用户名: 密码: 验证码:
基于非线性分析的海杂波处理与目标检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海杂波通常是指海洋表面的雷达后向散射回波,严重干扰了雷达对海面目标的检测性能,因此海杂波研究对于雷达系统设计、雷达信号处理和海面目标检测具有非常重要的意义。混沌和分形都是非线性科学的重要分支,它们在诸多领域获得了广泛应用。本文关注的是如何使用混沌、分形等非线性理论来处理海杂波和检测弱小目标这一前沿课题。在研究中注重将理论研究和实证研究相结合,一方面采用最新的非线性理论对海杂波进行分析和研究,另一方面结合IPIX雷达实测数据来检验海杂波处理和弱小目标检测方法的有效性。
     本文分析了海杂波在统计模型建模后运用最大似然比检测准则下,很难检测出弱小目标的缺陷,改进了非广延分布模型在海杂波建模和弱小目标检测领域的应用。使用替代数据法分析了海杂波非线性性质,根据海杂波和弱小目标非线性性质差异,提出了基于替代数据的弱小目标检测方法。在确定海杂波具有非线性性质后,使用混沌和分形两种非线性方法对海杂波进行了研究。首先,使用Cao方法弥补了伪临近点法进行海杂波相空间重构不准确的缺陷,并使用该方法定性分析出海杂波是由随机成分和确定成分共同组成的。其次,通过仿真实验和实际数据分析,发现噪声严重影响了关联维数和最大Lyapunov指数的计算,指出使用这两种不变量判断时间序列是否具有混沌特性的局限性。最后,使用分形理论分析了海杂波的分形特性,提出基于空间分形特征差异的目标检测算法,提高了海杂波中弱小目标的检测性能。
     本文使用非线性理论分析了海杂波性质,拓展了非线性理论的实际应用领域,深化了海杂波研究领域对海杂波性质和物理机制的理解。研究了关联维数和最大Lyapunov指数等混沌不变量在处理海杂波时间序列的局限性,为其他领域实际时间序列的非线性分析提供了借鉴。根据海杂波和弱小目标数据的非线性特征差异,改进了非广延模型的目标检测算法,提出了基于替代数据和空间分形特征差异的目标检测方法。这些非线性目标检测方法,能在不增加硬件成本的前提下,提高海杂波中弱小目标的检测能力,因此具有一定的理论价值和实际应用的指导意义。
Sea clutter refers to radar backscatter wave from sea surface, and it seriously interferes in detection performance of targets within sea clutter. So it is great significance to study sea clutter for radar system design, radar signal processing and targets detection within sea clutter. Chaos and Fractal are two branches of nonlinear science, which have comprehensive applications on a great many of research areas. It has been researched how to use the Chaos, Fractal and other nonlinear theories on sea clutter processing and small targets detection in this paper. Theoretical research and experiment research are combined in this dissertation. On the one hand, the lastest nonlinear theories are used to analyze and process sea clutter. On the other hand, IPIX real-life data are used to verify the effectiveness of the theories and methods.
     The limitation that small and weak targets within sea clutter are difficult to be detected by statistical model and likelihood ratio test is analyzed in this paper. The application of nonextensive distribution model for sea clutter modeling and small targets detecting is improved. Surrogate data method is used to analyze nonlinear character of sea clutter. According to nonlinear characters difference between sea clutter and small targets, small targets detecting method based on surrogate data method is proposed. After nonlinear characters of sea clutter are confirmed, sea clutter is researched by two nonlinear methods of Chaos and Fractal. Firstly, False Nearest Neighbors method is improved by Cao method, and accurate phase reconstruction parameters of sea clutter and targets data are obtained. It is analyzed that sea clutter is a composite of stochastic component and determinate component quantitatively by Cao method. Secondly, through the simulation experiment and real-life data analysis, it is found that the calculation of correlation dimension and largest lyapunov exponent is seriously influenced by noise. And the limitations of judging whether time series has chaotic character or not by the two chaotic invariants are pointed out. At last, fractal theory is used to analyze fractal characters of sea clutter. Targets detection method based on spatial fractal character difference is proposed, which improved the detection performance of small targets within sea clutter.
