用户名: 密码: 验证码:
基于机器视觉的砂轮廓形测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控磨削是提高复杂曲面加工精度和表面质量的有效方法,但砂轮廓形误差对加工精度影响较大,因此砂轮的修整一直是复杂曲面磨削工艺的瓶颈问题之一。普通磨料砂轮修形容易,但磨损较快,需要频繁修形,使加工效率降低。CBN等高硬度磨粒砂轮不需要频繁修形,但修形困难。基于砂轮实际廓形的曲面包络磨削是解决上述问题的有效方法之一,其必要条件是及时对砂轮廓形进行高精度测量。为此,本文提出基于机器视觉的砂轮廓形样板测量方法,并对相关关键技术进行了研究。
     机器视觉测量系统集光学、传感器、图像处理和模式识别等多领域多学科的关键技术于一体,可实现对物体尺寸或相对位置的快速测量。但由于系统的复杂性,在测量过程中存在多种随机噪声和系统误差,在较大视野内实现微米级的高精度测量至今仍是一个难题。本文将砂轮廓形复映样板为媒介实现对砂轮廓形的高精度测量,通过对视觉测量理论及关键技术的分析和研究,提出一套完整的系统设计方案,使视觉测量系统的测量精度达到±5μm,可以满足砂轮廓形的测量要求。论文主要工作有:
     (1)建立了机器视觉测量系统,为砂轮廓形样板的高精度测量奠定了硬件基础。该系统不仅可以实现砂轮廓形复映样板的精密测量,而且可以代替三坐标测量机对各种具有复杂二维曲线轮廓的小尺寸板类零件廓形进行精密测量。
     (2)根据边缘的结构特征,采用各向异性双边滤波算法(ABF),同时满足了平滑图像和保持边缘梯度的滤波要求。在空域内采用各向异性高斯核,对双边滤波的空域权因子进行了定义,使其在边缘的切向进行大尺度的滤波,最大限度地减小噪声的影响;在边缘的法向采取小尺度的滤波,尽可能地保持边缘梯度不变。在值域内采用灰度高斯核定义权因子,进一步减小滤波对边缘梯度的影响。该算法较好地解决了一般滤波器存在的图像平滑和边缘保持不能兼顾的矛盾。
     (3)在Facet曲面模型亚像素边缘检测方法的基础上,提出并实现了一种三级逼近的亚像素边缘检测方法。先用改进的Canny算法进行粗定位,提取单像素精度边缘;然后用以像素边缘为中心的5′5邻域数据集拟合Facet曲面模型,根据阶跃边缘的特征在像素边缘内确定亚像素边缘位置,实现边缘的精定位;最后为了消除滤波不完全和计算误差对边缘提取结果的影响,对提取的亚像素边缘点进行分段曲线拟合。该方法解决了Facet模型提取亚像素边缘存在的效率低、漏检率高和边缘点异常波动等问题。
     (4)针对机器视觉系统存在复杂系统误差的特点,提出一种基于直线成像特征的系统综合标定方法,有效地保证了测量精度。该方法通过对1等量块的平行直线边缘提取,建立量块边缘空间物点位置和像点位置的原始对应关系,利用量块边缘的理想直线特征,通过统计计算对测量系统进行综合标定,建立描述空间物点位置和像点位置的相互对应关系的二元三次标定函数。该标定方法采用工程通用量块作为标定工具,操作简便,容易实现,通用性好。可以综合修正光学畸变误差、透视误差、传感器位置误差、边缘检测算法的定位误差等各项系统性误差。以该标定方法为基础,对在系统视野内不同方位的量块进行多次测量,结果证明基于该标定方法的测量精度能够达到±5μm。
CNC grinding is an effective method to improve machining accuracy and surface quality for the complex surface, but the profile error of grinding wheel will greatly influence machining accuracy, so surface dressing of grinding wheel has been a bottleneck problem in the field. Ordinary grinding wheel is easy to dress, but it wears quickly. It is necessary to frequently dress the grinding wheel, which reduces the grinding efficiency. The grinding wheel with high hardness abrasive, such as CBN grinding wheel, does not need frequent modification, but the modification is difficult for this kind of grinding wheel. Surface envelope grinding method that grinding trajectory is calculated with actual profile is one of effective method to solve the problem. The premise of the method is the prompt measurement for the grinding wheel profile. Therefore, the grinding wheel profile templet measurement method based on machine vision is put forward and the related key technologies are researched in the paper.
