用户名: 密码: 验证码:
基于粘度可控水基润滑液的高速陶瓷滑动轴承主轴设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速高精密主轴系统作为高速加工机床中的心脏部件,其性能的高低直接影响到高速加工机床的整体发展水平。现行的高速电主轴轴承技术中,滚动轴承较大的振动与噪声、磁力轴承过于复杂的控制系统以及气体轴承较低的承载能力限制了其进一步发展。本文设计完成了采用新型水基润滑液润滑的动静压陶瓷滑动轴承电主轴,并提出了一种基于润滑液粘度可控性,在现有制造水平下通过对粘度—轴承结构寻优从而实现主轴高性能的高速高精密主轴设计方法。根据上述构思,本文主要工作如下:
     研制完成了用于高速精密滑动轴承的新型绿色水基润滑液。在确定润滑液主要组分后,采用正交试验方法确定了防锈添加剂组分配比,并测定了含不同浓度添加剂润滑液的温度—粘度特性以及其他物理性能。
     为确定陶瓷滑动轴承摩擦副的制造材料,以及验证水基润滑液与工程陶瓷材料的匹配性能,开展了热压烧结Si3N4和反应烧结SiC陶瓷材料的摩擦磨损试验研究。结果表明,在不同的润滑情况下,SiC都表现出更高的极限承载能力、更好的跑合性能与更低的磨损率,而且生成了SiO2润滑膜并可有效改善摩擦磨损状况;同时水基润滑液与陶瓷材料匹配良好并表现出优良的润滑性能。
     针对本课题独特的基于低粘度润滑液、多孔质节流器的流体动静压轴承,采用编程求解修正Reynolds方程并调用有限元分析软件的方法完成了高速水基润滑液润滑陶瓷轴承的TEHD数值理论计算与粘度、结构优化分析,最终确定了多孔质节流器、滑动轴承液腔相关结构尺寸与润滑液所需粘度;通过动力计算与液膜稳定性分析,算得轴心在小扰动下偏离平衡位置后的运动趋势为收敛。
     在前述研究基础上,最终设计完成了基于粘度可控水基润滑液的高速高精度动静压陶瓷滑动轴承主轴系统。其轴承布局具有理论上高热稳定性并采用了全包容结构的陶瓷滑动轴承摩擦副;通过仿真计算及优化分析,确定了轴端外侧与真空夹紧机构相联接、内表面设计与HSK-C、HSK-D型刀柄相联接的结构并计算出了相应刀柄最佳预紧力。最后完成了循环润滑系统设计以及主轴—循环润滑系统的一体电气设计。
The high speed and highly accurate spindle system at the heart of a high speed machine tool directly influences the development and overall performance of that tool. The most common bearings of motorized spindle are the rolling bearing, magnetic bearing and the gas bearing. However, the vibrancy and noise of the rolling bearing, the excessively sophisticated control system of the magnetic bearing and the lower carrying power of the gas bearing restrict their further development. In this paper, a high speed and accuracy spindle system with hybrid ceramic bearing lubricated by new water based fluid is designed based on the method that on current manufacture technical level the match of theoretical rotary accuracy, rigidity and friction power can be optimized to play best performance of spindle with the controllable viscosity lubricant. The main work of this thesis can be summarized as follows:
     A green and viscosity controllable water based fluid as lubricant of the high speed and highly accurate spindle is compounded. After main constituents of this lubricant established, the ratio of anti-rust additive can be determined with orthogonal test. On the one hand, the viscosity-temperature relationships and other physical properties of water based fluid with different additive concentration are also obtained in the test.
     A series of friction and wear tests for hot pressed silicon Si3N4 and reaction sintering SiC are carried out in order to select the manufacture material of ceramics journal bearing and verify the matching performance of water-based fluid and engineering ceramics. The results present that under different lubricating condition SiC friction couples always have higher running-in properties and carrying capacity, smoother surface and lower wear rate, moreover SiO2 layer is more obviously formed and the friction coefficient of SiC will be reduced when SiO2 generates continuously. Besides the water based fluid can match ceramics materials well and exhibit good lubricity.