     Nonlinear theories are used to analyze the characters of sea clutter, which widens the practical applications of nonlinear theories and deepens the understandings of characters and physical mechanism of sea clutter. The limitations of correlation dimension and largest lyapunov exponent on processing sea clutter time series are researched, which can provide help for other real-life time series nonlinear analysis. According to nonlinear characters difference between sea clutter and small targets, targets detection method of nonextensive model is improved, targets detection methods based on surrogate data and spatial fractal character difference are proposed. All these nonlinear detection methods can improve detection performance of small targets within sea clutter, which no need to add any hardware facility. So this research has important theoretical value and referenced significance in real engineering application.
引文
[1]Wetzel L B.海杂波.In:Skolnik M I.雷达手册.北京:电子工业出版社,2003:504-536.
    [2]Trunk G V,Georg S F.Detection of targets in non-Ganssian sea clutter.IEEE Trans on Aerospace and Electronic Systems.1970,AES-6(5):620-628.
    [3]Fay F A,Clarke J,Peters R S.Weibull distribution applied to sea-clutter.Proc.IEE Conf.Radar,London,1977:101-104.
    [4]Jakeman E,Pusey P N.A model for non Rayleigh sea echo.IEEE Transactions on Antennas Propag.1976,24(6):806-814.
    [5]何友,关键,彭应宁等.雷达自动检测与恒虚警处理.北京:清华大学出版社,1999.
    [6]何友,关键,孟祥伟等.雷达自动检测和CFAR处理方法综述.系统工程与电子技术.2001,23(1):9-14.
    [7]杜鹏飞,王永良,孙文峰.混沌海杂波背景下的弱信号检测.系统工程与电子技术.2002,24(7):65-67.
    [8]Leung H,Haykin S.Is there a radar clutter attractor?Applied Physics Letters.1990,56(6):593-595.
    [9]He N,Haykin S.Chaotic modelling of sea clutter.Electronics Letters.1992,28(22):2076-2077.
    [10]Lo T,Leung H,Litva J et al.Fractal characterisation of sea-scattered signals and detection of ea-surface targets.Radar and Signal Processing,IEE Proceedings F.1993,140(4):243-250.
    [11]王国宏,何伍福,何友.基于混沌的海杂波建模综述.第九届全国雷达学术年会论文集,烟台,2004:849-852.
    [12]Haykin S,Li X Bo.Detection of signals in chaos.Proceedings of the IEEE.1995,83(1):95-122.
    [13]Haykin S,Puthusserypady S.Chaotic dynamics of sea clutter.Chaos.1997,7(4):777-802.
    [14]赫金著,祝明波译.海杂波的混沌动态特性.北京:国防工业出版社,2007.
    [15]Mcdonald M.K.Chaotic Sea Clutter Returns.Current Status and Application to Airborne Radar Systems.Technical Report,2001,1-70.
    [16]Mcdonald M K,Varadan V,Leung H.Chaotic behaviour and non-linear prediction of airborne radar sea clutter data.Radar Conference,Proceedings of the IEEE,Long Beach,2002:331-337.
    [17]董华春,刘梅,权太范.高频雷达海杂波混沌特性的实验研究.高技术通讯.2000,03:41-44.
    [18]董华春,宗成阁,权太范.高频雷达海洋回波信号的混沌特性研究.电子学报.2000,28(03):25-28.
    [19]田建生,刘铁军.高频雷达海洋回波混沌特性研究.系统工程与电子技术.2007,29(5):667-671.
    [20]姜斌,王宏强,黎湘等.S波段雷达实测海杂波混沌分形特性分析.电子与信息学报.2007,29(8):1809-1812.
    [21]姜斌,王宏强,黎湘等.海杂波背景下的目标检测新方法.物理学报.2006,55(8):39R5-3991.
    [22]Haykin S.Radar clutter attractor:implications for physics,signal processing and control,IEE Proceedings-Radar,Sonar and Navigation.1999,146(4):177-188.
