用户名: 密码: 验证码:
新型聚合铝铁—有机复合絮凝剂的混凝性能及其絮体特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝沉淀法工艺简单、经济高效、操作方便,因此被广泛应用于水和废水处理中。絮凝剂性能的好坏关键性地决定了混凝效果的优劣和混凝工艺运行费用的高低。为了提高无机絮凝剂的絮凝效果,降低有机絮凝剂的水处理成本,在实际应用中可以将两种或两种以上具有混凝功效的无机和有机物质经过加工,生成新的复合絮凝剂产品。近年来,研发各种无机-有机复合型絮凝剂,成为了水处理药剂开发的热点。
     本文在综合国内外大量相关文献的基础上,以聚合氯化铝铁(PAFC)和二甲基二烯丙基氯化铵均聚(PDMDAAC)为原料制备出新型聚合氯化铝铁-二甲基二烯丙基氯化铵均聚物复合絮凝剂(PAFC-PDMDAAC),并利用现代先进的检测方法,对制备的复合高分子絮凝剂的荷电情况进行了评估。同时研究了在模拟地表水和染料废水处理中PAFC-PDMDAAC中无机成分和有机成分配比(P)、无机组分碱化度(B)、有机组分特性粘度(η)、原水pH值对该复合絮凝剂的混凝性能、混凝机理及混凝动力学过程的影响。本文还对PAFC-PDMDAAC复合絮凝剂所形成的絮体的物理特性如絮体强度、恢复能力和分形维数进行了深入研究,揭示复合絮凝剂无机和有机组分之间的相互作用。该研究对于聚合氯化铝铁-有机复合絮凝剂的研制开发和应用提供了理论指导。
     主要研究内容及结论如下:
     1.利用Zetasizer3000HSA型zeta电位仪测定了复合絮凝剂PAFC-PDMDAAC的zeta电位,研究了絮凝剂表面的电荷特性。结果表明PAFC与PDMDAAC复合后,其表面电荷和zeta电位明显升高,对带负电荷的胶粒的电中和能力增强。此外,PAFC-PDMDAAC的表面电荷和zeta电位随着P值的降低、η的增大而增大,B=1.0的PAFC-PDMDAAC的表面电荷和zeta电位明显高于B值过低或过高的PAFC-PDMDAAC。
     2.采用PAFC-PDMDAAC、PAFC单独投加、PAFC和PDMDAAC以不同次序先后投加四种方式对模拟地表水和模拟分散黄染料废水进行混凝实验。研究表明:①在处理模拟地表水时,投加方式对浊度的去除效果影响不大。但是,PAFC-PDMDAAC对有机物的去除效果明显优于PAFC、PAFC+PDMDAAC和PDMDAAC+PAFC,而且投加量较低,在达到相同的有机物去除率的情况下,复合絮凝剂的投加量比PAFC单独投加时约降低了25%-35%,从而大大降低了所需的药剂成本。此外,PAFC和PDMDAAC的联合投加,提高了絮凝剂的电中和能力。与PAFC+PDMDAAC相比,PAFC-PDMDAAC的电中和能力较弱,但其吸附架桥和网捕作用明显增强;与PDMDAAC+PAFC相比,复合絮凝剂的电中和能力、吸附架桥和网捕作用都明显增强;②在处理分散染料废水时,四种投加方式的絮凝剂对分散染料脱色率的高低顺序为PAFC-PDMDAAC>PDMDAAC+PAFC>PAFC+PDMDAAC>PAFC。四种投加方式的絮凝剂电中和能力的强弱顺序为PAFC+PDMDAAC>PAFC-PDMDAAC>PDMDAAC+PAFC>PAFC。复合絮凝剂PAFC-PDMDAAC对分散黄的混凝机理除了电中和作用外,吸附架桥和网捕作用起着重要的作用。从处理地表水和染料废水来看,PAFC-PDMDAAC可以发挥PAFC和PDMDAAC的协同作用,较传统絮凝剂具有一定的优势。
     3.通过对模拟地表水和模拟分散黄染料废水的混凝实验,考察了絮凝剂的(Al+Fe)/PDMDAAC质量比(P)、无机组分的B值和有机组分的η值对PAFC-PDMDAAC混凝效果和zeta电位的影响,探讨了复合絮凝剂对模拟地表水和模拟分散染料废水的混凝机理。结果表明:①处理模拟地表水时,P=10的混凝效果明显优于P值过低或过高的PAFC-PDMDAAC,B=1.0的混凝效果明显优于B值过低或过高的PAFC-PDMDAAC,提高η值,可以提高PAFC-PDMDAAC对浊度和DOC的去除效果;②处理模拟分散染料废水时,P值越低,B值和η值越高,PAFC-PDMDAAC的脱色效果越好。对于PAFC-PDMDAAC来说,电中和作用、吸附架桥和网捕作用是其主要的混凝机理,电中和能力随着P的降低,η值的增大而增强。
     4.通过对模拟地表水和模拟分散黄染料废水的混凝实验,考察了原水pH值对PAFC-PDMDAAC混凝效果的影响。研究表明:①处理模拟地表水时,原水pH值对地表水浊度的去除效果影响不大,但对有机物去除效果影响较大。原水碱性越强,PAFC-PDMDAAC对UV254和DOC的去除效果越差。在pH=5.5的条件下,其对有机物的去除效果最佳;②处理模拟分散染料废水时,PAFC-PDMDAAC具有较宽的pH适宜范围。在pH为6-9时,复合絮凝剂对分散黄的去除率达96%以上,脱色效果最佳。
     5.利用光散射颗粒分析仪PDA2000在线监测了PAFC-PDMDAAC的混凝动力学过程,研究了处理模拟染料废水的混凝过程中PAFC-PDMDAAC的絮体特性。结果表明:在处理分散黄模拟染料废水的过程中,与PDMDAAC、PAFC相比,复合絮凝剂PAFC-PDMDAAC的最终絮体粒度大大提高,絮体差异性减小,这将最终提高其脱色效果;投加量较低时,PFC-PDMDAAC复合混凝剂中有机部分含量越高,最终絮体粒度越大,絮体差异性越小,脱色效果越好;投加量较高时,有机成分含量越高,絮体差异性越大,絮体大小不均匀,但由于最终絮体粒度较大,导致脱色效果越好;PAFC-PDMDAAC的预水解程度越高,絮体差异性越大,但由于吸附架桥和网捕作用增强,最终絮体粒度较大,因此脱色效果较好;在pH值为6-7.5时,PDMDAAC、PAFC、PAFC-PDMDAAC所形成絮体最终粒度较大,沉降性能较好,从而混凝效果较好;当PAFC-PDMDAAC作为絮凝剂时,其对染料废水的处理效果受到水质波动影响小。
     6利用光散射颗粒分析仪PDA2000在线监测了PAFC-PDMDAAC的混凝动力学过程,研究了处理模拟地表水的混凝过程中PAFC-PDMDAAC的絮体特性。处理模拟地表水时,与PAFC相比,复合絮凝剂PAFC-PDMDAAC的使用可以大幅提高絮体的生长速度,缩短絮凝剂与污染物反应时间,提高所形成絮体的最终粒度,提高沉降速度,从而提高混凝效果。此外,PAFC-PDMDAAC中的(Al+Fe)/PDMDAAC质量比(P)、无机组分的B值、有机组分的η值和原水pH值对的絮体生长特性均有一定的影响。在低P值(4)、高B值(1.5)、高η值(1.21dL/g)和酸性(pH=5.0)条件下,絮体生长速度快,形成的絮体最终粒径大,混凝效果好。在絮体破碎阶段,PAFC-PDMDAAC所生成絮体的中位粒径在施加剪切力瞬间急剧下降,随着剪切时间的增加,粒径缓慢降低。破碎的絮体可以聚集再生,但再生成絮体的粒径远远小于破碎前的粒径。施加的剪切力的时间越长,施加的剪切力越大,絮体破碎程度越大。提高P值、降低B值、提高η值、缩短剪切时间和减小剪切力可以在一定能够程度上提高絮体强度,降低P值、降低B值、提高η值、缩短剪切时间和增大剪切力可以在一定能够程度上提高絮体恢复能力。此外,在酸性条件下具有较高的絮体强度和恢复能力。在有机成分的含量高(降低P值)、高B值、高η值和酸性条件下,PAFC-PDMDAAC所形成的絮体的分形维数较大,具有较高的密实度。
     综上所述研究,本文系统地探讨了复合絮凝剂PAFC-PDMDAAC对模拟染料废水和模拟地表水的混凝效果、混凝性能、混凝机理和絮体特性,结果表明,PAFC-PDMDAAC是一种更为高效经济的絮凝剂。本论文的研究为聚合铝铁复合絮凝剂的研制和应用奠定理论基础。
Coagulation sedimentation process was widely applied in water and wastewater treatment because of its advantages:simple process, low cost, high coagulation removal and easy operation. Coagulant properties are the key factors which related to the coagulation efficiency and the operating cost. In order to improve the coagulation efficiency and reduce the operating cost, two or more inorganic and organic coagulants were used to prepare the new composite coagulant. In recent years, the inorganic-organic composite coagulant was the hot development area of water treatment agents.