     According to the special ceramic materials and the porous restrictor, which is applied for its high rigidity and excellent stability with vibration damping under certain conditions, the TEHD numerical calculation program for high speed hybrid bearing is compiled to solve modified Reynolds equation and thermal stress analysis with FORTRAN programe and finite element processor. After the optimization analysis, the viscosity of lubricant, the structure parameters of porous restrictor and fluid cavity of journal bearing can be deduced. Based on the dynamic calculation and stability analysis for lubricant film, when the rotor deviates the static balance position, its movement tendency is convergent, and the bearing can be regard as absolute stability according to relative criterion.
     With the above results, the design for whole structure of spindle system with hybrid ceramic bearing lubricated by new water based fluid can be finished, and there possesses theoretical thermal stability of bearings distribution form and all-contain structure of ceramics journal bearing. Furthermore through the simulation and optimization analysis, the lateral of spindle end should be connected to the vacuum sucker and the inner surface should be combined with HSK-C and HSK-D tool-holder, meanwhile these pre-tightening forces are also optimized. Finally the design of circulating lubrication system and the electrical design of spindle and lubrication system are finished.
引文
[1] Kahles, J.F., Field, M., Harvey, S.M., High-speed machining possibilities and needs, Annals of CIRP, 1978. 27(2): 551~560
    [2] Schulz, H., Moriwaki, T., High speed machining, CIRP Annals - Manufacturing Technology, 1992. 41(2): 637~643
    [3]张伯霖,高速切削技术及其应用,北京:机械工业出版社,1999. 2~11
    [4]王贵成,王树林,董广强,高速加工工具系统,北京:国防工业出版社,2005. 1~5
    [5]廖厚德,新型金切机床简介(续),设备管理与维修,2003,4:23~25
    [6] http://www.dmgchina.com/ino/lieferprogramm_09/cn/fr_hsc_20_magazin.htm
    [7] http://www.mikron.com/mikron/internet.nsf/id/multistar_en
    [8] http://www.newmaker.com/news_63278.html
    [9] http://www.zys.com.cn/news/dianzhu/2008-7-2/08721442.html
    [10]罗吉成,高速高精密机床主轴系统热变形分析与研究:[硕士学位论文],北京;北京工业大学,2008
    [11]盛伯浩,我国数控机床现况与技术发展策略,制造技术与机床,2006,2:17~28
    [12]张建明,现代超精密加工技术和装备的研究与发展,航空精密制造技术,2008,44(1):1~7
    [13]李圣怡,超精密加工技术与机床的新进展,航空精密制造技术,2009,45(2):26~28
    [14]徐晓军,花岗岩空气静压主轴的设计及加工工艺研究:[硕士学位论文],安徽;合肥工业大学,2005
    [15]王军,吴玉厚,蔡光起,郑焕文,高速主轴用陶瓷滚动轴承,东北大学学报,1997,18(1):110~114
    [16]http://www.skf.com/portal/skf/home/products?maincatalogue=1&lang=zh&newlink=9_10_0
    [17] http://bzj.newmaker.com/art_1630.html
    [18]陈立志,磁悬浮轴承在高速旋转机械上的应用及一种混合径向磁悬浮轴承的设计,光学精密工程,1994,2(4):101~108
    [19] Chang, H., Chung, S.C., Integrated design of radial active magnetic bearing systems using genetic algorithms, Mechatronics, 2002, 12(1): 19~36
    [20] Nicolsky, R., Pereira, A.S., Andrade, R. de, etal., Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing, Physica C: Superconductivity, 2000, 341-348(4): 341~348
    [21]马兰兰,精密气磁轴承的误差补偿和控制方法的研究:[硕士学位论文],黑龙江;东北林业大学,2006
    [22]白城均,宋方臻,邵海燕,磁力轴承的发展及应用,济南大学学报,2007,21(4):325~331
