用户名: 密码: 验证码:
秦巴山区3种步甲(鞘翅目:步甲科)种群遗传结构和种群数量变化历史的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭-巴山地区是中国生物多样性起源和演化中心之一,分布着丰富的动植物资源,古北界和东洋界种类在这里交汇分布,造就了独特的生物区系组成。该地区如同北半球其他地区一样,在第四纪也经历过多次冰期-间冰期回旋,这一气候事件往往会在物种种群遗传多样性的地理分布上留下痕迹。了解该地区动物遗传结构、多样性及古冰川作用对该地区动物地理分布格局的影响对动物资源保护和农林业合理布局具有重要意义。步甲科昆虫物种古老,种群内遗传分化明显,大多数步甲科昆虫是重要的天敌昆虫,对农林业害虫的控制起到关键性作用,了解其在分布区的遗传多样性状况和分布模式对于物种的保护和病虫害防治有一定的理论指导意义。
     本论文利用线粒体细胞色素氧化酶Ⅰ基因和细胞色素氧化酶Ⅱ基因长为1601-1602 bp的连续DNA片段(cox1-cox2)作为分子标记,分别对广泛分布于该区的耶屁步甲(Pheropsophus jessoensis)、赤胸疏爪步甲(Dolichus halensis (Schaller 1783))和淡足青步甲(Chlaenius pallies)进行了种群遗传结构和种群数量动态历史进行了分析,研究结果如下:
     1.获得25个居群的184个耶屁步甲个体标记序列,该序列长1601 bp,其中包括879 bp的线粒体CoⅠ基因、633 bp的线粒体CoⅡ基因和69 bp的tRNA-Leu间隔区。共有82个多态性位点,包括43个简约信息位点、38个单变异位点和1个碱基缺失位点,检测出92个单倍型。在tRNA-Leu间隔区中有1个碱基缺失现象。种群总的遗传多样性指数(HT=0.960)、居群内平均遗传多样性指数(HS=0.880)以及单倍型多样性(Hd=0.963)都很高,但核苷酸多样性(P,=0.0037)较低。居群独享单倍型占总单倍型数的79.34%。单倍型网络图和系统发育分析表明秦巴山区分布的耶屁步甲有8个单倍型进化枝(A-H)。AMOVA分析表明居群间和谱系枝间遗传分化显著(居群间:FST=0.078,p<0.01;谱系枝间:FST=0.558,p<0.01),种群遗传分化主要源于居群内和谱系枝间。但SAMOVA和PERMUTE分析表明不存在明显的谱系地理结构(NST=0.107>GST=0.083,p=0.075>0.05)。统计谱系地理学分析结果拒绝种群片段化模型假设。基因流分析显示居群间存在较为频繁的基因流。Mantel检验结果表明遗传分化和地理距离之间存在显著性关联(R=0.360,p=0.002<0.01),符合距离隔离模型(IBDM)的推断。错配分布、中性检验以及BSP分析结果显示该物种曾经经历过多次扩张,扩张时间大致为0.2-0.01 Myr,且在0.05-0.01 Myr发生了一次快速扩散。利用BEAST软件,估算出秦巴山区该种群的溯祖时间为0.2994(95%HPD:0.1971-0.5034)Myr。
     2.获得24个居群的191个赤胸疏爪步甲个体标记序列,该序列长1 601 bp,其中包括882 bp的线粒体CoⅠ基因、656 bp的线粒体CoⅡ基因和63 bp的tRNA-Leu间隔区,无碱基缺失或插入现象。共发现45个多态性位点,包括15个简约信息位点和30个单变异位点,检测出53个单倍型。种群总的遗传多样性指数(HT=0.705)、居群内平均遗传多样性指数(HS=0.612)以及单倍型多样性(Hd=0.769)都较高,但核苷酸多样性(Pi=0.0033)较低。居群独享单倍型占总单倍型数的65.71%。单倍型网络图和系统发育分析表明秦巴山区分布的赤胸疏爪步甲有2个单倍型进化枝(A-B)。AMOVA分析表明遗传分化在种群间和进化枝间很显著(居群间FST=0.134,p<0.01;谱系枝间FST=0.433,p<0.01),种群遗传分化同样主要源于居群内和进化枝之间。同时,SAMOVA和PERMUTE分析表明不存在明显的谱系地理结构(NST=0.154>GST=0.132,p=0.085>0.05)。统计谱系地理学分析结果接受种群片段化模型假设。基因流分析显示居群间存在较为频繁的基因流,但Mantel检验发现遗传分化和地理距离之间不存在显著性关联(R=0.055,p=0.679>0.05),拒绝距离隔离模型(IBDM)的推断。错配分布、中性检验以及BSP分析结果都表明该物种曾经经历过多次的扩张,发生时间大致为0.05-0.01 Myr,且这一期间为快速扩散时间。利用BEAST软件,估算出秦巴山区该物种的溯祖时间为0.2609 (95%HPD:0.1490~0.4300) Myr。
     3.获得13个居群的151个淡足青步甲个体标记序列,该序列长1602 bp,其中包括882 bp的线粒体CoⅡ基因、658 bp的线粒体CoⅡ基因和62 bp的tRNA-Leu间隔区,其中在tRNA-Leu司隔区中发现了1个碱基插入现象。共发现57个多态性位点,包括45个简约信息位点、11个单变异位点和一个碱基插入位点,检测出65个单倍型。种群总的遗传多样性指数(HT=0.985)、居群内平均遗传多样性指数(HS=0.885)以及单倍型多样性(Hd=0.972)都很高,但核苷酸多样(Pi=0.0025)较低。居群独享单倍型占总单倍型数的73.85%。单倍型网络图和系统发育分析表明秦巴山区分布的淡足青步甲有3个单倍型谱系枝(A-C)。AMOVA分析表明遗传分化在种群间和谱系枝间很显著(居群间FST=0.079,p<0.01;谱系枝间FST=0.338,p<0.01),种群遗传分化主要源于居群内和谱系枝之间。同时,SAMOVA和PERMUTE分析表明不存在明显的谱系地理结构(NST=0.114>GST=0.101,p=0.33>0.05)。统计谱系地理学分析结果拒绝种群片段化模型假设。基因流分析结果显示居群间存在较为频繁的基因流,但Mantel检验发现遗传分化和地理距离之间不存在显著性关联(R=0.126,p=0.855>0.05),拒绝距离隔离模型(IBDM)的推断。错配分布、中性检验以及BSP分析结果都表明该物种曾经经历过多次扩张,扩张时间大致为0.125-0.05 Myr,且在0.1-0.075 Myr发生了一次快速扩散,淡足青步甲发生快速扩散的时间早于前面两个物种。利用BEAST软件,推算秦巴山区淡足青步甲溯祖时间为0.2544 (95% HPD:0.1594~0.3699) Myr。
     综上所述,本文所研究的秦巴山区三种步甲种群遗传分化明显,每一物种居群间存在较强的基因交流,使得种群内不具有明显的谱系地理结构。受第四纪冰期造成的环境剧烈变化以及冰期与间冰期的反复交替的影响,此三种步甲均发生过多次种群扩张。认为瓶颈效应、冰期后的扩张以及可能的长距迁移是步甲形成现如今遗传分布格局的主要因素。