     Synthesizing a number of references and literature, a composite flocculant, PAFC-PDMDAAC, was prepared by combining polymeric aluminum ferric chloride (PAFC) with polydimethyldiallylammonium chloride (PDMDAAC). Zeta potentials of PAFC-PDMDAAC were evaluated by modern advanced method. In synthetic surface water treatment, the effect of (Al+Fe)/PDMDAAC mass ratio (P), basicity (B) of PAFC, intrinsic viscosity (η) of PDMDAAC and pH value on the flocculation efficiency, flocculation mechanism and coagulation dynamics were investigated. Moreover, the floes properties, such as floe strength, the regrowth ability of broken floes and the fractal dimension of floes, were discussed. The correlation between inorganic and organic component in the composite flocculant was revealed. The research results provide theoretical guidance for the preparation and application of PAFC-PDMDAAC.
     The main conclusions are as follows:
     1. The zeta potential and charged characteristics of PAFC-PDMDAAC were determined using a Zetasizer3000HSA analyzer. The results showed that the surface charge, the zeta potential and the charge neutrality of PAFC-PDMDAAC were higher than that of PAFC. Moreover, the surface charge and the zeta potential of PAFC-PDMDAAC increased with the decrease of P and increase of η value. PAFC-PDMDAAC with B=1.0had the highest surface charge.
     2.Coagulation experiments were conducted by treating synthetic surface water and disperse yellow dying wastewater using four dosing way,such as addition of composite coagulant PAFC-PDMDAAC,addition of PAFC,successive addition of PAFC and PDMDAAC.①In treating synthetic surface water,dosing way had little effect on the turbidity removal efficiency. Compared with PAFC, PAFC+PDMDAAC and PDMDAAC+PAFC, PAFC-PDMDAAC gave higher organic matter removal effi ciency and lower optimal dosage.Further,PAFC-PDMDAAC showed weaker charge neutralization ability but much stronger absorption/bridging and enmeshment ability than PAFC+PDMDAAC, and showed stronger charge neutralization, absorption/bridging and enmeshment ability than PDMDAAC+PAFC.②In treating disperse yellow dying wastewater, the order of the decolorization rate was PAFC-PDMDAAC>PDMDAAC+PAFC>PAFC+PDMDAAC>PAFC.Compared with PAFC,PAFC+PDMDAAC and PDMDAAC+PAFC,PAFC-PDMDAAC gave lower optimal dosage.The order of the charge neutralization was PAFC+PDMDAAC>PAFC-PDMDAAC>PDMDAAC+PAFC>PAFC.In coagulating disperse yellow, charge neutralization;bridging and enmeshment were the main coagulation mechanisms for PAFC-PDMDAAC.Consequently,PAFC-PDMDAAC achieved good performance by synergic effect of PAFC and PDMDAAC during surface water treatment.
     3. The flocculation efficiency of PAFC-PDMDAAC with different (Al+Fe)/PDMDAAC mass ratio(P),basicity(B)of PAFC and intrinsic viscosity(η)of PDMDAAC was studied in the treatment of synthetic surface water and disperse yellow dying wastewater,and the zeta potential of the flocs was also investigated,which explained the flocculation mechanism.①In the trealment of synthetic surface water, PAFC-PDMDAAC with intermediate P(P=10),intermediate B(B=1.0)and higher η (η=1.21dL/g)gave higher coagulation efficiency.②In the treatment of disperse yellow dying wastewater,PAFC-PDMDAAC with lower P(P=4),higher B(B=1.5) and higher η(η=1.21dL/g)gave higher decolorization efficiency.The charge neutralization,adsoyption/bridging and enmeshment ability of PAFC-PDMDAAC played a role for the coagulation mechanisms. The charge neutralization ability of PAFC-PDMDAAC was stronger with the decrease of P value and the increase of η value of PDMDAAC.
     4. The effect of pH on the flocculation efficiency of PAFC-PDMDAAC was studied in the treatment of surface water and disperses yellow dying wastewater.①In the treatment of synthetic surface water, pH value had lower effect on the turbidity removal and higher effect of the organic matter removal. The UV254and DOC removal efficiencies decreased with the increase of alkalinity. The organic matter removal efficiency is the highest when pH value of the raw water is5.5.②In the treatment of disperse yellow dying wastewater, the appropriate pH range of PAFC-PDMDAAC was wider. The decolorization efficiency is the highest when pH value of the raw water is6-9.
