用户名: 密码: 验证码:
粘度可控绿色水基润滑剂及其在陶瓷摩擦副中摩擦学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,考虑到水的低粘度与清洁性等特点,水润滑技术得到了迅速发展,但是由于水本身也存在着易锈蚀金属,水膜承载能力较低等问题,因此为适应工业应用,水需要做相应改性。本课题旨在研制一种新型绿色、粘度可控性流体润滑剂,并进行粘度、密度、比热及防锈性等相关性能测试;在此基础上对陶瓷摩擦副不同情况下进行摩擦磨损性能测试,最终得出最佳工程陶瓷摩擦副材料。
     本课题中水作了适当的改性,通过对润滑剂添加剂分析得出适合添加的水基防锈添加剂组分和消泡剂组分,形成新的水基润滑剂。将三乙醇胺硼酸酯、癸二酸三乙醇胺、油酸三乙醇胺三种有机防锈剂进行复配,同时选择有机硅类消泡剂进行消泡处理,它可以稳定地与润滑剂混合使用且具有良好的润滑性。通过防锈性能正交实验得出润滑剂的优选配方,确定出了各种添加剂的用量。对新型润滑剂的外观、透明度、消泡性、防锈性进行评价均合格。
     在新型水基润滑剂中通过添加粘度调节剂来改变润滑剂的粘度,通过粘度与温度实验得出温度升高,粘度减小;温度降低,粘度增大。低粘度润滑剂的粘温曲线比较平滑,性能比较优越。最后用最小二乘法进行MATALB曲线拟合。并且对润滑介质的密度和比热物理性能指标进行测试研究,得出新型水基润滑剂在室温下的密度和比热。
     课题中,分别对SiC和Si3N4两种工程陶瓷摩擦自配副在干摩擦、水润滑下和新型水基润滑液下进行实验研究。通过对SiC和Si3N4两种结构陶瓷磨损率和摩擦系数的分析测量,得出了最佳工程陶瓷的摩擦副材料。同时与水溶液相比,所配制的润滑剂体现出了更加的润滑性能。
In recent years taking into account the low viscosity and spatter property of water,water lubrication technology has been developing rapidly. However, some problemsthat the water itself contains easily corroded metal and is in a lower carrying capacityof water film also exist. Thus in order to meet the industrial application thecorresponding modification of water needs to be done. This research project aims todevelop a new type of green liquid lubricant with the controllability of its viscosity,tests its viscosity, density, specific heat and anti-rust property and on this basis does aseries of test on friction and wear properties under different circumstances of ceramicfriction pairs and eventually arrives at the best engineering ceramic friction materials.
     In this project water was made an appropriate modification. Through the analysisof lubricant additives, suitable composition of water-based anti-rust additive andantifoamer is obtained, and a new water-based lubricant is formed. The research alsocontains mixing three kinds of organic anti-rust agents including triethanolamineborate, sebacic diacid triethanolamine and triethanolamine oleate and choosingsilicone defoamer for anti-foaming processing, which can mix with lubricants steadilyand is in good lubrication. By orthogonal experiments of Anti-rust properties,Optimization of lubricant formulations is gained, and the amount of various additivesis identified. And this project also evaluates the appearance, transparency, defoamingand antirust of the new lubricants, and gets good results.
     In the new water-based lubricant, viscosity is changed by adding aviscosity-adjusting agent. And the viscosity and temperature experiment also showsthat if temperature increases, viscosity decreases while if temperature decreases,viscosity increases. The viscosity-temperature curve of low-viscosity lubricants seemsmore smooth and its performance is more superior. At last, least-squares method isused to complete the MATALB curve fitting. Some research is also done on testingthe density of lubricant and the physical performance of the specific heat and thedensity and the specific heat of the new lubricant at room temperature is obtained.
     In this project, the aotogamia of the ceramics friction with two kinds ofengineering, SiC and Si3N4 is carried out. The research is done under the condition ofdry friction, water and the new water-based lubricant. Through the analysis and measurement on the wear rate and lriction coefficient of ceramics with these twokinds of structures, SiC and Si3N4, the best engineering ceramics friction material isfinally obtained. Meanwhile, compared with water, the new lubricant has betterlubrication.