    [23]赵鹏,磁悬浮转子系统动态特性研究:[硕士学位论文],湖北;武汉理工大学,2005
    [24] Air Bearing technology, Westwind Air Bearings, a division of GSI Group Ltd, 2007
    [25] Holster, P.L., Jacobs, J.A.H., Theoretical analysis and experimental verification on the static properties of externally pressurized air-bearing pads with load compensation, Tribology International, 1987, 20(5): 276~289
    [26]李圣怡,朱建忠,超精密加工及其关键技术的发展,中国机械工程,2000,3:15~18
    [27] Hara, S., Echigo, K., A Trial Product of Ultra Precision Spindle. Japan Society Mechanical Engineering, 1997. 25(6): 25~29
    [28]齐乃明,刘暾,谭久彬,自主式气体静压轴承实现无穷刚度的条件分析,南京理工大学学报,2001,4:19,23
    [29]牛怀新,李菊,精密运动系统的液压轴承和空气轴承,伺服控制,2009,4:143~145
    [30]谭天,高速高功率的新型静压轴承主轴,世界制造技术与装备市场,2002,2:18
    [31]熊万里,阳雪兵,吕浪,袁巨龙,液体动静压电主轴关键技术综述,机械工程学报,2009,45(9):1~18
    [32]王文瑞,晶圆超精密轮磨技术探讨,机械工业杂志(中国台湾),255:115~124
    [33] http://www.shi.co.jp/press/rits-30.html
    [34] Yoshimoto, S., Oshima, S., Danbara, S., etal, Stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles, Journal of Tribology, 2002. 124(2): 398~405
    [35]张国渊,袁小阳,苗旭升,水润滑高速动静压轴承试验研究,摩擦学学报,2006,26(3):238~241
    [36] Liu, F., Lin, B., Zhang, X.F., Numerical design method for water-lubricated hybrid sliding bearings, International Journal of Precision Engineering and Manufacture, 2008. 9(1): 47~50
    [37]余江波,王家序,肖科,弹性模量对水润滑轴承的性能影响,润滑与密封,2006,11:69~70
    [38]王贵林,李圣怡,粟时平,基于超精密应用的多孔质水基静压轴承研究,“面向21世纪的生产工程”学术会议暨企业生产工程与产品创新专题研讨会论文集,2001:348~352
    [39]王优强,杨成仁,水润滑橡胶轴承研究进展,润滑与密封,2001,2:65~67
    [40]金志浩,乔冠军,木材陶瓷研究进展,钱军民,无机材料学报,2003,18(4):717~724
    [41] Tomoharu, A., Hokkirigawa, K., Friction and wear of woodceramics under oil and water lubricated sliding contacts, Journal of Porous Materials, 1999. 6(3): 197~204
    [42] Orndoff, R. L. J., Water-lubricated rubber bearings, history and new developments, Naval Engineers Journal, 1985. 97: 39~52
    [43] Konchakovskii, V.A., Miroshnikov, V.N., Operating properties of water- lubricated composite bearings, partⅠ, Frictional Properties. Powder Metallurgy and Metal Ceramics, 1977. 16: 377~381
    [44]Wang, X., Yamaguchi, A., Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors, part 1: Experiment and theory, Tribology International, 2002. 35(7): 425~433
    [45]Wang, X., Yamaguchi, A., Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors, part 2: On eccentric loading and power losses, Tribology International, 2002. 35(7): 435~442
    [46]余江波,高性能水润滑轴承摩擦性能研究,[博士学位论文],重庆;重庆大学,2006
    [47] http://www.profiseal.de/index.php?page=prod&page1=rubb&lang=en
    [48] Bhushan, B., Stick slip induced noise generation in water-lubricated compliant rubber bearings, ASME Journal of Lubrication Technology, 1980. 102(2): 201~210
    [49] Hooke, C.J., The elasto-hydrodynamic lubrication of a cylinder on an elastomeric layer, Wear, 1986. 111(1): 83~89
    [50] Roy, L., New UHMWPE/rubber bearing alloy, Journal of Tribology, 2000. 122(1): 367~373
    [51]陆卫娟,林彬,程学艳,水润滑陶瓷滑动轴承的研究与发展,轴承,2005,3:37~38
    [52]刘峰,水润滑高速高精密主轴研究,[硕士学位论文],天津;天津大学,2007