     5. The laser scatter analyzer PDA2000was used to on-line monitor the floe properties of PAFC-PDMDAAC. In the treatment of disperse yellow dying wastewater, the larger average floe size (Ratio) and lower Relative Standard Deviation (RSD) were achieved by PAFC-PDMDAAC compared with PDMDAAC and PAFC. Therefore, the dying removal efficiency of PAFC-PDMDAAC was better than that of PDMDAAC and PAFC. At lower dosage, the Ratio was increased and the RSD was decreased with the organic regent contents increasing. At higher dosage, the Ratio and the RSD was increased with the organic regent contents increasing. When pH was6-7.5, the Ratio of PDMDAAC、PAFC and PAFC-PDMDAAC were larger.
     6. In the treatment of synthetic surface water, faster floe growth velocity, shorter reaction time, larger average floe size, faster sedimentation velocity and better flocculation efficiency were achieved by PAF-DMDAAC compared with PAFC. Besides, the effect of (Al+Fe)/PDMDAAC mass ratio (P), B, η and pH values on the floe aggregation was investigated. Faster floe growth, larger average floe size and better flocculation efficiency were achieved by PAFC-PDMDAAC (P=4, B=1.5, η=1.21dL/g and pH=5.0). In breakage phase, the median equivalent particle diameter under all cases declined significantly and then followed by a gradual drop when the stirring speed was increased from40to200rpm. When the stirring rate was decreased to40rpm, the flocs began to regrow again. However, the flocs could not regrow to their previous sizes. The floe breakage degree decreased with the increase of the shear time and shear forces. Higher P, lower B, higher η value, shorter shear time and lower shear force could improve the floe strength. Lower P, lower B, higher η value, shorter shear time and higher shear force could increase regrowth ability in a certain extent. Moreover, PAFC-PDMDAAC gave higher floe strength and regrowth ability in the acid condition. Moreover, the floes formed by PAFC-PDMDAAC with lower P, higher-η and B value had higher fractal dimension and more compact structure. In addition, the floes formed in the acid condition were more compact.
     The above research studied the flocculation efficiency, flocculation behavior, coagulation mechanisms and floes properties of PAFC-PDMDAAC in the treatment of surface water, indicating that the composite flocculant was highly efficient and economical coagulant. This research provides fundamental and theoretical basis for the developing and practical application of PAFC-PDMDAAC
引文
[1]Jiang J. Q., Lioyd B.. Progress in the development and use of ferrate (Ⅵ) salt as an oxidant and coagulant for water and wastewater treatment [J]. Water Res,2002,36:1397-1408.
    [2]魏锦程,高宝玉,王燕,岳钦艳.聚合铁复合絮凝剂用于城镇纳污河河水化学强化处理的性能及机理研究[J].精细化工,2008,25:154-158.
    [3]Zhao B.Q., Wang D.S., Li T., et al.. Influence of floe structure on coagulation-microfiltration performance:Effect of Al speciation characteristics of PACls [J]. Sep Purif Technol,2010,72 (1):22-27.
    [4]舒型武,郑怀礼.阳离子型有机絮凝剂研究进展[J].现代化工,2001,21(10):13-16.
    [5]Matilainen A., Vepsalainen M, Sillanpaa M.. Natural organic matter removal by coagulation during drinking water treatment:A review [J]. Adv Colloid Interface,2010,159 (1):189-197.
    [6]朱艳彬,马放,杨基先,李大鹏.絮凝剂复配与复合型絮凝剂研究[J].哈尔滨工业大学学报,2010,42(8):1254-1258.
    [7]Moussas P.A., Zouboulis A.I.. A new inorganic-organic composite coagulant, consisting of Polyferric Sulphate (PFS) and Polyacrylamide (PAA) [J]. Water Res,2009,43 (3):3511-3524.
    [8]Droppo I.G., Exall K., Stafford K.. Effects of chemical amendments on aquatic floe structure, settling and strength. Water Res,2008,42 (1): 169-179.
    [9]李赞忠,白风荣,刘进荣,刘启旺,胡俊虎.复合型絮凝剂PAFC的合成与应用研究[J].工业水处理,2010,30(12),80-82.
    [10]武永爱.聚合氯化铝铁PAFC絮凝性能试验研究[J].辽宁化工,2010,39(4):381-383.
    [11]马喜平,肖红章.聚季铵粘土稳定性的性能评价[J].钻井液与完井液,1995,12(2):48-51.
    [12]李潇潇,张跃军.聚二甲基二烯丙基氯化铵在原水处理中的应用及机制研究进展[J].精细化工,2011,28(4):375-382.
    [13]Matilaninen A., Vepsalainen M., Vepsalainen M.. Natural organic matter removal by coagulation during drinking water treatment:A review [J]. Adv Colloid Interface,2010,159 (1):189-197.
    [14]Tian B.H., Ge X.P., Pan G. Luan Z.K.. Effect of nitrate or sulfate on flocculation properties of cationic polymer flocculants [J]. Desalination, 2007,208:134-145.
    [15]赵华章,奕兆坤,岳钦艳等PDMDAAC系列絮凝剂的脱色性能研究[J].环境科学,2002,21(2):149-154.
    [16]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化按聚合物的除浊性能研究[J].工业水处理,2002,22(3):26-31.
    [17]Zhao XL., Zhang Y.J.. Algae-removing and algicidal efficiencies of polydiallyldimethylammonium chloride composite coagulants in enhanced coagulation treatment of algae-containing raw water [J]. Chem Eng J,2011, 173:164-170.
    [18]Razali M.A.A., Ahmad Z., Ahmad M.S.B., Ariffin A.. Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation [J]. Water Res,2011,166:529-535.
    [19]武敏.我国水资源的现状及利用问题研究[J].新乡学院学报(社会科学版),2011,25(3):25-27.
    [20]邓绍云,邱清华.城市水资源可持续开发利用研究现状与展望[J].人民黄河,2011,33(3):42-43.
    [21]王敏童芳华.铝盐絮凝剂的研究进展[J].江西化工,2005,2,9-11.
    [22]巴宾科夫.论水的混凝(郭连起译)[M].北京:中国建筑工业出版社 1982.
    [23]吴国荣,王敏.铝盐絮凝剂的特性及其在水处理中的应用[J]江西科学,2003,21(1):67-70.
    [24]Hu C.Z., Liu H.J., Qu J.H., Wang D.S., Ru J.. Coagulation behavior of aluminum salts in eutrophic water:significance of Al13 species and pH control [J]. Environ Sci Technol,2006,40 (1):325-331.
    [25]Yan M.Q., Wang D.S., Qu J.H., Ni J.R., Chow C.W.K.. Enhanced coagulation for high alkalinity and micro-polluted water:The third way through coagulant optimization [J]. Water Res,2008,42 (9):2278-2286.
    [26]Parthasarathy N., Buffle J.. Study of polymeric aluminium(Ⅲ) hydroxide solution for application in waste water treatment. Properties of the polymer and optimal conditions of preparation [J]. Water Res,1985,19(1):25-35.