The Tsinling-Dabashan Mountains are one of centers for the origin and evolution of biodiversity in China. These areas contain rich animal and plant resources. The Oriental and Palaearctic species congregate here forming a specific biotic province. The past climatic events, such as the Quaternary glaciation. could leave vestiges in geographical distribution of genetic diversity of population. Like other regions in the northern hemisphere, the Tsinling-Dabashan Mountains also experienced several glacial-interglacial cycles. Understanding the pattern of genetic structure and diversity condition of fauna are distributing on Tsin-ba and the effects of palaeoglaciation on geographical distribution pattern have great value. The species belonging to Carabidea family are ancient, and the most of them are beneficial insect with significial genetic differentiation. They play an important role in pest management. Complement understanding about the conditions of genetic diversity and distribution pattern of beetles on the Tsin-ba Mountains is important for species protection and also provides the foundation for pest control.
     In this study, mtDNA coxl-cox2 were emplyed to reveal the populations structure and historical demography of Pheropsophus jessoensis, Dolichus halensis (Schaller.1783) and Chlaenius pallies. All of them are widespread species. The results of investigations are offered as follows:
     1. A total of 184 adults of the ground beetle P. jessoensis were collected from 25 locations on the Tsinling-Dabashan Mountains. In length of 1601bp fragment, a total of 879 bp were sequenced for the mtCoI gene, and 653 bp for the mtCoII gene. The intervening tRNA Leu gene was 69 bp in length, which contained a 1-bp deletion.81 positions were polymorphic sites, composed of 43 parsimony informative sites and 38 singleton variable sites. These polymorphic sites identified 92 haplotypes. The total genetic diversity HT (0.960) among all sampled populations, the average within-population diversity Hs (0.880) and the haplotype diversity Hd (0.963) of total population were considerable high, but the nucleotide diversity Pi (0.0037) of total population was fairly low. And 79.34% of total haplotypes are private haplotypes with lower frequency. Phylogenetic analysis (Bayesian inference) and parsimonious network of the 92 haplotypes revealed eight major clades (A-H). AMOVA analysis suggested that most of the variation was attributed to within populations and among clades and the genetic differentiation among populations and among clades were significiant (among population:FST=0.078, p<0.01; among phylogroups:FST=0.558, p<0.01). But the SAMOVA tests and PERMUTE analyses failed to reveal any meaningful phylogeographic structure (NST=0.107> GST=0.083, p=0.075>0.05). The results of statistical phylogeography analysis rejected the model of population fragmentation. The gene flow calculated through the Nm was high between many pairs of populations, and Mantel test results showed significant correlation between the pairwise calculated genetic distance and pairwise calculated geographical distance of the populations (R= 0.360, p=0.002< 0.01), indicating the presence of isolation-by-distance model (IBDM). The results of neutral test and mismatch distribution analyses of total population and the eight mtDNA clades suggest several demographic expansions between 0.2Myr to 0.01 Myr, and a sudden expansion was identified between 0.05 Myr to 0.01 Myr by BSP analysis. The estimated age of the origin of the P. jessoensis was 0.30 Myr, with a 95% interval of confidence between 0.20 and 0.50 Myr by BEAST.