     Machine vision measurement system involves an integration of key techniques such as optical, sensor, image processing, pattern recognition, and so no. It realizes the rapid measurement of object size or relative position. But because of the complexity of the system, there are many random noises and system errors in the measuring process. So far it is a difficult problem to achieve micron level measurement in a larger field of vision. This paper, taking the wheel profile reflection model as a medium to realize the high precision measurement of the wheel profile, through the analysis and research on its detection theory and key technology, puts forward a complete set of system design to make the measurement accuracy of the vision measurement system to±5μmand to meet the requirement of grinding wheel profile measuring. The main contributions of the paper are listed as following.
     (1)Grinding wheel profile measuring system is built based on machine vision measurement technology, which establishes the hardware foundation for the high precision measurement of wheel profile model. The system not only realizes the precise measurement of wheel profile, but also can replace CMM to realize precision measurement of all kinds of small size plate parts with complex two-dimensional curved contour.
     (2)According to the structural characteristics of the edge, the anisotropic bilateral filtering algorithm (ABF) is adopted, which can meet the filtering requirements of the image smoothing and edge preserving at the same time. In the spatial domain, the anisotropic Gauss nuclear function is used to redefine the bilateral filter weight, filtering with large scale in the tangential direction in order that the noises are reduced as much as possible and filtering with small scale in the normal direction in order to maintain the edge gradient as far as possible. In the range domain, the gray Gauss nuclear function is used to further reduce the effect of filtering on edge gradient. It solves the problem that the common filter can’t take into account the image smoothing and edge preserving at the same time.
     (3)Based on Facet surface model subpixel edge detection algorithm, a three-level-approximation subpixel edge detection algorithm is proposed and realized. This method is to use the improved Canny algorithm for coarse positioning to extract the single-pixel-precise edges, and then use the5′5neighborhood data of the pixel edge points to fit Facet surface model and calculate subpixel location in the pixel edge based on the characteristics of the step edge, and finally piecewise fitting edge points as curves to remove the effect of incomplete filtering and calculation error on edge extraction. As a result, the problem of low efficiency, low localization and abnormal fluctuation of edge points for the Facet model to extract edge is fundamentally solved.
     (4)Because there are various system errors in machine vision system, a system comprehensive calibration method based on straight line imaging characteristics is proposed to effectively ensure the measurement accuracy. According to the extraction of parallel straight line edges of1grade gauge blocks, the original correspondence between the space point positions and the image point positions of the edges is built. Using the ideal linear feature of gauge block edges, comprehensive calibration of measurement system is done through statistical calculation, and a two-parameter second-order polynomial which describes the corresponding relation between the space point positions and the image point positions is built. Because of using the general engineering gauge block as calibration tool, the calibration method is simple to operate and is easy to realize and has good versatility. It can comprehensively correct all kinds of system errors such as the optical distortion, the perspective error, the sensor position error and location error of edge detection algorithm. Based on the calibration method, multiple measurement experiments of different azimuth gauge blocks in the field show that the precision of the measurement system can reach±5μm.
引文
[1]周志雄,周秦源,任莹晖.复杂曲面加工技术的研究现状与发展趋势.机械工程学报,2010,46(17):106~112.
    [2]路遥.螺杆转子磨削砂轮在线修整方法研究:(博士学位论文).大连:大连理工大学,2012.
    [3] Holmes C S. Form grinding of precision helical rotors and gears using closed-loop profilecontrol. Proceedings of the ASME2007International Design Engineering Technical Conferences&Computers and Information in Engineering Conference, Las Vegas, Nevada, USA,2007:4~7.
    [4]陆群峰.面向磨床再制造的砂轮数控修形系统的研究与开发:(博士学位论文).重庆:重庆大学,2007.
    [5]曾凡月.高精度金刚石滚轮成型修整装置的研制及其应用.金刚石与磨料磨具工程,2004,142(4):76~77.
    [6] Abbas A T. A general algorithm for profiling and dressing of complicated shape grinding wheels.Robotics and Computer-Integrated Manufacturing,2004,20(4):313~327.
    [7]谢晋,党希敏.圆弧形金刚石砂轮的数控对磨成形修整试.机械工程学报,2008,44(2):102~107.
    [8]孔令叶,阎秋生,宋军辉.基于表面粗糙度均匀性的曲面磨削研究.中国机械工程,2008,19(21):2557~2560.
    [9] Mohammad Saeed S Pasy Zahmaty. A new grinding method for axisymmetric aspheric surfacesof brittle materials. Sendai:Tohoku University,1998.
    [10] Chen F J, Yin S H, Huang H,et al. Profile error compensation in ultra-precision grinding ofaspheric surfaces with on-machine measurement. International Journal of Machine Tools&Manufacture,2010,(50):480~486.