    [27]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1-11.
    [28]汤鸿霄,栾兆坤.聚合氯化铝与传统絮凝剂的凝聚—絮凝行为差异[J].环境化学,1997,16(6):497-505.
    [29]王晓昌.浅谈铝盐的水解和吸附电中和过程中被凝聚物浓度的影响[J].环境化学,1996,5(6):530-533.
    [30]栾兆坤,汤鸿霄.混凝过程中铝与聚合铝水解形态的动力学转化及其稳定[J].环境科学学报,1997,16(3):321-327.
    [31]汤鸿霄.羟基聚合氯化铝的絮凝形态学[J].环境科学学报,1998,18(1):1-10.
    [32]Lartiges B.S., Chaignon V., Michot L.J., Robert J.L.. Is sweep-flocculation relevant to saponite aggregation? [J]. Water Sci. Technol.,1998,38(6): 319-325.
    [33]Bi S.P., Wang C.Y., Cao Q., Zhang C.H.. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: Correlations between the "Core-links" model and "Cage-like" Keggin-Al13 model [J]. Coordin Chem Rev,2004,248 (6):441-455.
    [34]Benschoten J.E.V., Edzward J.K.. Chemical aspects of coagulation using aluminum salts-1. Hydrolytic reactions of alum and polyaluminum chloride [J]. Water Res,1990,24(12):1519-1526.
    [35]Tombacz E., Filipcsei G., Szekeres M., Gingl Z.. Particle aggregation in complex aquatic systems [J]. Colloid Surf, A,1999,151(2):233-244.
    [36]高宝玉.聚硅氯化铝絮凝剂的应用基础研究[D].清华大学博士学位论文,1998.
    [37]Wang S.L., Wang M.K., Tzou Y.M.. Commenges G.. Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions [J]. Colloid Surf, A,2003,231(1),143-157.
    [38]李明玉,唐启红.无机高分子絮凝剂聚合铁研究开发进展[J].工业水处理,2000,20(6):1-3.
    [39]李风亭.我国絮凝剂硫酸铁的技术发展现状[J].工业水处理,2002,22(1):5-8.
    [40]Jiang J.Q, Graham N.J.D, Harward C. Comparison of polyferric sulfate with other coagulants for the removal of algae and algae-derived organic matter [J]. Water Sci Technol,1993,27:221-230.
    [41]Cheng W.P., Chi F.H.. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method [J]. Water Res,2002,36(18):4583-4591.
    [42]苗晶.高浓度聚合氯化铁的基础应用研究[D].山东大学硕士学位论文,2002.
    [43]苏滕,陆中兴.絮凝剂的研究应用与开发动向(一)[J].净水技术,2000,18(3):7-9.
    [44]Lei G.Y., Guan X.H., Song A.K., Cui Y.J.. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water [J]. Desalination,2009,247(1-3):518-529.
    [45]周勤,肖锦.给水原水处理中的混凝技术[J].工业水处理,1999,19(2):3-5.
    [46]Coradin t., Livage J.. Effect of some amino acids and peptides on silicicacidpolymerization [J]. Colloid Surf, A,2001,21(4):329-336.
    [47]陈培康,裘本昌.给水净水新工艺[M].北京:学术书刊出版社,1990.
    [48]Guigui C., Rouch J.C., Durand-Bourlier L., Bonnelye V., Aptel P.. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production [J]. Desalination,2002,19(1):95-100.
    [49]Okura T., Goto K., Murai M.. Fundamentals in the use of activated silica in water purification(in Japanese) [M]. Hokkaido:Hokkaido University Press, 1960.
    [50]国家环保局.絮凝剂与絮凝剂[M]北京:中国科学出版社,1991.
    [51]Yokoyama T., Takahashi Y., Tarutani T. Retarding and accelerating effects of aluminum on the growth of polysilicic acid particles [J]. J Colloid Interf Sci,1991,141(2):559-563.
    [52]Gao B.Y., Hahn H.H.. Evaluation of Aluminum-silicate Polymer Composite as a coagulant for water treatment [J]. Water Res,2002,36(14):3573-3581.
    [53]Yue Q.Y, Gao B.Y., Wang B.J.. Electro kinetic characteristic and coagulation behavior of flocculant polyaluminum silicate chloride (PASiC) [J]. J. Environ.Sci.,2003,15(1):69-74.
    [54]吕松,袁斌,郗丽娟.聚合硅酸铁盐类絮凝剂研究进展[J].华北电力技术,2001,11(1):11-13.
    [55]王亚辉,李彤彤.絮凝剂在废水处理中的应用[J].广东化工,2009,38(10):143-144.
    [56]康建雄,白云山.水处理絮凝剂的开发与应用[J].华中科技大学学报(城市科学版),2004(2):23-26.
    [57]严瑞.水处理剂应用手册[M].北京:北京大学工业出版社,2000:42-139.
    [58]张跃军,刘瑛,邢云杰.阳离子絮凝剂PDA的合成与应用[J].工业水处理,2002,(10):23-25.
    [59]刘睿,周启星.水处理絮凝剂研究与应用进展[J].应用生态学报,2005,16(8):1558-1562.
    [60]Savant V.D., Torres A., Fourier Transform Infrared Analysis of Chitosan Based Coagulating Agents for Treating Surimi Waste Water [J]. J. Food Technol.,2003,1(2):23-28.
    [61]马希晨,吴星娥,曹亚峰.淀粉基两性天然高分子改性絮凝剂的合成[J].吉林大学学报:理学版,2004,42(2):273-2277.
    [62]朱建华,司徒锋.球型木质素碳化树脂的制备及性能研究[J].水处理技术,1997,23(1):38-44.
    [63]唐星华,舒红英,吴再国CTS-AM-DMC强阳离子型天然高分子絮凝剂的合成[J].水处理技术,2005,31(9):52-55.
    [64]沈一丁,石珞.壳聚糖交联阳离子高分子絮凝剂的表征及应用[J].高分子材料科学与工程,2002,18(4):101-104.
    [65]Kiatkamjornwong S., Chomsaksakul W., Sonsuk M.. Radiation modification of water absorption of cassava starch by acrylic acid/acryl amide [J]. Radiat Phys Chem,2000,59(4):413-427.
    [66]Singh V., Sharma A.K., Sanghi R.. Poly(acrylamide) functionalized chitosan: An efficient adsorbent for azo dyes from aqueous solutions[J]. J Hazard Mater,2009,166(1):327-335.
    [67]张育新,康勇.絮凝剂的研究现状及发展趋势[J].化工进展,2002,21(11):799-804.
    [68]张志强,林波,胡几成,夏四清.高活性絮凝剂产生菌的构建、培养及应用研究[J].环境科学学报,2004,25(11):1497-1501.