     2. A total of 191 adults of the ground beetle D.halensis were collected from 24 locations on the Tsinling-Dabashan Mountains. In length of 1601bp fragment, a total of 882 bp were sequenced for the mtCol gene, and 656 bp for the mtCoⅡgene. The intervening tRNA Leu gene was 63 bp in length.45 positions were polymorphic sites, composed of 15 parsimony informative sites and 30 singleton variable sites. These polymorphic sites identified 53 haplotypes. The total genetic diversity HT (0.705) among all sampled populations, the average within-population diversity HS (0.612) and the haplotype diversity Hd (0.769) of total population were considerable high, but the nucleotide diversity Pi (0.0033) of total population was fairly low. And 65.71% of total haplotypes are private haplotypes with lower frequency. Phylogenetic analysis (Bayesian inference) and parsimonious network of the 53 haplotypes revealed 2 major clades (A-B). AMOVA analysis suggested that most of the variation was attributed to within populations and among clades and the genetic differentiation among populations and among clades were significiant (among population:FST=0.134, p<0.01; among clades:FST=0.433,p<0.01). But the SAMOVA tests and PERMUTE analyses failed to reveal any meaningful phylogeographic structure (NST=0.154> GST=0.132,p= 0.085>0.05). The results of statistical phylogeography analysis accepted the model of population fragmentation. The gene flow calculated through the Nm was high between many pairs of populations, but Mantel test results showed no significant correlation between the pairwise calculated genetic distance and pairwise calculated geographical distance of the populations (R=0.055, p=0.679> 0.05). rejecting the supposed of isolation-by-distance model (IBDM). The results of neutral test and mismatch distribution analyses of total population and the two mtDNA haplogroups suggest several demographic expansion between 0.05 Myr to 0.01 Myr, and a sudden expansion was identified between 0.05 Myr to 0.01 Myr by BSP analysis. The tMRCA of all D.halensis was date to 0.2609 Myr before present (95% of the highest posterior density [HPD]:0.4300 to 0.1490 Myr).
     3. A total of 151 adults of the ground beetle C.pallipes were collected from 13 locations on the Tsinling-Dabashan Mountains. In length of 1602bp fragment, a total of 882 bp were sequenced for the mtCoⅠgene, and 658 bp for the mtCoⅡgene. The intervening tRNA Leu gene was 62 bp in length, which contained a 1-bp insertion.56 positions were polymorphic sites, composed of 45 parsimony informative sites and 11 singleton variable sites. These polymorphic sites identified 65 haplotypes. The total genetic diversity HT (0.985) among all sampled populations, the average within-population diversity HS (0.885) and the haplotype diversity Hd (0.972) of total population were considerable high, but the nucleotide diversity Pi (0.0025) of total population was fairly low. And 73.85% of total haplotypes are private haplotypes with lower frequency. Phylogenetic analysis (Bayesian inference) and parsimonious network of the 92 haplotypes revealed three major haplogroups (A-C). AMOVA analysis suggested that most of the variation was attributed to within populations and among haplogroups and the genetic differentiation among populations and among phylogroups were significiant (among population:FST=0.079,p<0.01; among phylogroups:FST= 0.338, p<0.01). But the SAMOVA tests and PERMUTE analyses failed to reveal any meaningful phylogeographic structure (NST=0.114> GST=0.101, p=0.33>0.05), The results of statistical phylogeography analysis rejected the model of population fragmentation. The gene flow calculated through the Nm was high between many pairs of populations, and Mantel test results showed no significant correlation between the pairwise calculated genetic distance and pairwise calculated geographical distance of the populations (R=0.126, p=0.855>0.05), rejecting the supposed of isolation-by-distance model (IBDM). The results of neutral test and mismatch distribution analyses of total population and the three mtDNA haplogroups suggest several demographic expansions between 0.125 Myr to 0.05 Myr. and a sudden expansion was identified between 0.075 Myr to 0.1 Myr by BSP analysis. The estimated age of the origin of the C.pallipes was 0.2544 Myr, with a 95% interval of confidence between 0.1594 and 0.3699 Myr by BEAST.