    [11] Dahle Q, Mcledd A, Sommerfelt A. On-line inspection of extruded profile geometry. SMEVision90DetroitSociety of Manufacturing Engineers,1990:1~9.
    [12] Mills R. Development of a line-scan camera for2D high accuracy measurement, MachineVision,1991:267~277.
    [13] Angrisani L, Daponte P, Pietrosanto A, C. Liguori. An image-based measurement system forthe characterization of automotive gaskets. Measurement1999,25:169~181.
    [14] Kosmopoulos D, Varvarigou T. Automated inspection of gaps on the automobile productionline through stereo vision and specular reflection. Computer in Industry,2001,46:49~63.
    [15] Franci L, Rok B. Machine vision system for inspecting electric plates. Computer in Industry,2002,47:113~122.
    [16]单越康,卫力,毛谦敏.复杂几何形状零件自动检测.中国计量学院学报,1997,(2):38~47.
    [17]段发阶,叶声华,王春和等.拔丝模孔形计算机视觉检测技术.光电工程,1996,23(3):72~76.
    [18]梁学军,洪迈生,贾文焕.螺纹紧固件的自动检测技术.计量技术.2002,(2):14~17.
    [19]张爱武,李明哲,胡少兴等.基于计算机视觉的板类零件曲面测量系统.中国图象图形学报,2002,7(2):190~195.
    [20]张少军,苟中魁,李庆利等.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸.光学精密工程,2004,12(6):619~625.
    [21]贺秋伟,王龙山,于忠党等.基于图像处理和支持向量机的微型齿轮缺陷检测.吉林大学学报,2007,38(3):555~569.
    [22]孙秋成.基于机器视觉的轴径测量:(博士学位论文).吉林:吉林工业大学,2010.
    [23]于起峰,尚洋.摄像测量学原理与应用研究.北京:科学出版社,2009.
    [24] Marr D, Hildreth E. Theory of edge detection. Proe Roy Soe,1980, B(27):187~217.
    [25] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. The6t h InternationalConference on Computer Vision, Bombay, India,1998:839~846.
    [26] Xie J, Heng P A. Color image diffusion using adaptive bilateral filter. The27th AnnualInternational Conference on Engineering in Medicine and Biology Society, Shanghai, China,2005:3433~3436.
    [27] Phelippeau H, Talbot H, Akil M, Bara S. Shot noise adaptive bilateral filter.The9t hInternational Conference on Signal Processing(ICSP2008), Beijing, China,2008:864~867.
    [28] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one.Multiscale Modeling and Simulation,2005,4(2):490~530.
    [29] Buades A, Coll B, Morel J M. Morel. The staircasing effect in neighborhood filters and itssolution. IEEE Trans. on Image Processing,2006,15(6):1499~1505.
    [30] Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. International Journal ofComputer Vision,2008,76(2):123~139.
    [31]左凯,孙同景,李振华等.二维分数阶卡尔曼滤波及其在图像处理中的应用.电子与信息学报,2010,32(12):3027~3030.
    [32]李智华,王玉文.卡尔曼滤波在图象识别中的应用.哈尔滨师范大学学报(自然科学版),2005,21(3):15~17.
    [33]潘泉,孟晋丽,张磊等.小波滤波方法及应用.电子与信息学报,2007,29(1):236~240.
    [34] Xu Y S, Weaver J B, Healy D M et al. Wavelet transform domain filters: A spatially selectivenoise filtration technique. IEEE Trans. on Image Proc,1994,3(6):747~758.
    [35] Pan Q, Zhang L, Dai G Zh et al. Two denoising methods by wavelet transform. IEEE Trans. onSignal Processing,1999,47(12):3401~3406.
    [36] Mallat S, Hwang W L. Singularity detection and processing with wavelet. IEEE Trans. onInform.Theory,1992,38(2):617~643.
    [37] Donoho D L. De-noising by soft-thresholding. IEEE Trans. on Inform. Theory,1995,41(3):613~627.
    [38] Canny J, A computational approach to edge detection. IEEE Trans on Pattern Analysis andMachine Intelligence,1986,8(6):679~698.
    [39]王植,贺赛先.一种基于Canny理论的自适应边缘检测方法.中国图像图形学报,2004,9(8):957~961.
    [40] Florack L M J, Romeny B M H, Koenderink J J, et al. Scale and the differential structure ofimages. Image and Vision Computing,1992,10(6):376~388.
    [41]杨振亚,白治江,王成道.自适应Canny边缘检测算法.上海海运学院学报,2003,24(4):374~377.