    [69]王曙光,刘贤伟,高宝玉等.利用酱油酿造废水生产微生物絮凝剂及其性能研究[J].应用与环境生物学报,2006,12(4):574-576
    [70]刘晖,周康群等.青霉菌HHE-P7利用酱油废水产生微生物絮凝剂的研究[J].环境污染治理技术与设备,2006,7(3):40-44.
    [71]龙文芳,李小明,增光明等.烟曲霉絮凝剂产生菌的替代培养基的研究[J].2004,14(4):52-53.
    [72]周旭,王竟,周集体等.利用龟粉废水生产微生物絮凝剂的性能研究[J].环境科学研究,2003,16(3):31-34.
    [73]马放,刘俊良,李淑更等.复合型微生物絮凝剂的开发[J].中国给水排水,2003,19(4):1-4.
    [74]Jiang J.Q., Graham N.J.D.. Preliminary evaluation of the performance of new pre-polymerized inorganic coagulants for lowland surface water treatment [J]. Water Sci Technol,1998,37 (2):121-128.
    [75]Lofrano G., Belglorno V., Gallo M., Raimo A., Meric S.. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process [J]. Global NEST Journal,2006,8(2):151-158.
    [76]高宝玉.煤矸石制备聚合氯化铝铁絮凝剂的研究[J].环境科学,1996,17(4):62-63.
    [77]汤继军,肖和莲.聚合铝铁在工业废水处理中的应用[J].西南给排水,2001,23(1):20-21.
    [78]Kuo, Vincent H. S., Wanser. Agueous basic polyaluminum iron halide solutions [P]. US 4362643.
    [79]胡勇有,宁寻安,周勤.聚合氯化铝铁的混凝性能[J].环境科学与技术,2001,24(2):9-11.
    [80]Jiang J.Q.. Development of coagulation theory and pre-polymerized coagulants for water treatment [J]. Sep Purif Rev,2001,30(1):127-141.
    [81]胡翔,周定.高效无机絮凝剂聚硅酸铁铝的研究[J].中国环境科学,1999, 19(3):266-269.
    [82]Gao B.Y., Yue Q.Y., Wang B.J.. The chemical species distribution and transformation of polyaluminum silicate chloride coagulant [J]. Chemosphere,2002,46 (6):809-813.
    [83]Gao B.Y., Yue Q.Y., Wang B.J.. Coagulation Efficiency and Residual Aluminum Content of polyaluminum Silicate Chloride in Water Treatment [J]. Acta Hydroch Hydrob,2004,32 (2):125-130.
    [84]李凡修.铝盐絮凝剂作用机理研究进展[J].工业水处理,1999,19(5):15-17.
    [85]胡勇有.聚磷氯化铝溶液形态分布及转化规律[J].环境科学学报,1995,15(2):224-231.
    [86]Zheng H.L., Zhu G.C., Jiang S.J., Tshukudu T., Xiang X.Y., Zhang P.. Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of floes [J]. Desalination,2011,269 (2):148-156.
    [87]吴早春等.新型絮凝剂聚磷氯化铝在污水处理中的特性[J].工业水处理,1996,16(5):15-17.
    [88]Zouboulis A.L., Moussas P.A.. Polyferric silicate sulphate (PFSiS): Preparation, characterisation and coagulation behaviour [J]. Desalination, 2008,224(1-3):307-316.
    [89]Moussas P.A., Zouboulis A.L.. Properties and coagulation mechanisms of polyferric silicate sulfate with high concentration [J]. Sep Purif Technol, 2008,63(2):475-483.
    [90]Song Z.W., Ren N.Q.. Properties and coagulation mechanisms of polyferric silicate sulfate with high concentration [J]. J Environ Sci,2008,20(2): 129-134.
    [91]Wang L.P., Yuan X.F., Xu X., Xu A.B., Cao N.Y.. Research on the Preparation of Polyferric Silicate Chloride (PFSC) and Application on Algae Wastewater Treatment [J], Adv Mater Res,2010,154(2):230-234.
    [92]Shi J., Zhang Y., Zou K.Y., Xiao F.. Speciation characterization and coagulation of poly-silica-ferric-chloride:The role of hydrolyzed Fe(III) and silica interaction [J]. J Environ Sci,2011,23(5):749-756.
    [93]Liu Z.R.. Preparation of Polyphosphate Ferric Sulfate [J]. Ind Water Treat, 1999,19 (1):19-20.
    [94]梁喜珍.聚合磷硫酸铁合成的进一步研究[J].化工时刊,2000,(3):26-29.
    [95]Gregory J., Duan J.M.. Hydrolyzing metal salts as coagulants [J]. Pure Appl Chem,2001,73(12):2017-2026.
    [96]Gregory J., Duan J.M.. Comparable evaluation of iron-based coagulants for the treatment of surface water and of contaminated tap water [J]. Sep Sci Technol,2007,42(4):803-817.
    [97]Wang Y., Gao B.Y., Yue Q.Y., Wei J C., Li Q.. The characterization and flocculation efficiency of composite flocculant iron salts polydimethyldiallylammonium chloride [J]. Water Res,2008,142(2): 175-181.
    [98]Wei i.C., Gao B.Y., Yue Q.Y., Wang Y., Li W., Zhu X.. Comparison of coagulation behavior and floe structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution [J]. Water Res,2009,43(3):724-732.
    [99]Gao B.Y., Wang Y., Yue Q.Y., Wei J.C., Li Q., Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and polydimethyldiallylammonium chloride [J]. Sep Purif Technol,2007,54(2): 157-163.
    [100]Gao B.Y., Wang Y., Yue Q.Y., Wei J.C., Li Q.. The size and coagulation behavior of a novel composite inorganic-organic coagulant [J]. Sep Purif Technol,2008,62(3):544-550.
    [101]黄曼君,李明玉,任刚,曹刚,宋琳PFS-PDM复合絮凝剂对微污染河水的强化混凝处理[J].中国环境科学,2011,31(3):384-389.
    [102]Pinotti A., Zaritzky N.. Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes [J]. Waste Manage,2001,21(6):535-542.
    [103]Yan M., Wang D., Ni J., Qu J., Ni W.. Enhanced coagulation for high alkalinity and micro-polluted water:The third way through coagulant optimization [J]. Water Res,2008,42(8):2278-2286.
    [104]Yan M.Q., Wang D., Shi B.Y., Wang M., Yan Y.. Effect of Pre-ozonation on Optimized Coagulation of a Typical North-China Source Water [J]. Chemosphere 2007,69(11):1695-1702.
    [105]张依华.新型絮凝剂SLB的制备及应用[J].油气田环境保护,1997,7(1):10-12.
    [106]Gao B.Y., Hahn H.H., Hoffmann E.. Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment [J]. Water Res,2002, 36(14):3573-3581.
    [107]Bratskaya S., Schwarz S., Chervonetsky D.. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate [J]. Water Res,2004,38(12):2955-2961.