     In conclusion, we consider that there are significant genetic differentiations between populations of beetles distributing on the Tsinling-Dabashan Mountains, but we failed to reveal any meaningful phylogeographic structure for the gene flow calculated through the Nm was high between many pairs of populations. Climate change by glacial-interglacial cycles in the Quaternary glaciation led to several demographic expansions of beetles. Bottleneck effect, demographic expansion after glaciation and long-distance migration are important factor for the pattern of genetic.
引文
[1]黄原.分子系统学-原理、方法及应用[M].北京:中国农业出版社,1998.
    [2]J.C.Avise, J.Arnold, R.M.Ball, E.Bermingham, T.Lamb, J.E.Neigl. C.A.Reeb, N.C.Saunders. The mitochondrial DNA bridge between populations genetics and systematics[J]. Annual Review of Ecology and Systematics.1987,3:457-498.
    [3]J.C.Avise. Phylogeography:the history and formation of species[M]. Cambridge: Harvard University Press,2000.
    [4]E.Zuekerkandl, L.B.Pauling. Moleeular disease, evolution, and genetic heterogeneity. In:Kasha M, Pullman B eds. Horizons in Biochemistry [M]. New York:Academic Press,1962.
    [5]R.J.Britten. Rates of DNA sequence evolution differ between taxonomic group[J]. Science.1986,231:1393-1398.
    [6]M.J.Sanderson. A nonparametric approach to estimating divergence times in the absence of rate constancy[J]. Molecular Biology and Evolution.1997,14(12): 1218-1231.
    [7]M.J.Sanderson. Estimating absolute rates of molecular evolution and divergence times:a penalized likelihood approach[J]. Molecular Biology and Evolution.2002, 19(1):101-109.
    [8]S.Y.Ho, M.J.Phillips, A.J.Drummond, A.Cooper. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation[J]. Molecular Ecology Evolution.2005,22(5):1355-1363.
    [9]S.A.Smith, J.M.Beaulieu. M.J.Donoghue. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants[J]. PNAS.2009,107(13):5897-5902.
    [10]J.F.C.Kingman. The coalescent[J]. Stochastic Processes and their Applications. 1982,13:235-248.
    [11]J.F.C.Kingman. On the genealogy of large populations[J]. Journal of Applied Probability.1982,19:27-43.
    [12]L.L.Knowles. The burgeoning field of statistical phylogeography[J]. Journal Evolution Biology.2004,17:1-10.
    [13]J.F.C.Kingman. Origins of the coalescent 1974-1982[J]. Genetics.2000,156: 1461-1463
    [14]Y.X.Fu. W.H.Li. Coalescing into the 21st century:an overview and prospects of coalescent theory[J]. Theoretical Population Biology.1999,56:1-10.
    [15]H.M.Harding. S.M.Fullerton. R.C.Griffiths. J.Bond. M.J.Cox. A.Schneider. D.S.Moulin, J.B.Clegg. Archaic African and Asian lineages in the genetic ancestry of modern humans[J]. Amer J Hum Genet.1997,60(4):772-789.
    [16]G.M.Hewitt. Genetic consequences of climatic oscillations in the Quaternary. Philosophical [J] Transactions of Royal Society Biological Science.2004,359: 183-195.
    [17]O.Moya, H.G.Contreras-D i az, P.Oromi, C.Juan. Genetic structure, phylogeography and demography of two ground-beetle species endemic to the Tenerife laurel forest (Canary Islands) [J]. Molecular Ecology.2004,13:3153-3167.
    [18]E.Shoda-Kagaya, S.Saito, M.Okada, A.Nozaki, K.Nunokawa, Y.Tsuda. Genetic structure of the oak wilt vector beetle Platypus quercivorus:inferences toward the process of damaged area expansion[J]. BMC Ecology.2010,10:21-32.
    [19]Z.F.Wang, X.Shen, B.Liu, J.P.Su, T.Yonezawa. Y.Yu, S.C.Guo, H.Simon Y. W., V.Carles. H.Masami, J.Q.Liu. Phylogeographical analyses of domestic and wild yaks based on mitochondrial DNA:new data and reappraisal [J]. Journal of Biogeography.2010,37:2332-2344.
    [20]Y.R.Du, S.C.Guo, Z.F.Wang, H.X.Ci, Z.Y.Cai, Q.Zhang, J.P.Su, J.Q.Liu. Demographic history of the Tibetan antelope Pantholops hodgsoni (chiru)[J]. Journal of Systematics and Evolution.2010,48(6):490-496.