引文
[1]候隆兴,现代切削磨削润滑液,轴承,1987, 2:40~44
    [2]王文瑞,晶圆超精密轮磨技术探讨,机械工业杂志(中国台湾),vol. 255,115~124
    [3] Yoshimoto S.,Oshima S.,Danbara S.,Shitara T.,Stability ofWater-Lubricated,Hydrostatic,Conical Bearings With Spiral Grooves forHigh-Speed Spindles, Journal of Tribology,2002, 124(2):398~405
    [4]张国渊,袁小阳,苗旭升,水润滑高速动静压轴承试验研究,摩擦学学报,2006,26(3),238~241
    [5]余江波,王家序,肖科,弹性模量对水润滑轴承的性能影响,润滑与密封,2006(11),69~70
    [6]王贵林,李圣怡,粟时平,基于超精密应用的多孔质水基静压轴承研究,面向21世纪的生产工程学术会议暨企业生产工程与产品创新专题研讨会论文集,2001,348~352
    [7] Andersson P.,Nikkila A.P.,Lintula P.,Wear characteristics of water-lubricated SiCjournal bearings intermittent motion,Wear,1994, 179:57~62
    [8] Andersson P.,Lintula P.,Load-carrying capability of water-lubricated ceramicjournal bearings,Tribology International,1994, 27:315~321
    [9] Maurin-Perrier,Farjaudon J.P.,Cartier M.,Friction and wear behavior of lubricatedceramic journal bearings,Wear of Materials: International Conference on Wear ofMaterials,1991, 2:585~588
    [10] Wang X.,Kato K.,Adachi K.,Running-in effect on the load-carrying capacity of awater-lubricated SiC thrust bearing,Proceedings of the Institution of MechanicalEngineers,Part J: Journal of Engineering Tribology,2005, 219(2)117~124
    [11] Lin B.,Li D.,Research on water lubricated ceramic sliding bearings, Proceedingsof the China Association for Science and Technology,2006, 2(1):221~225
    [12]陆卫娟,水润滑陶瓷滑动轴承的研究,[硕士学位论文],天津;天津大学,2005
    [13]王毓民,王恒.润滑材料与润滑技术[M],北京,化学工业出版社.2005:28
    [14]贾晓鸣,王宝中.绿色切削加工技术分析,润滑与密封,2002(6):83~85
    [15]金志良,有机硼酸酯在绿色润滑剂基础油中的摩擦学性能研究,[硕士学位论文],长安;长安大学,2003
    [16]曹月平,余来贵,磷酸二甲酚醋和亚磷酸正丁醋添加剂对菜籽油摩擦学性能的影响,摩擦学学报,2000,20(2):119~122
    [17]易伦,成本诚,周春山.水溶性抗磨添加剂的研究,润滑与密封,1994,109(4):6~10
    [18]陆卫娟,林彬,程学艳,水润滑陶瓷滑动轴承的研究与发展,轴承,2005(3): 37-38
    [19]程道腴,陶瓷学,台北:徐氏基金会,1979.1~5
    [20]王斌修,杜瑞成,张存山,结构陶瓷的特性分析,山东工程学院学报,1998-12,12(4):58~59
    [21] D.H.Buckley,Wear,100(1984)333~353
    [22] S.Gates,S.M.Hsu,E.E.Klaus,Tribochemical mechanism of alumina with water,Proc.ASME/ASLE,Baltimore,1988,357.
    [23] Kitaoka,Y.Yamaguchi,Y.Takhashi,Tribological characteristics ofα-alumina inhigh-temperature water,J.Am.Ceram.Soc.,75(1992)3075~3080.
    [24] Wang,H.etal.,Proc.Japan Inter. Trib.Conf.,Nagoya,1990,1389.
    [25]林亨耀,工程陶瓷材料的摩擦磨损与润滑,润滑与密封,1990,(3):58~64
    [26]肖纪美,曹楚南,材料腐蚀学原理[M].化学工业出版社,2002:21
    [27]蒋海珍,新型水溶性防锈抗磨多功能添加剂的研究,[硕士学位论文],上海;上海大学,2006
    [28]王家序,水基切削液的研制及应用,润滑与密封,2002(1):60~61
    [29]张秀玲,贾晓鸣,三乙醇胺及在水基切削液中的作用,润滑油,1999 -10,14(5)
    [30]杨宏,油酸在水基金属加工液中的应用研究,润滑与密封,2004-9,(5):71~72
    [31]黄伟九,水溶性含氮硼酸酯摩擦学性能研究[J],润滑与密封,2001,(5):29~32
    [32]罗永秀,李少正,汤卫真,防锈润滑添加剂硼酸酯及其水解安定性的研究[J],润滑与密封,1996,(01):27~28
    [33]刘广龙,胡役芹,孙霞,含氮硼酸酯添加剂的研究现状[J],润滑与密封,2004,(02):114~116
    [34]杨俊玲,阳海蓉,潘胜华,有机硅型消泡剂组分的协同效应研究[J],精细化工,1997,(4):5~7
    [35] Nonflammable water-based cutting fluid composition and nonflammablewater-based cutting fluid,United States Patent[P]:6673754.