    [108]吴钧,周志浩,金云云.聚碱式氯化铝铁的结构及应用研究[J],华东化工学院学报,1992,18(1):119-123.
    [109]李宗峰.铝铁共存水解初探及聚合氯化铝铁形态分布和转化规律研究[D].华南理工大学硕士论文,1998.
    [110]胡勇有,王琪海.聚合铝铁的特征参数[J].华南理工大学学报(自然科 学版),2001,29(7):83-85
    [111]涂传青,徐国勋,马鲁铭.聚合氯化铝铁的形态分布特征研究[J],净水技术,2004,23(4):4-6.
    [112]胡勇有,涂传青,高健,黄瑞敏.羟基聚合氯化铝铁溶液的形态转化规律[J].环境科学.2000,21(6):98-100.
    [113]Singh S.S., Kodama H.. Effect of the presence of aluminum ions in iron solutions on the formation of iron oxyhydroxides (FeOOH) at room temperature under acidic environment [J]. Clays Clay Miner,1994,42(5): 606-613.
    [114]朱立军.贵州碳酸岩红土中氧化铁矿物的环境矿物学研究[D].中国科学院地球化学研究所硕士论文,1995.
    [115]章兴华,周丽芸.聚合氯化铝铁的制备及应用[J],贵州化工2001,26(2):17-20.
    [116]王化鹏,葛中巧.聚合氯化铝铁的制备及应用性能[J].南都学坛(自然科学版),2000,20(3):58-60.
    [117]王光辉,孟红旗,雷国元.聚合氯化铝铁的形态分布研究[J].武汉科技大学学报(自然科学版),2005,28(2):162-165.
    [118]鲁桂林,于海燕,迟松江,毕诗文.赤泥制备的聚合氯化铝铁处理高岭土废水[J].东北大学学报(自然科学版),2010,31(12):1749-1752.
    [119]李赞忠,白风荣,刘进荣,刘启旺,胡俊虎.复合型絮凝剂PAFC的合成与应用研究[J].工业水处理,2010,30(12):80-82.
    [120]孟铁宏,朱云勤,胡兆平,江鸥.改性拜耳法赤泥制备聚合氯化铝铁的研究[J].中国给水排水,2009,25(15):89-92.
    [121]武永爱.聚合氯化铝铁PAFC絮凝性能试验研究[J].辽宁化工,2010,39(4):381-383.
    [122]康黛男.聚合氯化铝铁絮凝剂的研制及其在废水处理中的应用[D].长安大学硕士学位论文,2008.
    [123]崔霞,肖锦.铝盐絮凝剂及其环境效应[J]-工业水处理,1998,18(3):6-9.
    [124]阮复昌,黄国水.铝的生物毒性及其防治策略[J].环境污染与防治,1999,21(5):32-33.
    [125]严瑞煊.水溶性高分子[M].北京:化学工业出版社,2000:143-149
    [126]Wong Shing J.B., Tubergen K.R.. Hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide for the clarification of drinking Process Waters [P]. US 6019904,2000.
    [127]Rout D., Verma R., Agarwal S.K.. Polyelectrolyte treatment-an approach for water quality improvement [J].Water Sci Technol,1999,40(2): 137-141.
    [128]Wandrey C., Hernandez-Barajas J., Hunkeler D.. Diallyldimethylammonium chloride and its polymers [J]. Adv Polym Sci, 1999,145:123-132.
    [129]俞一平.二烯丙基胺类聚合物的研制和在石油开采中的应用[J].油田化学,1991,8(3):194-199
    [130]徐燕莉.N,N—二烯丙基二甲基氯化按的合成[J].石油化工,1998,27(7):517-520.
    [131]Li Y.J., Mattison K.W., Dubin P.L., Havel H.A., Edwards S.L.. Light scattering studies of the binding of bovine serum albumin to a cationic polyelectrolyte [J]. Biopolymers,1996,38(4):527-533.
    [132]Schuller W.H., Thomas W.M.. Composition comprising a linear copolymer of a quaternary Ammonium compound and an ethylenieally unsaturated copolymerizable compound [P]. US:2923701,1960.
    [133]Hall A.W., Blackwood K.M., Milne P.E.Y., Goodby J.W.. Novel UV cured coatings and adhesives based on the photoinitiated cyclopolymerization of derivatives of diallylamine [J].Chem Commun, 2003,20:2530-2531.
    [134]Jaeger W., Hahn M., Wandrey C., et al. Cyclopolymerization Kinetics of Dimethyl Dially Ammonium Chloride [J]. Macromol Sci Chem,1984,21(5): 593-561.
    [135]Subramanian R., Zhu S., Pelton R. H.. Synthesis and Flocculation Performance of Graft and Random Copolymer Microgels of Acrylamide and Diallyldimethylammonium Chloride [J]. Colloid Polym Sci,1999,277(10): 939-946.
    [136]George B.B., Pledger H.J.. Method of Enhancing Polymerization of Dialkyldiallylanunonium Compounds to Produce High Molecular Weight Polymers [P]. US 4742134.
    [137]高华星,程树军.高分子阳离子絮凝剂用于炼油废水处理[J].功能高分子学报,1996,9(4):544-550.
    [138]赵谨.国内有机高分子絮凝剂的开发及应用[J].工业水处理,2003,23(3):9-12.
    [139]王红梅,郑振晖,岳钦艳PDMDAAC-膨润土对活性染料废水的处理研究[J].水处理技术,2005,31(12):16-19.
    [140]常青.用Ca(OH)2-PDADMAC-PAM法絮凝处理制革废水[J].环境科学学报,1994,14(2):216—220.
    [141]顾学芳,张跃军,陈伟忠.阳离子絮凝剂PDA的合成与应用研究一对废纸再生造纸废水的处理[J].工业水处理,2001,21(1):22-25.
    [142]凌永泰.陈少平,游纪萍.不同分子质量的DADMAC - AM共聚物在造纸白水中的絮凝作用[J].造纸化学品,2005,21(1):5-8.
    [143]王景霞,范晓东,秦华宇.二甲基二烯丙基氯化铵-丙烯酰胺共聚物的合成与结构表征[J].油田化学,2003,20(1):83-86.
    [144]屈撑囤,王新强,陈杰P (AM-DM)的反相乳液聚合研究[J].西安石油大学学报(自然科学版),2005,20(6):41-47.
    [145]王桂荣,张杰.聚二甲基二烯丙基氯化铰在给水除藻中的作用[J].工业用水与废水,2005,36(5):27—29.
    [146]Razali M.A.A., Ahmad Z., Ahmad M.S.B., Ariffin A.. Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation [J]. Water Res,2011,166 (1):529-535.
    [147]巩清军,岳钦艳P (DMAAC-AM-VTMS)的合成及其在造纸工业中的应用[J].中华纸业,2003,24(7):44-45.