    [21]阎雪岚,唐文乔,杨金权.基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构[J].生物多样性.2009.17(2):143-150.
    [22]蔡振媛,张同作,慈海鑫,唐利渊,连新明,刘建全,苏建平.高原鼢鼠线粒体谱系地理学和遗传多样性[J].兽类学报.2007,27(2):130-137.
    [23]Z.J.Liu. B.P.Wu, L.Zhao, Y.L.Hao, B.S.Wang, Y.C.Long, F.W.Wei, M.Li. The effect of landscape features on population genetic structure in Yunnan snub-nosed monkeys(Rhinopithecus bieti) implies an anthropogenic genetic discontinuity[J]. Molecular Ecology.2009,18(18):3831-3846.
    [24]S.L.Yuan, L.K.Lin, T.Oshida. Phylogeography of the mole-shrew (Anourosorex yamashinai) in Taiwan:implications of interglacial refugia in a high-elevation small mammal[J]. Molecular Ecology.2006,15:2119-2130.
    [25]S.J.Yang, Z.H.Yin, X.M.Ma, F.M.Lei. Phylogeography of Ground Tit (Pseudopodoces humilis) based on mtDNA:evidence of past fragmentation on the Tibetan Plateau[J]. Molecular Phylogenetics and Evolution.2006,41:257-265.
    [26]B.C.Emerson. Evolution on oceanic island:molecular phylogenetic approaches to understanding pattern and process[J]. Molecular Ecology.2002,11:951-966.
    [27]O.Moya, H.GContreras-Diaz, P.Oromi, C.Juan. Using statistical phylogeography to infer population history:Case studies on Pimelia darking beetles from the Canary Islands[J]. Journal of Arid Environments.2006,66:477-479.
    [28]O.Maya, H.G.Contreras-Diaz, P.Oromi, C.Juan. Phylogeography of a ground beetle species in La Gomera(Canary Islands):the effects of landscape topplogy and population history [J]. Heredity.2007,99:322-330.
    [29]A.B.Zhang, K.Kubota, Y.Takimi, J.L.Kim, J.K.Kim, T.Sota. Comparative phylogeography of three Leptocarabus ground beetle species in South Korea, based on the mitochondrial Col and nuclear 28S rRNA genes[J]. Zoological science.2007, 24:465-474.
    [30]C.G.Kim, O.Tominaga, Z.H.Su, S.Osawa. Differentiation within the genus Leptocarabus (excl L.kurilensis) in the Japanes Island as deduced from mitochondrial ND5 gene sequences (Coleoptera, caradidae)[J]. Genes Genet Syst. 2000,75:335-342.
    [31]A.B.Zhang, K.Kubota, Y.Takimi, J.L.Kim, J.K.Kim, T.Sota. Species status and phylogeography of two closely ralated Coptolabrus species (Coleoptera,Carabidae) in South Korea inferred from mitochondrial and nuclear genes[J]. Molecular Ecology.2005,14:3823-3841.
    [32]N.Nagata, K.Kubota. T.Sota. Phylogeography and introgressive hybridization of the ground beetle Carabus yamato in Japan based on mitochondrial gene sequences[J]. Zoological science.2007,24:464-474.
    [33]S.Wright. Evolution in mendelian population[J]. Genetics.1931,16:97-159.
    [34]S.Wright. Breeding structure of populations in relation to speciation[J]. American Naturalist.1940,74:232-248.
    [35]S.Wright. Isolation by distance[J]. Genetics.1943,28:114-138.
    [36]M.Kimura. "Stepping Stone" model of population[J]. Genetics.1953,3:62-63.
    [37]A.Drummond, M.A.Suchard. Fully bayesian tests of neutrality using genealogical summary statistics[J]. BMC Genetics.2008,9:1-12.
    [38]F.Rousset. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance[J]. Genetics.1997.145(4):1219-1228.
    [39]N.T.Mantel. The detection of disease clustering and a generalized regression approach[J]. Cancer Research.1967,27:209-220.
    [40]R.Levins. Some demographic and genetic consequences of environmental heterogeneity for biological control[J]. Bulletin of the Entomological Society of America.1969,15:237-240.
    [41]杨星科.秦岭西段及甘南地区昆虫[M].北京:科学出版社,2005.
    [42]赵志中,何培元.神农架地区第四纪冰川遗迹与冰期划分[J].地质力学学报.1997,3(2):18-23.
    [43]奥斯特.秦岭中段现代和古代冰缘-冰川地貌特征[J].西安地质学院学报.1994,16(2):39-49.