    [23]Haykin S.Chaotic characterization of sea clutter:new experimental results and novel applications.Signals,Systems and Computers,Pacific Grove,CA,1996:1076-1080.
    [24]Haykin S,Leung H.Neural network modeling of radar backscatter from an ocean surface using chaos theory.Neural Networks for Ocean Engineering,IEEE Conference on,Washington DC,USA,1991:215-222.
    [25]Haykin S,Li X B.Detection of signals in chaos.Proceedings of the IEEE.1995,83(1):95-122.
    [26]Haykin S,Ukrainec A,Currie B et al.A neural network-based noncoherent radar processor for a chaotic ocean environment.St.Louis,MO,USA,1995:713-718.
    [27]Hennessey G,Leung H,Drosopoulos A et at.Sea-clutter modeling using a radial basis function neural network.IEEE Journal of Oceanic Engineering.2001,26(3):358-372.
    [28]陈瑛,罗鹏飞.海杂波背景下基于RBF神经网络的目标检测.雷达科学与技术.2005,3(05):271-275.
    [29]何伍福,王国宏,刘杰.海杂波环境中基于混沌的目标检测.系统工程与电子技术.2005,27(06):1016-1020.
    [30]林三虎,朱红,赵亦工.海杂波的混沌特性分析.系统工程与电子技术.2004,26(02): 178-180.
    [31]刘剑.海杂波背景下目标检测方法研究:硕士学位论文.长沙:中国人民解放军国防科学技术大学,2002.
    [32]刘剑,赵艳丽,罗鹏飞.基于海杂波混沌特性的目标检测.现代雷达.2004,26(02):56-60.
    [33]朱丽莉,张永顺,李兴成.基于RBF神经网络的混沌背景下瞬态弱信号检测.空军工程大学学报(自然科学版).2006,7(02):61-63.
    [34]陈瑛,罗鹏飞,曾勇虎.基于RBF神经网络的海杂波建模.系统仿真学报.2007,19(03):524-526.
    [35]Cowper M R,Mulgrew B.Nonlinear processing of high resolution radar sea clutter.International Joint Conference on Neural Networks,Antalaya,Turkey,1999:839-843.
    [36]Cowper M R,Mulgrew B.Application of a nonlinear inverse noise cancellation technique to maritime surveillance radar.IEEE Signal Processing Workshop on Statistical Signal and Array Processing.Pennsylvania,USA,2000:267-271.
    [37]Cowper M R,Mulgrew B,Unsworth C P.Investigation into the use of nonlinear predictor networks to mprove the performance of maritime surveillance radar target detectors.Radar,Sonar and Navigation,IEE Proceedings.2001,148(3):103-111.
    [38]Cowper M R,Unsworth C P,Mulgrew B.Determining the importance of learning the underlying dynamics of sea clutter for radar target detection.IEEE International Conference on Acoustics,Speech,and Signal Processing,Salt Lake,UT,2001:2885-2888.
    [39]Mcdonald M,Damini A.Limitations of nonlinear chaotic dynamics in predicting sea clutter returns,IEE Proceedings-Radar,Sonar and Navigation.2004,151(2):105-113.
    [40]Gao J B,Hwang S K,Chen H F et al.Can sea clutter and indoor radio propagation be modeled as strange attractors? Proceeding of the 7th Experimental Chaos Conference,San Diego,CA,USA,2003:154-161.
    [41]Hu J,Gao J B,Yao K.Power-law sensitivity to initial conditions in sea clutter.IEEE International Radar Conference,Virginia,USA,2005:956-961.
    [42]Hu J,Tung W,Gao J B.Modeling sea clutter as a nonstationary and nonextensive random process.IEEE Conference on Radar,New York,USA,2006:24-27.
    [43]Gao J B,Yao K.Multifractal features of sea clutter.IEEE Radar Conference,Long Beach,CA,2002:500-505.
    [44]Zheng Y,Gao J B,Yao K.Multiplicative multifractal modeling of sea clutter.IEEE International Radar Conference,Virginia,USA,2005:962-966.