    [148]张国运,沈一丁.阳离子乳液型纸张增强剂的制备及应用[J].造纸化学品,2003,12(1):33-36.
    [149]Huang P.C., Reichert K.H.. Polymerization of diallyl dimethyl ammonium chloride in inverse emulsion. I. Kinetics and mechanism [J]. Angew Makromol Chem,1988,162(1):19-34.
    [150]Huang P.C., Reichert K.H.. Polymerization of diallyl dimethyl ammonium chloride in inverse emulsion. Ⅱ. Molecular weight and electrical conductivity of the polymer [J]. Angew Makromol Chem,1989,165(1):1-7.
    [151]崔跃飞,曾繁森,宁平等.改性固色剂Y树脂的研究[J].印染助剂,1994,11(2):10-12.
    [152]Kishioka H.. Fixation of reactive dyes on textiles [P]. JP 56128382, 1981.
    [153]张雄,毛培,向敏虎.无醛固色剂MRT-1的研制和应用[J].印染助剂,2005,22(2):5-6.
    [154]吴全才.聚二甲基二烯丙基氯化铵的合成及应用[J]大连轻工业学院学报,1997,16(1):9-13.
    [155]熊远钦,陶莉,何造强等.二甲基二烯丙基氯化铵系列聚合物应用性能研究[J].日用化工,1999,(5):25-27.
    [156]张强.聚二甲基二烯丙基氯化铵及其衍生物品种的开发和应用[J].贵州师范大学学报,2000,18(1):82-87.
    [157]Guan J., Waite T.D., Amal R.. Rapid structure characterization of bacterial aggregates [J]. Environ Sci Technol.,1998,32(6):3735-3742.
    [158]Manciu M., Ruckenstein E.. The polarization model for hydration/double layer interactions:the role of the electrolyte ions [J]. Adv Colloid Interface Sci,2004,112(1):109-128.
    [159]Lyklema J.. Fundamentals of interface and colloid science[J]. New York: Elsevier pulishing,2005.
    [160]W., Santos E.. Interfacial electrochemistry [M]. New York:Springer Heidelberg publishing,2010,148(25):475-481.
    [161]Stn O.. Monte Carlo study of the capacitance of the double layer in a model molten salt [J]. J. Chem. Phys.,1999,110 (11):508-516.
    [162]Kostyuk P.G., Mironov S.L., Doroshenko P.A., Ponomarev V.N.. Surface charges on the outer side of mollusc neuron membrane [J]. J. of Membr. Biol.,1982,70(3):171-179.
    [163]Merrill D.R., Bikson M., Jefferys J.G.R.. Electrical stimulation of excitable tissue:design of efficacious and safe protocols [J]. J. of Neurosci. Methods,2005,141 (2):171-198.
    [164]李道荣.水处理剂概论[M].北京:化学工业出版社,2005:42-57.
    [165]Bratby J.. Coagulation and flocculation in water and wastewater treatment[M]. IWA Publishing,2006.
    [166]顾夏声.水处理工程[M].北京:清华大学出版社,1985:62-67
    [167]Wang D.S., Tang H.X.,Gregory J.. Relative Importance of Charge Neutralization and Precipitation on Coagulation of Kaolin with PAC1:Effect of Sulfate Ion [J]. Environ. Sci. Technol.,2002,36 (8):1815-1820.
    [168]Darder M., Colilla M., Ruiz-Hitzky E.. Chitosan-clay nanocomposites: application as electrochemical sensors [J]. Appl Clay SCi,2005, 28(1):199-208.
    [169]Fan A.,Turro N.J., Somasundaran P.. A study of dual polymer flocculation [J]. Colloid surf, A,2000,162(1):141-148.
    [170]Crees O.L., Senogles E., Whayman E.. The flocculation of cane sugar muds with acrylamide-sodium acrylate copolymers [J]. J. Appl. Polym. Sci., 1991,42 (3):837-844.
    [171]Dentel S.K.. Coagulant control in water treatment [J]. Environ Sci Technol,1991,21(1):41-135.
    [172]许保玖.给水处理理论[M].北京:中国建工出版社,2000.
    [173]罗茜,余仁焕,徐继润.固液分离[M].北京:冶金工业出版社,1997.
    [174]胡万里.混凝、絮凝剂、混凝设备[M].北京:化学工业出版社,2001.
    [175]郭连起.论水的混凝[M].北京:中国建筑工业出版社,1986:125-137.
    [176]钟淳昌.净水厂设计[M].北京:中国建筑工业出版社,1986:29-50.
    [177]Argaman Y., Kaufman W.J.. Turbulence and flocculation [J]. J. Sani. Eng. Div.,1970,96(2):223-241.
    [178]Argaman Y., Kaufman W.J.. Closure of "Turbulence and Flocculation" [J]. J. Sani. Eng. Div.,1971,97(2):229-230.
    [179]Janssens J.G., Buekens A.. Theoretical Analysis and Practical Application of the Kinetic Model of Flocculation in the Interpretation of Jar Tests [J]. Aqua AQUAAA,1987,2:91-97.
    [180]Amirtharajah A., O'Melia C.R., Coagulation processes:destabilisation, mixing and flocculation. In:Pontius, F.W. (Ed.), Water Quality and Treatment. A Hand book of Community Water Supplies.1990.McGraw-Hill, New York.
    [181]Francois R.J.. Strength of aluminium hydroxide floes. Water Res,1987, 21:1023-1030.
    [182]McCurdy K., Carlson K., Gregory D.. Floe morphology and cyclic shearing recovery:comparison of alum and polyaluminium chloride coagulants. Water Res,2004,38:486-494.
    [183]Boller M, Blaser S.. Particles under stress. Water Sci. Technol.37(10), 9-29.
    [184]Leentvaar J., Rebhun M.Strength of ferric hydroxide floes. Water Res, 1983,17:895-902.
    [185]Cao B.C., Gao B.Y., Liu X., Wang M.M., Yang Z.L.. The impact of pH on floe structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment. Water Res,2011,45:6181-6188.
    [186]Yu W.Z., Gregory J., Campos L.C.. Breakage and re-growth of floes formed by charge neutralization using alum and polyDADMAC [J]. Water Res,2011,44 (4):3959-3965.
    [187]Yu W.Z., Gregory J., Campos L.C.. Breakage and re-growth of floes: Effect of additional doses of coagulant species [J]. Water Res,2011,45 (4): 6718-6724.
    [188]张济忠.分形[M].北京:清华大学出版社,1995.
    [189]Higashitani K., Limura K., Sanda H.. Simulation of deformation and breakup of large aggregates in flows of viscous fluids [J]. Chem. Eng. Sci., 2001,56(9):2927-2938.
    [190]Higashitani K., Limura K.. Two-dimensional simulation of the breakup process of aggregates in shear and elongational flows [J]. J Colloid Interf Sci,1998,204(2):320-327.