    [44]夏正楷.太白山古冰川地貌与地质构造[J].冰川冻土.1990,12(2):155-160.
    [45]田泽生,黄春长.秦岭太白山古冰川发育与黄土高原气候变迁[J].地理研究.1990,9(3):15-23.
    [46]马秋华,何元庆.太白山第四纪冰啧物特征与冰期[J].冰川冻土.1988,10(1):66-75.
    [47]刘有民,王桂增.秦岭地区第四纪冰川地质研究[J].天津地质矿产研究所所刊.1985,14:1-104.
    [48]王桂增.东秦岭第四纪冰川概要[J].陕西地质.1984,2(2):47-62.
    [49]郭新荣,李孟楼,庄世宏.秦岭火地塘林区半翅目昆虫多样性研究[J].西北林学院学报.2000,15(3):71-75.
    [50]张金良,李焕芳.秦岭自然保护区群的生物多样性[J].生物多样性.1997,5(2):155-56.
    [51]B.C.Carstens, S.J.Brunsfeld. J.R.Dermboski, J.M.Good, J.Sullivan. Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem:hypothesis testing within a comparative phylogeographic framework[J]. Evolutionary Bioinformatics.2005,59:1639-1652.
    [52]G.M.Hewitt. The genetic legacy of the Quaternary ice ages[J]. Nature.2000,405: 907-913.
    [53]P.Taberlet, L.Fumagalli, Wust-Saucy A. G, F.Cosson. Comparative phylogeography and postglacial colonization routes in Europe[J]. Molecular Ecology.1998,7:453-464.
    [54]S.T.Kim,M.P.Jung, H.S.Kim, J.H.Shin, J.H.Lim, T.W.Kim. J.H.Lee. Insect fauna of adjacent areas of DMZ in Korea[J].J Ecol Field Biol.2006.29(2):125-141.
    [55]梁宏斌,虞佩玉.中国捕食粘虫的步甲种类检索[J].昆虫天敌.2000,22(4):160-167.
    [56]李运甓,曾宪顺,张国安,石尚柏.湖北省江汉平原常见六十种步甲成虫分种检索[J].华中农学院学报.1982,1(4):40-48.
    [57]黄同陵.中国步甲类群在生物地理区系中的位置[J].西南农业大学学报.1993,15(1):58-64.
    [58]黄同陵,张建.缙云山步甲科(鞘翅目)昆虫的检索[J].四川动物.1991,10(1):24-27.
    [59]祝长清,郑祥义.河南农区步甲调查初报[J].昆虫天敌.1987,9(4):217-219.
    [60]周红章,于晓东,罗天宏,何君舰,周海生,叶婵娟.湖北神农架自然保护区的昆虫物种多样性初步研究.面向21世纪的中国生物多样性保护.第三届全国生物多样性保护与持续利用研讨会论文集[C],北京:中国林业出版社,2000:272-81.
    [61]郭振中.贵州农林昆虫志(卷3)[M].安顺:贵州人们出版社,1991.
    [62]中国科学院动物研究所.中国农业昆虫[M].北京:农业出版社,1986.
    [63]中国科学院青藏高原综合科学考察队.横断山区昆虫[M].北京:科学出版社,1992.
    [64]K.Yahiro. A comparative morphology of the alimentary canal in the adults of ground-beetles (Coleoptera) I. classification into the types[J]. Esakia.1990, Special Issue 1:35-44.
    [65]M.J.Choi, H.J.Park, J.Y.Lee, B.K.Cho, I.Y.Lee. A case of chemical burn by Pheropsophus jessoensis[J]. Korean Journal of Dermatology.2002, 40(12):1531-1533.
    [66]邓德蔼,王贵强,李镜.农田步甲的生物学研究[J].昆虫学报.1985,28(3):283-287.
    [67]陈丽芳,刘曙照.赤胸疏爪步甲的生物学研究[J].生物防治通报.1992,8(4):186-187.
    [68]董兆克,杨龙,张润志,高风娟,周成刚.捕食性步甲在玉米与牧草之间的迁移[J].中国生物防治.2009,25(2):102-106.
    [69]李运甓,张国安,曾宪顺,陶新安,李华春,金晓华.爪哇气步甲生物学初步研究[J].华中农学院学报.1983,2(4):22-26.
    [70]邓德蔼.十三种农田常见步甲的食性[J].昆虫学报.1983,26(3):356-157.
    [71]虞佩玉.为害农作物的步行虫[J].昆虫分类学报.1980,11(1):81-84.
    [72]李忠诚.耶气步甲成虫捕食习性研究[J].绵阳农专学报.1988,3:1-5.
    [73]邓正己,程地芸.程地芸.四川的药用昆虫[J].四川动物.1991,10(4):30-31.