    [42]袁野,欧宗英.基于小波变换和模糊算法医学边缘检测算法.大连理工大学学报,2002,42(4):504~508.
    [43]余洪山,王耀南.一种改进型Canny边缘检测算法.计机工程与应用,2004,(20):27~29.
    [44]谢志孟,高向东.基于Canny算子的焊缝图像边缘提取技术.焊接学报,2006,27(1):29~36.
    [45] Kiranyaz S, Ferreira M, Gabbouj M. Automatic object extraction over multiscale edge field formultimedia retrieval. IEEE Trans. on Image Processing,2006,15(12):1~11.
    [46]董鸿雁.边缘检测的若干技术研究:(博士学位论文).长沙:国防科技大学,2008.
    [47]魏伟波,芮筱亭.图像边缘检测方法研究.计算机工程与应用,2006,(30):88-91.
    [48]孟婷婷,余谅,李寿敏等.一种基于改进算子的形态学边缘检测算法.计算机工程与科学,2011,33(8):112~116.
    [49] Pa1K, King R A. On edge detection of x-ray images using fuzzy sets. IEEE Trans. on PatternAnalysis and Machine Intelligence,1983,5(1):69~77.
    [50] Douglas S C, Meng T H. Design of edge detection templates using a neural network. IEEETrans. on Processing. International Joint Conference on Neural Networks,1990,2:331~334.
    [51] Ye J, Fu G K, Upendra PoudelP. High-accuracy edge detection with blurred edge model. Imageand Vision Computing,2005,23:453~467.
    [52] Kisworo M, Venkatesh S, West G. Modeling edges at subpixel accuracy using the local energyapproach. IEEE Trans. on Pattern Analysis and Machine Intelligence,1994,405~410.
    [53]赵爱明.基于二次曲线拟合的图像亚像素边缘定位算法.哈尔滨理工大学学报,2006,11(3):68~70.
    [54] Tababai A J, Mitchell O E. Edge location to subpixel values in digital imagery. IEEE Trans. onPattern Analysis and Machine Intelligence,1984,2:188~210.
    [55] Edward P. Lyvers, Mark LAkey. Subpixel measurement using a moment-based edge operator.IEEE Trans. on PAMI,1989,11(12):1293~1309.
    [56] Ghosal S, Mehrotra R. Sugata. Orthogonal moment operators for subpixel edge detection.Pattern Recognition,1993,26(2):295~306.
    [57] Abdel-Aziz Y I, Karara H M. Direct linear transformation into object space coordinates inclose-range photogrammetry. Close-Range Photogrammetry, Urbana,1971:1~18.
    [58]王之卓.摄像测量学.北京:测绘出版社,1982.186~218.
    [59] Wng G, Sugimoto N. A liner algorithm for motion from three weak perspective images usingEuler angles. IEEE Trans. on Pattern Analysis and Machine Intelligence,1998,20(13):54~57.
    [60] Tsai R Y. A versatile camera calibration technique for high accuracy3D machine visionmetrology using off-the-shelf TV cameras and lenses. IEEE Trans. on Robotics and Automation,1987, RA-3(4):323~344.
    [61] Weng J, Cohen P, Herniou M. Camera calibration technique with distortion models andaccuracy evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence,1992,14(10):965-980.
    [62] Zhang Z Y. A flexible new technique for camera calibration. IEEE Trans. on Pattern Analysisand Machine Intelligence,2000,22(11):1330~1334.
    [63] Deriche R. Fast algorithms for low-level vision. IEEE Trans. on Pattern Analysis and MachineIntelligence,1990,12(1):78~87.
    [64] Steger C. Analytical and empirical performance evaluation of subpixel line and edge detection.Empirical Evaluation Methods in Computer Vision,1998,188~210.
    [65]张志.基于先验约束的图像复原方法研究:(博士学位论文).长沙:国防科学技术大学,2010.
    [66]王玉灵.基于双边滤波的图像处理算法研究,(硕士学位论文).西安:西安电子科技大学,2010.
    [67] Zhang M, Bilateral filter in imageprocessing, Baton Rouge: Louisiana StateUniversity,2009.
    [68] Tai S C, Yang S M. A fast method for image noise estimation using laplacian operatorandadaptive edge detection. International Symposium on Communications, Control and SignalProcessing, Malta,2008:1077~1079.
    [69]余博,郭雷,钱晓亮等.可控核函数的双边滤波算法.吉林大学学报(工学版),2012(6):1553~1557.
    [70] Weickert J.Anisotropic diffusion in image processing.Kaiserslautern:University ofKaiserslautern,1996.