    [53] Andersson, P., Nikkila, A.P., Lintula, P., Wear characteristics of water-lubricated SiC journal bearings intermittent motion, Wear, 1994. 179(1-2): 57~62
    [54] Andersson, P., Lintula, P., Load-carrying capability of water-lubricated ceramic journal bearings, Tribology International, 1994. 27(5): 315~321
    [55] Maurin. P., Farjaudon, J.P., Cartier, M., Friction and wear behavior of lubricated ceramic journal bearings, Wear of Materials: International Conference on Wear of Materials, Orlando, USA, 1991. 2: 585~588
    [56] Wang, X., Kato, K., Adachi, K., Running-in effect on the load-carrying capacity of a water-lubricated SiC thrust bearing, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005. 219(2): 117~124
    [57] Lin, B., Li, D., Research on water lubricated ceramic sliding bearings, Proceedings of the China Association for Science and Technology, Wulumuqi, China, 2006. 2(1): 221~225
    [58]陆卫娟,水润滑陶瓷滑动轴承的研究,[硕士学位论文],天津;天津大学,2005
    [59]金小波,缓进磨削工艺,北京:国防工业出版社,1984:1~18
    [60] Malkin, S., Hwang, T.W., Grinding Mechanisms for Ceramics, CIRP Annals - Manufacturing Technology, 1996. 45(2): 569-580
    [61] Lin, B., Li, G., Bai, Z.Z., High efficiency method of machining ceramic parts. Proceedings of the 11th International Conference on Production Research (ICPR), Guangzhou, China, 1991: 356-360
    [62] Lin, B., Zhang, H.L., Theoretical analysis of temperature field in surface grinding with cup wheel, Key Engineering Materials, 2001. 202-203: 93~98
    [63]金志良,有机硼酸酯在绿色润滑剂基础油中的摩擦学性能研究,[硕士学位论文],陕西;长安大学,2007
    [64]易伦,成本诚,周春山,水溶性抗磨添加剂的研究,润滑与密封,1994,4:6~10
    [65]高永建,王九,Mo2S水基润滑液的摩擦学性能研究,润滑与密封,2004,6:33~34
    [66]黄伟九,王化培,谭援强,水溶性润滑添加剂研究概况,润滑与密封,2002,1:72~75
    [67]林峰,陶德华等,水基抗磨剂分子结构对其抗磨性的影响,第六届全国摩擦学学术会议论文集,西安,1997:308~310
    [68]石泽华,李越秀,高速重载轴承用二硫化铝润滑油剂的研制,润滑与密封,2004,2:54~55
    [69] Watanabe, S., Fujita, T., Sakamoto, M., etal., Para-alkoxybenzoic acids as additives in water based cutting fluids, Journal of Materials Science Letters, 1992. 11(8): 498~500
    [70]张秀玲,周艳明,贾晓鸣,吴超,环境友好型含硼润滑添加剂的研究,润滑与密封,2006,8:149~151
    [71] Goyan, R.L., Melley, R.E., Wissner, P.A., etal., Biodegradable lubricants, Lubrication engineering, 1998. 54(7): 10~17
    [72]顾卡丽,刘建芳,绿色水基润滑添加剂的研究,润滑与密封,2005,4:126~128
    [73]刘金林,工业润滑剂,湖北:武汉出版社,1989年第一版,79
    [74]蒋海珍,新型水溶性防锈抗磨多功能添加剂的研究,[硕士学位论文],上海;上海大学,2006
    [75]杨宏,油酸在水基金属加工液中的应用研究,润滑与密封,2004,9(5):71~72
    [76]郭艳,有机硼酸酯应用现状及发展趋势,贵州化工,2009,2:26~34
    [77]黄伟九,水溶性含氮硼酸酯摩擦学性能研究,润滑与密封,2001,5:29~32
    [78]罗永秀,李少正,汤卫真,防锈润滑添加剂硼酸酯及其水解安定性的研究,润滑与密封,1996,1:27~28
    [79]刘广龙,胡役芹,孙霞,含氮硼酸酯添加剂的研究现状,润滑与密封,2004,2:114~116
    [80]蒋海珍,陶德华,王彬,水溶性有机羧酸醇铵盐防锈剂的分子结构与性能关系的研究,润滑与密封,2005,2:72~74
    [81]蔡洪浩,赵永武,采用正交试验法的环保型水基合成切削液配方优化设计,工具技术,2007,2:67~70
    [82]程文波,姚亚平,丁瑞昌,史俊英,润滑油粘度指数改进剂,中国专利,CN1876780,2006-12-13
    [83]梁治齐,润滑剂生产及应用,[硕士学位论文],北京;北京化工大学,2006
    [84] http://www.chemyq.com/xz/xz1/1562apjql.htm
    [85]张滨友,汽车燃料和润滑剂,北京:化学工业出版社,2001:277~278
    [86]李想,有机硅消泡剂的消泡机理及其应用,化学工程师,2009,1:47~48
    [87]王芸,吴飞,曹治平,消泡剂的研究现状与展望,化学工程师,2008,9:27~28
    [88]林斌昌,陈秋强,有机硅消泡剂与造纸废水综述,广东化工,2007,8:39~41
    [89]方开泰,马长兴,正交与均匀试验设计,北京:科学出版社,2001:83~88