    [74]宋钊.中国丽步甲属和壶步甲属的分类研究(鞘翅目:步甲科)[D].广州:华南农业大学,2008.
    [75]J.H.Frank, T.Lerwin, R.C.Hemenway. Economically beneficial ground beetles. The specialized predators Pheropsophus aequinoctialis (L.) and Stenaptinus jessoensis (Morawitz):Their laboratory behavior and descriptions of immature stages (Coleoptera, Carabidae, Brachininae) [J]. ZooKeys.2009,14:1-36.
    [76]张荣祖,赵肯堂.中国动物地理区划的修改[J].动物学报.1978,24(2):196-202.
    [77]刘胤汉.陕西秦岭的自然地理特征和改造利用[J].陕西师范大学学报(自然科学版).1974,2:74-83.
    [78]马诚超.浅谈秦岭的地理分界意义[J].宿州学院学报.2007,22(4):109-111.
    [79]刘康,马乃喜,胥艳玲,孙根年.秦岭山地生态环境保护与建设[J].生态学杂志.2004,23(3):157-160.
    [80]J.P.Hayes, R.GHarrison. Variation in mitochondrial DNA and the biogeographic histories of woodrats (Neotoma) of the eastern United States[J]. Systematic Biology. 1992,41:331-344.
    [81]G.M.Hewitt. Genetic consequences of climatic oscillations in the Quaternary[J]. Philosophical Transactions of the Royal Society of London B.2004,359:183-195.
    [82]E.P.Lessa, J.A.Cook, J.L.Patton. Genetic footprints of demographic expansion in North America, but not in Amazonia, during the late Quaternary[J] Proceedings of the National Academy of Sciences of the USA.2003.100:10331-10334
    [83]B.C.Emerson, P.Oromi, M.Hewitt G MtDNA phylogeography and recent intra-island diversification among Canary Island calathus beetles[J]. Molecular Phylogenetics and Evolution.1999,13(1):149-58.
    [84]C.Ruiz, B.Jordal. J.Serrano. Molecular phylogeny of the tribe Sphodrini (Coleoptera:Carabidae) based on mitochondrial and nuclear markers[J]. Molecular Phylogenetics and Evolution.2009,50:44-58.
    [85]A.Faille, I.Ribera. L.Deharveng, C.Bourdeau, L.Garnery, E.Queinnec, T.Deuve. A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera:Carabidae). Molecular Phylogenetics and Evolution 2010.54:97-106.
    [86]A.R.Templeton. Using phylogeographic analyses of gene trees to test species status and processes[J]. Mol Ecol.2001,10:779-791.
    [87]A.B.Zhang. K.Kubota, Y.Takimi, J.L.Kim, J.K.Kim, T.Sota. Comparative phylogeography of three Leptocarabus ground beetle species in South Korea, based on the mitochondrial col and nuclear 28S rRNA genes[J]. Zoological science.2006, 24:465-74.
    [88]R.Chenna. H.Sugawara, T.Koike, R.Lopes, T.J.Gibson, D.G.Higgins, J.D.Thompson. Multipe sequence aligment with the Clustal series of programs[J]. Nucleic Acids Research.2003,31(13):497-500.
    [89]J.Rozas, J.C.Sanchez-Delbarrio, X.Messeguer, R.Rozas. DnaSP:DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics. 2003,19(18):2496-2497.
    [90]D.L.Swofford. PAUP*:Phylogenetic Analyses Using Parsimony (*and Other Methods),Version 4. Sunderland:Sinauer&Associates,MA,2002.
    [91]F.Ronquist, J.P.Huelsenbeck. MRBAYES3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics.2003,19(12):1572-1574.
    [92]D.Posada, K.A.Crandall. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics.1998,14(9):817-818.
    [93]J.Felsenstein. Confidence limits on phylogenies:an approach using the bootstrap[J]. Evolutionary Bioinformatics.1985,39:783-791.
    [94]A.Rambaut, A.Drummond. Tracer. MCMC Trace File Analyser, version1.3.2005,
    [95]T.Polzin, S.V.Daneschmand. On Steiner trees and minimum spanning trees in hypergraphs[J]. Oper Res Lett.2003.31(1):12-20.
    [96]I.Dupanloup, S.Schneider, L.Excoffier. A simulated annealing approach to define the genetic structure of populations[J]. Mol Ecol.2002,11(12):2571-2581.
    [97]O.Pons, R.J.Petit. Estimation variance and optimal sampling of gene diversity I. Haploid locus[J]. Theor Appl Genet.1995.91:462-470.
    [98]O.Pons, R.J.Petit. Measuring and testing genetic differentiation with ordered versus unordered alleles[J]. Genetics.1996,144(3):1237-1245.