    [191]王玉,范跃华,王姣,彭祖平.混凝絮凝体的分形与沉降特性实验研究[J].安全与环境工程,2006,13(3):72-75.
    [192]李鹰,刘峙嵘,戴荧.羟基聚合磷硫酸铁絮凝剂的制备及其絮体分形特征研究[J].湿法冶金,2009,28(4):236-241.
    [193]郑丽娜,马放,南军,迟熠.微生物和化学絮凝剂复配形成絮体的分 形特征[J].中国给水排水,2008,24(1):44-47
    [194]王广华,金鹏康,王晓昌.无机悬浮颗粒的混凝特性和絮凝体形态学研究[J].水处理技术,2006,32(5):30-33.
    [195]Lin J.L, Huang C., Chin C.J.M., Pan J.R.. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms [J]. Water Res,2008,42(5):4457-4466.
    [196]Wang Y.L., Feng J., Dente S.K., Lua J., Shi B.Y., Wang D.S.. Effect of polyferric chloride (PFC) doses and pH on the fractal characteristics of PFC-HA flocs [J]. Colloids Surf., A,2011,379(1):51-61.
    [197]Kim S.H., Moon B.H., Lee H.I.. Effects of pH and dosage on pollutant removal and floe structure during coagulation [J]. Microchem. J.,2001, 68(2):197-203.
    [198]李静,吕曼,范文华.MS 2000激光粒度分析仪在黄河调水调沙试验中的应用[J].中国水利,2002,18(9):78-79.
    [199]刘幼萍,童娟,李小妮.应用马尔文MS2000激光粒度分析仪分析河流泥沙颗粒[J].水利科技与经济,2005,11(6):329-331.
    [200]Gregory J.. Turbidity fluctuation in flowing suspensions [J]. J. Colloid Interf. Sci.,1985,105(2):357-371.
    [201]Burgess M.S.. On-line optical determination of floc size. Part Ⅰ: Principles and techniques [J]. J. Pulp Pap. Sci.,2002,28(2):63-65.
    [202]Li T., Zhu Z., Wang D.S., Yao C.H., Tang H.X.. The strength and fractal dimension characteristics of alum-kaolin flocs [J]. Int. J. Miner. Process., 2007,82(1):23-29.
    [203]Sung S.S., Ju S.P., Hsu C., et al.. Floc strength evaluation at alternative shearing with presence of natural organic matters [J]. Drying Technol,2008, 26(8):996-1001.
    [204]Yukselen M.A., Gregory J.. The reversibility of floc breakage [J]. Int. J. Miner. Process.,2004,73(2-4):251-259.
    [205]Jarvis P., Jefferson B., Parsons S.A.. Breakage, regrowth, and fractal nature of natural organic matter floes [J]. Environ. Sci. Technol,2005,39(7): 2307-2314.
    [206]Bushell G.C, Yan Y.D., Woodfield D., Raper J., Amal R.. On techniques for the measurement of the mass fractal dimension of aggregates [J]. Adv Colloid Interface Sci,2002,95(1):1-50.
    [207]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.
    [208]Ratnaweera H., Hiller N., Bunse U.. Comparison of the coagulation behavior of different Norwegian aquatic NOM sources [J]. Environ Int, 1999,25(2-3):345-355.
    [209]王燕.新型聚合铁基无机—有机复合混凝剂性能的研究[D].山东大学博士学位论文,2007.
    [210]Wang S., Liu C., Li Q.L.. Fouling of microfiltration membranes by organic polymer coagulants and flocculants:Controlling factors and mechanisms [J]. Water Res,2011,45(2):357-365.
    [211]Kim T.H., Park C., Shin E.B., Kim S., Decolorization of disperse and reactive dye solutions using ferric chloride [J]. Desalination,2004,161(1): 49-58.
    [212]Yang Z.L., Gao B.Y., Cao B.C., Xu W.Y., Yue Q.Y., Effect of OH-/Al3+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment [J]. Sep Purif Technol,2011,80(1):59-66.
    [213]Iriarte-Velasco U., Alvarez-Uriarte J.I., Gonzalez-Velasco J.R. Enhanced coagulation under changing alkalinity-hardness conditions and its implications on trihalomethane precursors removal and relationship with UV absorbance [J]. Sep Purif Technol,2007,55(3):368-380.
    [214]Spiro T.G., Allerton S.E., Renner J.. The hydrolytic polymerization of iron [J]. J Am Chem Soc,1996,88(12):2721-2726.
    [215]Zouboulis A.I., Traskas G.. Comparable evaluation of various commercially available aluminium-based coagulants for the treatment of surface water and for the post-treatment of urban wastewate [J]. J Chem Technol Biotechnol,2005,80:1137-1147.
    [216]Hopkins D.C., Dueoste J.J., Characterizing flocculation under heterogeneous turbulence [J]. J Colloid Interface Sci,2003,264:184-194.
    [217]Chu X.B., Gao B.Y., Yue Q.Y., Wang Y.. The effect of cycle shear and sulfate on dynamic coagulation of alum coagulants [J]. Sci. China Ser. B., 2007,37(2):440-445.
    [218]Thomas D.N., Judd S.J., Fawcett N.. Flocculation modelling:a review [J]. Water Res,1999,33(7):1579-1592.
    [219]Yu W.Z., Li G.B., Xu Y.P., Yang X.. Breakage and re-growth of floes formed by alum and PAC1 [J]. Powder Technol,2009,189(3):439-443.
    [220]Chaignon V., Lartiges B.S., Samrani A.E., Mustin C.. Evolution of size distribution and transfer of mineral particles between floes in activated sludges:an insight into floe exchange dynamics [J]. Water Res,2002,36 (3): 676-684.
    [221]McCurdy K., Carlson K., Gregory D.. Floe morphology and cyclic shearing recovery:comparison of alum and polyaluminum chloride coagulants [J]. Water Res,2004,38 (2):486-494.
    [222]Selomulya C., Amal R., Bushell G., et al.. Evidence of shear rate dependence on restructuring and breakup of latex aggregates [J]. J Colloid Interf Sci,2001,236(1):66-77.
    [223]Yu J.F., Wang D.S., Ge X.P.. Flocculation of kaolin particles by two typical polyelectrolytes:A comparative study on the kinetics and floe structures [J]. Colloid Surf., A,2006,290(1-3):288-294
    [224]Sharp E.L., Jarvis P., Parsons S.A.. The impact of zeta potential on the physical properties of ferric-NOM floes [J]. Environ Sci Technol,2006, 40(12):3934-3940.
    [225]Zhao Y.X., Gao B.Y., Shon H.K., Kim J,H., Yu Q. Y..Effect of shear force, solution pH and breakage period on characteristics of floes formed by Titanium tetrachloride (TiC14) and Polyaluminum chloride (PAC1) with surface water treatment[J]. J Hazard Mater,2011,187 (1-3):495-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700