    [45]Hu J,Gao J B,Posner F L et al.Target detection within sea clutter:a comparative study by fractal scaling analyses.Fractals.2006,14(3):187-204.
    [46]Jing Hu,Tung W W,Gao J B.Detection of low observable targets within sea clutter by structure function based multifractal analysis.2006,54(1):136-143.
    [47]赵汉青,文必洋.短时间序列的混沌检测方法及其在高频地波雷达海杂波混沌特性研究中的应用.信号处理.2003,19(01):92-94.
    [48]Haykin S,Bakker R,Currie B W.Uncovering nonlinear dynamics-the case study of sea clutter.Proceedings of the IEEE.2002,90(5):860-881.
    [49]Cellucci C J,Albano A M,Rapp P E et al.Detecting noise in a time series.Chaos.1997,7(3):414-422
    [50]Gao J.Recognizing randomness in a time series.Physica D:Nonlinear Phenomena 1997,106(1-2):49-56.
    [51]Gao J B,Hu J,Tung W W et al.Distinguishing chaos from noise by scale-dependent Lyapunov exponent.Physical Review E.2006,74(6):066204-1-9.
    [52]Schreiber T.Interdisciplinary application of nonlinear time series methods.Physics Report.1999,308(1):1-64.
    [53]Small M,Tse C K.Detecting determinism in time series:the method of surrogate data.IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications.2003,50(5):663-672.
    [54]Schreiber T,Schmitz A.Surrogate time series.Physica D:Nonlinear Phenomena.2000,54(1):136-143.
    [55]Jaggard D L,Sun X.Scattering from fractally corrugated surfaces.J.Opt.Soc.Am.A.1990,7(6):1131-1139.
    [56]Lin N,Lee H P,Lim S P et al.Wave Scattering from Fractal Surfaces.Journal of Modern Optics.1995,42(1):225-241.
    [57]Berizzi F,Martorella M,Bertini G et al.Sea SAR image analysis by fractal data fusion.Geoscience and Remote Sensing Symposium,Anchorage,Alaska,2004:93-96.
    [58]Martorella M,Berizzi F,Mese E D.On the fractal dimension of sea surface backscattered signal at low grazing angle.Antennas and Propagation,IEEE Transactions on.2004,52(5):1193-1204.
    [59]Du G,Zhang S H.Detection of sea-surface radar targets based on multifractal analysis.Electronics Letters.2000,36(13):1144-1145.
    [60]杜干,张守宏.基于多重分形的雷达目标的模糊检测.自动化学报.2001,27(02):174-179
    [61]Du G,Zhang S H.High-order fractal characterisation of sea-scattered signals and erection of sea-surface targets.Electronics Letters.1999,35(5):424-425.
    [62]杜干,张守宏.高阶分形特征在雷达信号检测中的应用.电子学报.2000,28(03):90-92.
    [63]王永诚,吴小飞.海杂波的分数维测量在对海面目标探测中的应用研究.现代雷达.2000,22(05):28-31.
    [64]文必洋,王颂.一种应用海杂波分数维检测海面目标的方法.华中科技大学学报(自然科学版).2006,34(01):68-70.
    [65]王红光,康士峰,张忠治.海杂波的分数布朗运动模型及其应用.现代雷达.2005,27(11):58-62.
    [66]苏菲,孙景鳌。蔡安妮.雷达数据的多重分形模型.电子与信息学报.2000,22(2):291-295.
    [67]李会方.多重分形理论及其在图象处理中应用的研究:博士学位论文.西安:西北工业大学,2004.
    [68]石志广,周剑雄,赵宏钟等.海杂波的多重分形特性分析.数据采集与处理.2006,21(02):169-173.
    [69]Kaplan L M.Extended fractal analysis for texture classification and segmentation.IEEE Transactions on Image Processing.1999,8(11):1572-1585.
    [70]Kaplan L.M.Improved SAR target detection via extended fractal features.IEEE Transactions on Aerospace and Electronic Systems.2001,37(2):436-451.