    [36] cutting fluid composition,United States Patent[P]:6605575.
    [37]丁有光等,多用途水基切削液[P],中国专利96118104.4,1998-09-16
    [38]李晓东,李劲松,水基金属切削液[P],中国专利98113753.9,1999-08-18
    [39]林兴国等,水溶性切削液[P],中国专利03131577.1,2004-11-14
    [40]赵刚,长效绿色切削液及其制备方法[P],中国专利02113044.2,2003-12-03
    [41]廖德仲,切削液防锈剂的研究[J],润滑与密封,2004,(04):83~84
    [42]王家序,陈战,秦大同,水基切削液的研制及应用[J],润滑与密封,2002,(01):5~6
    [43]刘喜梅,罗新民,水基润滑添加剂的理论及应用[J],合成润滑材料,2001,(01):9~13
    [44]刘建芳,绿色水基润滑添加剂的研究[D],机械科学研究院,2005
    [45]黄文轩,润滑剂添加剂应用指南[M],中国石化出版社发行,2003-02
    [46]李志林,环保型水基防锈剂的研制[J],河北化工,2006-07,13~15
    [47]戴陆阳,几种金属防锈剂的配制和使用[J],今日科技,1999-03,
    [48]曾德芳,新型高效除锈防锈剂的研制与应用[J],全面腐蚀控制,2001-01,15(1):14~18
    [49]方开泰,马长兴,正交与均匀试验设计,北京:科学出版社,2001.83~88
    [50]程文波,姚亚平,丁瑞昌,史俊英,润滑油粘度指数改进剂[P].中国专利:CN1876780,2006-12-13
    [51]陶红,润滑油粘度指数改进剂的综合分析及乙丙共聚物序列结构的波谱表征,[硕士学位论文],北京;北京化工大学,2006
    [52]熊崇翔,增粘剂的现状和发展趋势[J],石油炼制与化工,1986,(12):34~42
    [53]黄之杰,费逸伟,国产粘度指数改进剂的使用性能与发展,润滑油,2003-10,18(5):1~5
    [54]赵玉兰,新型增粘剂的研制[J],吉化科技,1993,(04) :39~42
    [55]金重良辅,冈田圭司,润滑油用粘度调节剂和润滑油组合物[P],中国专利:CN1329656,2002-01-02
    [56]黄文轩,韩长宁,润滑油与燃料油添加剂手册[M],北京:中国石化出版社,1995,68
    [57]黄文轩,润滑油添加剂应用指南[M],北京:中国石化出版社,2003,(2):119~122
    [58]周德藻,常用的液体增粘剂[J],日用化学工业,2000,30(01)
    [59]赵明,水乙二醇应用十四年,液压与气动,2002,(4):25~27
    [60]梅焕谋,欧家好,谭树荣等,水-乙二醇难燃液压油的研究[J],润滑与密封,1983,(04):2
    [61]王沫然,MATLAB与科学计算,电子工业出版社,2003-01
    [62]王可,毛志伋,基于Matlab实现最小二乘曲线拟合,北京广播学院学报,2005,12(2),52-56
    [63]钦征骑,新型陶瓷材料手册[M ],南京:江苏科学技术出版社,1996
    [64]王零森,特种陶瓷[M ] ,长沙:中南工业大学出版社,1994
    [65] ZumGahr K.-H.,Microstructure and Wear Of Mterials,Amsterdam:Elsevier,1987
    [66]孔勇发,龚江洪,杨正方,结构陶瓷的摩擦磨损,硅酸盐通报,1998,(5):32-38
    [67]薛群基,刘惠文,陶瓷摩擦学Ⅰ,陶瓷摩擦与磨损,摩擦学学报,1995,15 (4):376~384
    [68]刘家浚,材料磨损原理及其耐磨性,北京:清华大学出版社,1993
    [69] Jahamir S.,Advanced Ceramic in Tribological APPlication,In:S.Jahamir(ed.),Friction and Wear of Ceramic,NewYork:Marcel Dekker,1994,3~12
    [70] Blomberg A.,Olsson M.,Hogmark S.,Wear mechanism and tribo mapping ofAl2O3 and SiCIn dry sliding,wear 1994,(171):77~89
    [71] Wang Y.,Hsu S.,Munro R.,Ceramic wear maps:Alumina,Lub.Eng.,1989,(47):63-69
    [72] Hsu S.M.,Shen M.C.,Ceramic wear maps,Wear,1996,(200):154~175
    [73]陈达谦,工程陶瓷的磨损机理与氧化铝陶瓷耐磨性的提高,陶瓷,2000,4(146)9~11.