    [71] Weickert J. A scheme for coherence-enhancing diffusion filtering with optimized rotationinvariance. Journal of Visual Communication and Image Representation,2002,13(1/2):103~118.
    [72]王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用.红外与毫米波学报,2005,24(2):109~113.
    [73]罗钧,侯艳,付丽.一种改进的灰度矩亚像素边缘检测算法.重庆大学学报,2008,31(5):550~552.
    [74]张永宏,胡德金,张凯等.基于灰度矩的CCD图像亚像素边缘检测算法研究.光学技术,2004,30(6):693~695.
    [75]刘亚威,杨丹,张小洪.基于空间矩的亚象素边缘定位技术的研究.计算机应用,2003,23(2):47~49.
    [76]曲迎东,崔成松,陈善本等.利用Sobel-Zernike矩算子的快速亚像素边缘检测方法.光电工程,2003,30(5):59~61.
    [77]金泉,王建伟,陈善本等.一种改进的Zernike正交矩亚像素边缘检测算法.光学技术,2003,29(4):500~503.
    [78]丁兴号,邓善熙,杨永跃等.基于空间矩和Zernike矩的亚像素边缘检测,应用科学学报,2004,22(2):191~193.
    [79] Hueckel M F. An operator which locates edges in digitized pictures. Journal of the Associationfor Computing Machinery,1971,18(1):113~125.
    [80] Haralick R M. Digital step edges from zero crossing of second directional derivatives. IEEETrans. on Pattern Analysis and Machine Intelligence,1984,6(1):58~68.
    [81] Ji Q, Haraliek R M. Efficient facet edge detection and quantitative performance evaluation.Pattern Recognition,2002,35(3):689~700.
    [82]马睿,曾理,卢艳平.改进的基于Facet模型的亚像素边缘检测.应用基础与工程科学学报,2009,17(2):298~301.
    [83] Chan T, Vese L. Active contours without edges. IEEE Trans. on Image Processing,2001,10(2):266~277.
    [84] Li C H, Tam P R S. A global energy approach to facet model and its minimization usingweighted least-squares algorithm. Pattern Recognition,2000,33(2):281~293.
    [85]隋连升,王慧.基于Facet模型的边缘检测算法.计算机工程,2009,35(2):87~89.
    [86]蒲云,曾理,马睿.CT图像的分形特征和Facet边缘检测.计算机工程与应用,2009,45(3):165~167.
    [87]向才兵,曾理.综合CV和Facet模型的裂纹边缘检测.计算机工程与应用,2011,47(2):153~155.
    [88] Carsten Steger, Markus Ulrich, Christian Wiedemann. Machine vision algorithms andapplication. Beijing:Tsinghua University Press,2008.204~228.
    [89]韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术,2002,4(6):91~102.
    [90]余俊,林家明,杨建宇,等.基于新型靶的CCD摄像系统畸变测量与校正.光学学报,2007,27(8):1440~1442.
    [91]郭羽,杨红,杨照金等. CCD摄像系统镜头的畸变测量.应用光学,2008,29(2):279~282.
    [92]郁春潮,陈韶华.广角镜头的摄像机非线性标定技术.湖北大学学报(自然科学版),2005,27(4):351~354.
    [93]王伟,钟堰利,吴建坤.广角镜头图像畸变校正系统的研究.光学技术,2004,30(4):489~490.
    [94]张玉发,孙晓泉.一种基于同心圆环的图像畸变校正方法.光电技术应用,2007,22(2):63~65.
    [95]朱日红,李建欣.光学成像系统中非线性畸变的数字校正方法.南京理工大学学报,2004,28(4):414~416.
    [96]江洁,张广军,周富强等.大视场光角物镜畸变的实时数字校正.仪器仪表学报,2004,25(2):174~177.
    [97]陈冬青,谢洪波,徐智等.医用电子内窥镜图象畸变校正方法的研究.中国生物医学工程学报,2001,2(1):89~94.
    [98] Wang X, Klette R, Rosenhahn B Geometric and photometric correction of projected rectangularpictures. International Conference on Image and Vision Computing, Dunedin, New Zealand,2005:223~228.
    [99] Luca Lucchese, Sanjit K Mitra. Correction of geometric lens distortion through image warping.The3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy,2003:516~521.
    [100]朱铮涛,黎绍发.镜头畸变及其校正技术.光学技术,2005,31(1):136~138.
    [101]刘堂友,董爱华.精确校正图像的径向畸变和倾斜失真.中国图象图形学报,2007,12(10):1935~1938.
    [102]杨密.复杂曲线轮廓度的误差评定:(硕士学位论文).西安:西安工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700