    [71]Esgiar A N,Chakravorty P K.Electrocardiogram signal classification based on fractal features.Computers in Cardiology,Chicago,USA,2004:661-664.
    [72]Esgiar A N,Chakravorty P K.Wave nature of fractal lacunarity:a higher resolution scale to capture subtle changes in ECG signals.Computers in Cardiology,Lyon,France,2005:1009-1012.
    [73]Hu K,Ivanov P C,Chen Z et al.Effect of trends on detrended fluctuation analysis.Physical Review E.2001,64(1):011114-1-24.
    [74]Chen Z,Ivanov P C,Hu K et al.Effect of nonstationarities on detrended fluctuation snalysis.Physical Review E.2002,65(4):041107-1-17.
    [75]Kantelhardt J W,Zschiegner S A,Koscielny B E et al.Multifractal detrended fluctuation analysis of nonstationary time series.Physica A:Statistical Mechanics and its Applications.2002,316(1-4):87-114.
    [76]Alvarez R J,Rodriguez E,Cervantes I et al.Scaling properties of image textures:A detrending fluctuation analysis approach.Physica A:Statistical Mechanics and its Applications.2006,361(2):677-698.
    [77]Gu G F,Zhou W X.Detrended fluctuation analysis for fractals and multifractals in higher dimensions,http://arxiv.org/abs/physics/0607194.
    [78]Tsallis C,Plastino A R,Zheng W M.Power-law sensitivity to initial conditions-New entropic representation.Chaos,Solitons &Fractals.1997,8(6):885-891.
    [79]Gao J B,Tung W W,Cao Y H et al.Power-law sensitivity to initial conditions in a time series with applications to epileptic seizure detection.Physica A:Statistical Mechanics and its Applications.2005,353(2-3):613-624.
    [80]Unsworth C P,Cowper M R,Mclaughlin S et al.False detection of chaotic behaviour in the stochastic compound k-distribution model of radar sea clutter.Pocono Manor,USA,2000:296-300.
    [81]Grassberger P,Procaccia I.Measuring the strangeness of strange attractors.Physica D:Nonlinear Phenomena.1983,9(1-2):189-208.
    [82]Wolf A,Swift J B,Swinney H L et al.Determining Lyapunov exponents from a time series.Physica D:Nonlinear Phenomena.1985,16(3):285-317.
    [83]Rosenstein M T,Collins J J,De L C.A practical method for calculating largest Lyapunov exponents from small data sets.Physica D:Nonlinear Phenomena.1993,65(1-2):117-134.
    [84]Kantz B.A robust method to estimate the maximal Lyapunov exponent of a time series.Physics Letters A.1994,185(1):77-87.
    [85]Gao J,Zheng Z M.Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series.Physical Review E.1994,49(5):3807-3814.
    [86]Unsworth C P,Cowper M R,Mulgrew B et al.Improved surrogate data tests for sea clutter,IEE Proceedings-Radar,Sonar and Navigation.2001,148(3):112-118.
    [87]McMaster IPIX Radar.http://soma.crl.mcmaster.ca/ipix/.
    [88]杨俊岭,李大治,万建伟等.海杂波尖峰特性研究及仿真分析.系统仿真学报.2007,19(8):1837-1840.
    [89]尹志盈,张忠治,杜鹏.对雷达杂波拖尾参数的提取.电波科学学报.2002,12(2):143-146
    [90]李鹤龄.信息熵、玻尔兹曼熵以及克劳修斯熵之间的关系-兼论玻尔兹曼熵和克劳修斯熵是否等价.大学物理.2004,23(12):37-40.
    [91]曹克非,王参军.Tsallis熵与非广延统计力学.云南大学学报(自然科学版).2005,27(06):514-520.
    [92]Small M.Applied Nonlinear Time Series Analysis:Applications in Physics,Physiology and Finance.Singapore:World Scientific,2005.
    [93]侯平魁,龚云帆,史习智等.水下目标辐射噪声的非线性检验.声学学报(中文版).2001,26(02):135-139.