    [74]温诗铸,黄平,摩擦学原理,北京:清华大学出版社,2002
    [75]童幸生,陶瓷摩擦副磨损机理的研究,华南理工大学学报(自然科学版) ,2001-04,29(4):94~97
    [76] Vix-Guterl C.,McEnaney B.,Ehrburger P.,SiC Material Produced byCarbothermal Reduetion of a Freeze Gel Silica-carbon Artefact,Journal of theEuropean Ceramic Soeiety,1999,19:427~432
    [77]余继红,江东亮,碳化硅陶瓷的发展与应用,陶瓷工程,1998,32(3):3~11
    [78] Adewoye O. O.,Page, T.F.,Wear,70(1981)37.
    [79] Miyoshi K.,Buckley D., ASLE Trans.,22(1979)77.
    [80] Ajayi O. O.,Ludema K. ,C.,Wear of Materials,1991,307.
    [81] Miyoshi K., Buckley D.,Apllication of Surface Science, 10(1982)357.
    [82] Gee M.G.,Matharu C.S.,Almond E.A. and Eyre T.S.,The measurement of slidingfriction and wear of ceramics at hight temperature, Wear 1990,138:169~187.
    [83] Boch P.,Platon F. and Kapelski G.,Effect of temperature on tribological propertiesof Al2O3 and SiC ceramics,In: Euro– Ceramics.Vol.3.deWith G.,Terpstra R.A.and Merselaar R.(Eds), Elsevier Appied Science,New York,1989
    [84] Dufrane K.F. and Glaeser W.A.,Wear of ceramics in advanced heat engineapplications,In: Wear of material, Ludema K.C.(Ed.),American Society ifMechanical Engineers,New York,1987,285~291.
    [85]董文麟,氮化硅陶瓷,中国建筑工业出版社,1986,84~105
    [86]潘俐,李增,雍歧龙等,Si3N4陶瓷摩擦学的研究和发展,云南工业大学学报,1999,15(4):52~55
    [87] Makoto A,Kohji K,Kaotu U.Wear properties of silicon itride in rollingcontact.In : Proceeding of the JSLE Inter Trob Confe.Tokyo , Japan ,1985.191~196
    [87]李波,折晓黎,欧阳锦林等,氮化硅陶瓷的摩擦磨损特性,兰州大学学报(自然科学版),1995,31(1):38~42
    [89]梁广川,梁金生,张建军等,氮化硅陶瓷与不锈钢摩擦研究应用,中国陶瓷,1998,34(4):13~16.
    [90]魏建军,薛群基,氮化硅在水和乙醇中的摩擦化学激励研究,硅酸盐学报,1993,21(2):149~154.
    [91]薛群基,魏建军,陶瓷润滑研究的发展概况,摩擦学学报,1995 ,15 (1):90~96
    [92]魏建军,薛群基,陶瓷摩擦学研究的发展现状.摩擦学学报,1993 ,13(3):268~275
    [93] Andersson, P., Blomberg, A., Instability in the tribochemical wear of siliconcarbide in unlubricated sliding contacts, Wear, 1994,174(1–2):1~7
    [94] Fischer T.E.,Mullins W.M.,Chemical aspects of ceramic tribology,J. Phys.Chem.,1992, 96:5690~5701
    [95] Chen M.,Kato K.,Adachi K.,Friction and wear of self-mated SiC and Si3N4sliding in water,Wear,2001,250(1–12):246~255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700