    [90]侯化国,王玉民,正交试验法,吉林:吉林人民出版社,1985:1~2
    [91]廖德仲,切削液防锈剂的研究,润滑与密封,2004,4:83~84
    [92]王家序,陈战,秦大同,水基切削液的研制及应用,润滑与密封,2002,1:5~6
    [93]曾德芳,新型高效除锈防锈剂的研制与应用,全面腐蚀控制,2001,15(1):14~18
    [94]王沫然,MATLAB与科学计算,北京:电子工业出版社,2003,99~102
    [95]王可,毛志伋,基于Matlab实现最小二乘曲线拟合,北京广播学院学报,2005,12(2):52~56
    [96]于思远,工程陶瓷材料的加工技术及其应用,北京:机械工业出版社,2008,5~86
    [97]Lawn, B.R., A model for the wear of brittle solids under fixed abrasive conditions, Wear, 1975. 33: 369~372
    [98] Xue, Q.J., Wei, J.J., Tribochemistry in ceramic lubrication, Lubrication Science, 2006, 8(4): 369~377
    [99] Sun, Y., Bo, L., Yang, D.Q., Unlubricated friction and wear behaviour of zirconia ceramics, Wear, 1998. 215(1-2): 232~236
    [100]Stachowiak, G.W., Stachowiak, G.B., Environmental effects on wear and friction of toughened zirconia ceramics, Wear, 1993. 160(1-2): 153~162
    [101]Terheci, M., Nanos, J., Giannakoudaris, H., etal., Tribological behaviour of yttria-stabilised zirconia under dry sliding conditions when tested against itself and grey automotive cast iron, 1996. Wear 201(1-2): 26-37
    [102]刘惠文,薛群基,林立,氧化锆陶瓷的摩擦磨损行为与机理,摩擦学报,1996,1(16):13~16.
    [103]Tucci, A., Esposito, L., Microstructure and tribological properties of ZrO2 ceramics, Wear, 1994. 172(2): 111~119
    [104]Evans, A.G., Fructure in ceramic materials-toughening mechanisms machining damage shock ridge, Noyes Publications, New Jersey, 1984: 364~400
    [105]T, Senda., Drennan, J., McPherson, R., Sliding wear of oxide ceramics at elevated temperatures, Journal of the American Ceramic Society, 78(11): 3018~3024
    [106]Andersson, P., Holmberg, K., Limitations on the use of ceramics in unlubricated sliding applications due to transfer layer formation, Wear, 1994. 175(1–2):1~8
    [107]Habig, K.H., Woydt, M., Sliding friction and wear of Al2O3, ZrO2, SiC and Si3N4, Process 5th International Congress on Tribology, Espoo, Finland, 1989. 3: 106~113.
    [108]Singhal, S.C., Thermodynamical analysis of the high-temperature stability of silicon nitride and silicon carbide, Ceramurgia International, 1976, 2(3): 123~130.
    [109]Andersson, P., Blomberg, A., Instability in the tribochemical wear of silicon carbide in unlubricated sliding contacts, Wear, 1994. 174(1–2): 1~7
    [110]Anderson, P., Water-lubricated and dry-running properties of ceramic journal bearings, Tribotest, 2003.10(2): 147~161
    [111]Aiyoshizawa, S., Wakigawa, A., Konno, D., Takagi, K., A study of ceramic bearing for vertical pumps, JSME international journal, 1990. 33(1): 41~47
    [112]Medevielle, A., Thevenot, F., Treheux, D., Wear resistance of stabilized zirconias, Journal of the European Ceramic Society, 1995, 15: 1193~1199
    [113]Gee, M.G., The formation of aluminium hydroxide in the sliding wear of alumina, Wear, 1992. 153(1): 201~227,
    [114]赵兴中,刘家浚,朱宝亮,干摩擦及水或油润滑下TiCN-Al2O3陶瓷/不锈钢摩擦副的磨损性能的研究,摩擦学学报,1998,18(1):7~12
    [115]Fischer, T.E., Mullins, W.M., Chemical aspects of ceramic tribology, Journal of Physical Chemistry, 1992. 96(14): 5690~5701
    [116]Chen, M., Kato, K., Adachi, K., Friction and wear of self-mated SiC and Si3N4 sliding in water, Wear, 2001. 250(1-12):246~255