    [94]卢山,王海燕.证券市场的非线性和确定性检验.系统工程理论方法应用.2005,14(03):235-238.
    [95]李英,刘豹,马寿峰.交通流时间序列中混沌特性判定的替代数据方法.系统工程.2000,18(06):54-58.
    [96]卢宇,贺国光.基于改进型替代数据法的实测交通流的混沌判别.系统工程.2005,23(06):21-24.
    [97]Schreiber T,Schmitz A.Improved surrogate data for nonlinearity tests.Physical Review Letters.1996,77(4):635-638.
    [98]Schreiber T,Schmitz a.Discrimination power of measures for nonlinearity in a time series.Physical Review E.1997,55(SA):5443-5447.
    [99]Luo X D,Nakamura T,Small M.Surrogate data method applied to nonlinear time series.http://arXiv.org:nlin/0603004/.
    [100]雷敏,王志中.非线性时间序列的替代数据检验方法研究.电子与信息学报.2001,23(02):248-254.
    [101]Small M,Judd K.Correlation dimension:A pivotal statistic for non-constrained realizations of composite hypotheses in surrogate data analysis.Physica D:Nonlinear Phenomena.1998,120(3-4):386-400.
    [102]Packard N H,Crutchfield J P,Farmer J D et al.Geometry from a time series.Physical Review Letters.1980,45(9):712-716.
    [103]陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述.计算机科学.2005,32(04):67-70.
    [104]Takens F.Detecting strange attractors in turbulence.In:Dynamical Systems and Turbulence.Berlin:Springer-Verlag,1981:366-381.
    [105]Rosenstein M T,Collins J J,De L C.Reconstruction expansion as a geometry-based framework for choosing proper delay times.Physica D:Nonlinear Phenomena.1994,73(1-2):82-98.
    [106]林嘉宇,王跃科,黄芝平等.语音信号相空间重构中时间延迟的选择-复自相关法.信号处理.1999,15(03):220-225.
    [107]Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutual information.Physical Review A.1986,33(2):1134-1140.
    [108]杨志安,王光瑞,陈式刚.用等间距分格子法计算互信息函数确定延迟时间.计算物理.1995,12(04):442-447.
    [109]张雨,任成龙.确定重构相空间维数的方法.国防科技大学学报.2005,27(06):101-105.
    [110]Kennel M B,Brown R,Abarbanel H D.Determining embedding dimension for phase space reconstruction using a geometrical construction.Physical Review A.1992,45(6):3403-4311.
    [111]Cao L Y.Practical method for determining the minimum embedding dimension of a scalar time series.Physica D:Nonlinear Phenomena.1997,110(1-2):43-50.
    [112]Kugiumtzis D.State space reconstruction parameters in the analysis of chaotic time series -- the role of the time window length.Physica D:Nonlinear Phenomena.1996,95(1):13-28.
    [113]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay times,and embedding windows.Physica D:Nonlinear Phenomena.1999,127(1-2):48-60.
    [114]徐自励,王一扬,周激流.估计非线性时间序列嵌入延迟时间和延迟时间窗的C-C平均方法.四川大学学报(工程科学版).2007,39(01):151-155.
    [115]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择.系统仿真学报.2007,19(11):2527-2529.
    [116]Cellucci C J,Albano A M,Rapp P E.Comparative study of embedding methods.Physical Review E.2003,67(6):066210-1-13.
    [117]Gottwald G A,Melbourne I.Testing for chaos in deterministic systems with noise.Physica D:Nonlinear Phenomena.2005,212(1-2):100-110.
    [118]Zhang J,Luo X,Small M.Detecting chaos in pseudoperiodic time series without embedding.Physical Review E.2006,73(1):016216-1-5.
    [119]Hu J,Tung W W,Gao J B et al.Reliability of the 0-1 test for chaos.Physical Review E.2005,72(5):056207-1-5.
    [120]Judd K,Mees A.Embedding as a modeling problem.Physica D:Nonlinear Phenomena.1998,120(3-4):273-286.
    [121]Abarbanel H D H.Analysis of observed chaotic data.New York:Springer-Verlag,1996.