    [99]L.Excoffier, G.Laval, S.Schneider. ARLEQUIN v.3.0:an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics.2005, 1:47-50.
    [100]L.L.Knowles. Statistical Phylogeography[J]. Annu. Rev. Ecol. Evol. Syst.2009, 40:593-612.
    [101]L.L.Knowles, W.P.Maddison. Statistical phylogeography[J]. Molecular Ecology. 2002.11.2623-2635.
    [102]M.K.Kuhner. LAMARC 2.0:maximum likelihood and Bayesian estimation of population parameters[J]. Bioinformatics.2006,22 (6):768-770.
    [103]A.V.Z.Brower, Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution[J]. Proceedings of the National Academy of Sciences of the USA.1994, 91(14):6491-6495.
    [104]W.P.Maddison, D.R.Maddison. MESQUITE:a modular system for evolutionary analysis. Ver.1.05.2003, Available via http://mesquiteproject.org.
    [105]M.Slatkin, W.P.Maddison. A cladistic measure of gene flow inferred from the phylogenies of alleles[J]. Genetics.1989,123:603-613.
    [106]R.R.Hudson, M.Slatkin, W.P.Maddison. Estimation of levels of gene flow from DNA sequence data[J]. Genetics 1992,132(2):583-589.
    [107]A.R.Rogers, H.Harpending. Population growth makes waves in the distribution of pairwise genetic differences [J]. Molecular Biology and Evolution 1992,9:552-569
    [108]R.Desalle, T.Freedman, E.M.Prager, A.C.Wilson. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila[J]. Journal of Molecular Evolution.1987,26(1-2):157-164.
    [109]S.E.Ramos-Onsins, J.Rozas. Statistical properties of new neutrality tests against population growth[J]. Molecular Biology and Evolution.2002,19(12):2092-2100.
    [110]F.Tajima. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics.1989.123(3):585-595.
    [111]F.Tajima. The effect of change in population size on DNA polymorphism[J]. Genetics.1989,123:597-601
    [112]F.Tajima. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites[J]. Genetics.1996, 143:1457-1465.
    [113]Y.X.Fu. Statistical tests of neutrality of mutations against population growth, hitchhiking and backgroud selection[J]. Genetics.1997.142(2):915-925.
    [114]S.Schneider, L.Excoffier. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA[J]. Genetics.1999,152(3):1079-1089.
    [115]R. A. Drummond A. BEAST:Bayesian evolutionary analysis by sampling trees[J]. BMC Evol Biol.2007.7:214.
    [116]A.J.Drummond, A.Rambaut, B.Shapiro, O.G.Pybus. Bayesian coalescent inference of past population dynamics from molecular sequences[J]. Mol Biol Evol.2005, 22(5):1185-1192.
    [117]A.Rambaut, A.Drummond. LogCombiner,versionl.4.7.2007.
    [118]A. Rambaut, Drummond A. TreeAnnotator, version 1.4.7.2008.
    [119]A.Rambaut. FigTree, Tree Figure Drawing Tool, version 1.1.1.2008.
    [120]C.Juan, P.Orom, G.M.Hewitt. Phylogeny of the genus Hegeter (Tenebrionidae.Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences[J]. Heredity.1996,76: 392-403.
    [121]M.Slatkin, R.R.Hudson. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations[J]. Genetics.1991,129:555-562.
    [122]W.Grant, B.W.Bowen. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation J]. Journal of Heredity.1998,89(5):415-426.
    [123]施雅风,崔之久,苏珍.中国第四纪冰川与环境变化[M].石家庄:河北科技出版社,2006.
    [124]M.Kimura, G.H. Weiss. The Stepping Stone Model of population structure and the decrease of genetic correlation with distance[J]. Genetics.1964,49:561-576.
    [125]张云慧,陈林,程登发,田喆,姜玉英,张跃进.步甲夜间迁飞的研究[J].中国农业科学.2008,41(1):108-115.
    [126]J.Meijer. A comparative study of the immigration of carabids (Coleoptera, Carabidae) into a new polder [J]. Oecologia.1974,16(3):185-208.
    [127]A.V.Matalin. variations in flight ability with sex and age in ground beetles (Coleoptera. Carabidae) of south-western Moldova[J]. Pedobiologia.2003,47(4): 311-319.
    [128]B.S.Arbogast, S.V.Ewards, J.Wakeley, P.Beerli. J.B.Slowinski. Estimating divergene times from molecular data on phylegenetic and population genetic timescales[J]. Annual Review of Ecology and Systematics.2002,33:707-704.
    [129]A. Papadopoulou, A.C.Jones. P.M.Hammond. A.P.Vogler. DNA taxonomy and phylogeography of beetles of the Falkland Islands[J]. Molecular Phylogenetics and Evolution.2009,53:935-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700