提高香蕉幼苗抗冷性初探.植物生理学通讯,2003a,39(2),122-124.
    220康国章,欧志英,王正询,等.水杨酸诱导提高香蕉幼苗耐寒性的机制研究.园艺学报,2003b,30:141-146.
    221康琅,程云,汪良驹.5-氨基乙酰丙酸对秋冬季大棚西瓜叶片光合作用及抗氧化酶活性的影响(J).西北植物学报,2006,26(11):2297-2301.
    222李宝聚,范海延,孙艳秋,等.葡聚六糖诱导黄瓜体内水杨酸的积累及其抗霜霉病关系的初步研究.园艺学报,2005,32(1):115-117.
    223李春香,周燮.水杨酸在大蒜鳞茎膨大中的作用.园艺学报,2000,27(3):220-222.
    224李兆亮,原永兵,刘成连,等.水杨酸对黄瓜叶片抗氧化剂酶系的调节作用.植物学报,1998,40(4):356-361.
    225刘明池.提高黄瓜幼苗抗冷性研究[J].华北农学报,1994,9(3):52-58.
    226刘新,张蜀秋,娄成后.植物体内一氧化氮的来源及其与其它信号分子之间的关系.植物生理学通讯,2003,39(5):513—518.
    227刘玉艳,于凤鸣,李娜.水杨酸和硼酸处理对小苍兰花生长发育的影响.河北职业技术师苑学除学报.2002,16(2):15-17.
    228逯明辉,李晓明,陈劲枫,等.黄瓜发芽期耐冷性与赖氨酸脱羧酶基因表达.中国农业科学,2005,38(12):2492-2495.
    229逯明辉,娄群峰,陈劲枫.黄瓜的冷害及耐冷性.植物学通报,2004:21(5):578-586.
    230任红旭,陈雄,赵晓俊,等.低氮素和水杨酸对黄瓜子叶离体培养中花芽分化的影响.园艺学报,1992,26(2):105-109.
    231沈漫,王明庥,黄敏仁.植物抗寒机理研究进展.植物学通报,1997,14(2):1-8.
    232舒英杰,周玉丽,张子学,等.外源水杨酸对提高黄瓜萌发种子抗冷性的效应.园艺园林科学,2006,22(10):285-287.
    233宋士清,郭世荣,尚庆茂,等.外源SA对盐胁迫下黄瓜幼苗的生理效应.园艺学报,2006,33(1):68-72.
    234汪智慧,龚加顺.几种植物生长物质与蔬菜作物抗性关系的研究进展.中国蔬菜,2000,(1):49-51.
    235王以柔,刘鸿先,李平,等.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响.植物生理学报,1986,12(3):244-251.
    236文江祁.水杨酸对马铃薯切片陈化过程中交替途径的诱导作用.科学通报,1994,39(9):850-850.
    237文江祁,王俊,邸烨,等.陈化马铃薯切片交替途径运行与产热的关系.科学通报.1995.
    238吴建丽,郝建军.水杨酸与植物诱导抗病性.辽宁林业科技,2005,(1):33-35.
    239夏武海.乙酞水杨酸对甘蓝试管苗生根的影响.植物生理通讯,2002,38(3):305-306.
    240熊正琴.茉莉酸甲酷和水杨酸促进大蒜试管鳞茎的形成.园艺学报,1999,26(6):408-409.
    241许耀照,郁继华,张国斌,等.水杨酸对黄瓜种子萌发的高温耐性诱导.甘肃农业大学报,2004,35(3):290-294.
    242仵兆武.油菜素内酯在农业上的应用成效.广东农业科学,2006(5):92-93.
    243许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报,2006,23(5):433-442.
    244姚红艳,赵双宜,夏光敏.改良尿素-氯化锂方法提取成熟小麦种子总RNA.中国生物工程杂志,2003,23(4):86-88.
    245原永兵,曹宗.水杨酸在植物体内的作用.植物学通报,1994,11(3):1-9.
    246曾纪晴,刘鸿先,王以柔,等.黄瓜幼苗子叶在低温下的光抑制及其恢复.植物生理学报,1997,23(1):1520.
    247曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20(1):8-14.
    248张蕊,吕俊,米青山,等.低温下外源水杨酸对水稻幼苗抗氧化酶系的影响.西南农业大学学报,2006,28(1):29-36.
    249张万萍,杨晓玲,杨民,等.凝冻灾害对贵阳市蔬菜生产影响调查及防治措施.耕作与栽培,2008,6:51-53.
    250张晓燕.水杨酸诱导植物抗病性机制的研究进展.河北林果研究,2000,15(3):288-291.
    251张玉星,陈昆松,张上隆.乙酞水杨酸处理对称猴桃果实成熟衰老的影响及其作用机理.植物生理与分子生物学学报,2002,28(6):425-432.
    252赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000,36(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700