    [117]Sasaki, S., The effects of water on friction and wear of ceramics, Japan Society of Lubrication Engineers, 1988. 33(8): 620~628
    [118]Xu, J., Kato, K., Hirayama, T., The transition of wear mode during the running-in process of silicon nitride sliding in water, Wear, 1997. 205(1-2): 55~63
    [119]Chen, M., Kato, K., Adachi, K., The difference in running-in period and friction coefficient between self-mated Si3N4 and SiC under water lubrication, Tribology Letters, 2001. 11(1): 23~28
    [120]Tomizawa, H., Fischer, T., Friction and wear of silicon nitride at 150℃to 800℃, Tribology Transactions, 1986. 29(4): 481~488
    [121]Wong, H.C., Umehara, N., Kato, K., Frictional characteristics of ceramics under water-lubricated conditions, Tribology Letters, 1998. 5(4): 303~308
    [122]李富强,高速重载可倾瓦推力轴承受力分析及优化设计,[硕士学位论文],上海;上海大学,2004
    [123]Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Philosophical Transactions of the Royal Society of Searies, 1886: 157~23
    [124]张直明,滑动轴承的流体动力润滑理论,北京:高等教育出版社,1986: 1-122
    [125]Dowson, D.A., Generalized Reynolds equation for fluid-film lubrication, International Journal of Mechanical Science, 1962, 4(2): 159~16
    [126]Dowson, D., Hudson, J.D., March, C.N., An experimental investigation of the thermal equilibrium of steadily load journal bearings, Proceedings of the Institution of Mechanical Engineers,1966-1967. 191(2): 70~80
    [127]Schlijper, A.G., Scales L.E., Rycroft J.E., Current Tools and Techniques for EHL Modeling, Tribology International, 1996. 29(8): 669~673.
    [128]Pahud, P., Thermo-elasto-hydrodynamic (TEHD) Lubrication, Tribology International, 1996. 29(1): 1~9
    [129]富彦丽,径向滑动轴承瞬态热弹性流体动力润滑性能的研究,[博士学位论文],陕西;西安交通大学,2003
    [130]机械工程手册,机械工程手册编辑委员会,北京:机械工业出版社,第5卷,7~74
    [131]许尚贤,液体静压和动静压滑动轴承设计,南京:东南大学出版社,1989,93~94
    [132]孙恭寿,冯明,液体动静压混合轴承设计,世界图书出版公司,1993,257~258
    [133]章本照,流体力学中的有限元方法,北京:机械工业出版社,1986,229~230
    [134]李开泰,黄艾香,黄庆怀,有限元方法及其应用,北京:科学出版社,2006,87~93
    [135]王云飞,气体润滑理论与气体轴承设计,北京:机械工业出版社,1999,150
    [136]Ghosh, M.K., Guha, S.K., Majumdar, Rotordynamic coefficients of multirecess hybrid journal bearing, Wear, 1989, 129(2): 245-259
    [137]Lin, J.R., Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings, International Journal of Machine Tools and Manufacture, 2000, 40(11): 1671-1689
    [138]蒋建纯,滑动轴承间隙的摩擦学设计,第五届全国摩擦学学术会议会议论文集,武汉,1992,2:283-286
    [139] Mohsin, M.E., A hydrostatic bearing for high speed applications: the total cross flow hydrostatic bearing,Tribology International, 1981,14(1): 47~54
    [140]贾汝民,卸荷带轮的结构特点与技术评价,机械研究与应用,2004,14(4):25,29
    [141]周延祐,李中行,电主轴技术讲座,制造技术与机床,2003,6:61-63
    [142]肖曙红,张伯霖,陈焰基,高速电主同关键技术的研究,组合机床与自动化加工技术,1999,12:5~10
    [143]刘文剑,夹具工程师手册,哈尔滨:黑龙江科学技术出版社,1992,399~402
    [144]郑源,浅谈高速切削刀具系统的接口技术温州职业技术学院学报,2004,2(4):53~55
    [145]洪志国,层次分析法中高阶平均随机一致性指标(RI)的计算,计算机工程与应用,2002,38(12):45~47
    [146]徐灏主编,机械设计手册(第五卷),北京:机械工业出版社,2003: 43.18-43.68
    [147]钟洪,张冠坤,液体静压动静压轴承设计使用手册,北京:电子工业出版社,2007:158~164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700