    [122]Kim H S,Eykholt R B,Salas J D.Nonlinear dynamics,delay times,and embedding windows.Physica D.1999,127(1-2):48-60.
    [123]Grassberger P,Procaccia I.Estimation of the Kolmogorov entropy from a chaotic signal.Physical Review A.1983,28(4):2591-2593.
    [124]黄润生,黄浩.混沌及其应用(第二版).武汉:武汉大学出版社,2005.
    [125]孙博玲.分形维数(Fractal dimension)及其测量方法.东北林业大学学报.2004,32(03):116-119.
    [126]王红光.海杂波的分形特性研究与应用:硕士学位论文.青岛:电子科学研究院中国电波传播研究所,2005.
    [127]武薇,范影乐,庞全.基于广义维数距离的语音端点检测方法.电子与信息学报.2007,29(02):465-468.
    [128]于青.关联维数计算的分析研究.天津理工学院学报.2004,20(04):60-62.
    [129]李夕海,刘代志,张斌等.基于重采样的混沌时间序列相空间重构研究.信号处理.2006,22(02):248-251.
    [130]王安良,杨春信.评价奇怪吸引子分形特征的Grassberger-Procaccia算法.物理学报.2002,51(12):2719-2728.
    [131]党建武,黄建国.基于G.P算法的关联维计算中参数取值的研究.计算机应用研究.2004,(01):48-51.
    [132]杨杰,姜明启.混沌研究方法在雷达海杂波分析中的应用.电子与信息学报.2001,23(06):552-558
    [133]周越,杨杰.求解关联维数的快速算法研究.电子学报.2002,30(10):1526-1529.
    [134]温晓通,孟丽艳,朱劲松等.一种非线性时间序列的关联维快速算法.北京师范大学学报(自然科学版).2005,41(04):358-361.
    [135]Sun J,Zhao Y,Zhang J et al.Reducing colored noise for chaotic time series in the local phase space.Physical Review E.2007,76(2):026211.
    [136]Diks C.Estimating invariants of noisy attractors.Physical Review E.1996,53(5):4263-4266.
    [137]Yu D,Small M,Harrison R G et al.Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data.Physical Review E.2000,61(4):3750-3756.
    [138]Nolte G,Ziehe A,M K R.Noise robust estimates of correlation dimension and K2entropy.Physical Review E.2001,64(1):016112-1-10.
    [139]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [140]罗利军,李银山,李彤等.李雅普诺夫指数谱的研究与仿真.计算机仿真.2005,22(12):285-288.
    [141]Eckmann J P,Ruelle D.Ergodic theory of chaos and strange attractors.Reviews of Modern Physics.1985,57(3):617-656.
    [142]李国辉,徐得名,周世平.时间序列最大Lyapunov指数的计算.应用科学学报.2003,21(02):127-131.
    [143]杨绍清,章新华,赵长安.一种最大李雅普诺夫指数估计的稳健算法.物理学报.2000,49(04):636-640.
    [144]梁勇,孟桥,陆佶人.Lyapunov指数的算法改进与加权预测.声学技术.2006,25(05):463-467.
    [145]Sato S,Sano M,Sawada Y.Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems.Progress of Theoretical Physics.1987,77(1):1-5.
    [146]Liu H F,Dai Z H,Li W F et al.Noise robust estimates of the largest Lyapunov exponent.Physics Letters A.2005,341(1-4):119-127.
    [147]Flandrin P.On the Spectrum of Fractional Brownian Motions.Information Theory,IEEE Transactions on.1989,35(1):197-199.
    [148]Gao J B,Hu J,Tung W W et al.Assessment of long-range correlation in time series:How to avoid pitfalls.Physical Review E.2006,73(1):016117.
    [149]Flandrin P.Wavelet analysis and synthesis of fractional Brownian motion,IEEE Transactions on Information Theory.1992,38(2):910-917.
    [150]李永利,刘贵忠,王海军等.自相似数据流的Hurst指数小波求解法分析.电子与信息学报.2003,25(01):100-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700