用户名: 密码: 验证码:
大型矿用齿轮箱运行模态识别与结构动力模型修正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型低速重载齿轮传动广泛应用于矿山、冶金工业生产的关键设备中,恶劣工况导致齿轮出现故障概率大,一旦突发事故,将导致整个流水线生产瘫痪或引发重大灾难性事故,目前对大型矿山机械结构动力模型大多是根据设计图建立的确定性模型,其中隐含了过多的假定和简化,使得结构动力特性的模态识别和分析与实际存在较大偏差,因此开展大型矿用齿轮箱运行模态识别方法与结构动力模型修正方法研究具有重要的理论意义和实际应用价值。本文以矿井提升机齿轮箱为对象,研究并提出了多激励下的运行模态识别方法;将随机动力学理论与运行模态识别理论相结合,提出了基于随机结合刚度的大型重载传动设备结构动力模型修正方法,并采用修正后的结构动力模型对齿轮箱动力可靠性应用分析,主要工作内容及成果如下:
     (1)首次提出相对频响函数和虚拟频响函数的概念。通过理论推导得到相对频响函数的3个性质,即:在单一力对某一系统结构进行激励时,相对频响函数的零点即是该系统结构的极点;在单一力对某一系统结构进行激励时,在系统极点处,系统结构上任意指定的两点间的相对频响函数收敛于一定值,与这一输入点的力的方向和幅值无关;在多激励对某一系统结构进行激励时,在系统极点处,系统结构上任意指定的两点间的相对频响函数收敛于一定值,与任何输入的力的方向和幅值都无关。
     (2)将已导出的相对频响函数3个性质引入到运行模态识别中,提出了多个未知激励下的运行模态识别方法。即当多个未知激励作用于系统结构时,在系统极点处,系统结构上指定的两点间的相对频响函数值与每个激振力无关,这两点间相对频响函数值为常量,而在非系统极点处相对频响函数则是随着激振力变化而不断变化的,其中未知激励可以是白噪声、各种谐波、变频激励以及其它任何方式的激励。
     (3)通过将信息熵理论引入到小波模极大值去噪中,得出了一种基于小波熵的模极大值消噪方法。该方法利用小波能量熵理论自适应确定消噪阂值,根据噪声与真实信号在不同尺度上的小波模极大值呈现出的奇异性,去除随小波分解尺度增大而不断减小的小波模极大值,保留随尺度增大而增大的小波模极大值,并重构经有效过滤的剩余小波模极大值,实现强背景噪声下噪声信号与真实信号的有效分离。(4)通过谐波小波包变换及谐波小波包的共振解调,实现对大型矿用齿轮箱实际动力特性的识别。变换后分离出振动信号的调制信息,从而分析齿轮箱工作状态及损伤类型与程度;利用小波变换系数的实部和虚部,得到不同频段上矿用齿轮箱输入轴和输出轴相对相位,把输入轴和输出轴相对相位作为结构动力模型修正的目标参数。
     (5)针对大型矿用齿轮箱动力有限元模型的建立,提出了机械结合面的建模方法。该方法在主体部分采用梁壳单元的基础上,各齿轮啮合、各轴承的滚动体与内外环联接的机械结合面处用等效弹簧和等效阻尼来代替。
     (6)建立了基于结合刚度的模态频率灵敏度分析力学模型,将随机动力学理论引入到灵敏度分析模型修正方法中,提出了基于随机结合刚度的模态频率动力模型修正方法。对样本响应值进行统计分析得到模态频率的随机结合刚度灵敏度,并对比模态振型,修正相应的结合刚度,从而达到模型修正的目的。修正后对齿轮箱有限元模型进行实验验证,表明了基于随机结合刚度的模态频率动力模型修正方法有效性。
     (7)将结构动力模型修正方法应用于齿轮箱动力可靠性分析,提出了基于结构动力模型修正的齿轮箱动力可靠性的研究方法。利用应力强度干涉理论,采用修正后的齿轮箱结构动力模型预测实际不可测点的振动响应,对齿轮箱的危险部位进行基于首次超越破坏机制的动力可靠性灵敏度分析和动力可靠度的分析,根据计算得到对齿轮箱动力可靠性影响最大的三个因素,即:齿轮传动副随机刚度、输入轴承水平方向随机刚度和输出轴上负载。
Large-scale, low-speed, heavy-duty gear transmission system is widely used in key equipment of mining, metallurgical industry production. The Gears have a tendency to fail in the severe working conditions. As the accident or catastrophic accident occurred, the entire assembly line production is probablely knocked out. Most structural dynamic models are deterministic models built according to the design for the mining machinery at present. The modal identification result of the model is very different from real structure, owing to a variety of assumptions and simplifications in the model. Therefore, it has important theoretical significance and practical value to carry out study on large-scale mine gearbox running modal identification methods and structural dynamic model updating method. In this paper, a operational modal identification method is proposed for mine hoister gearbox under multi-excitation; a structural dynamic model updating method is also proposed based on stochastic combining stiffness for large-scale and heavy-duty transmission equipment, by combining stochastic dynamics theory and operational modal identification theory, and the application analysis of gearbox dynamic reliability is based on the updated structural dynamic model. The main works and results are as follows:
     (1) First proposed the concept of relative frequency response functions and virtual frequency response function. The three properties of relative frequency response function are proposed by theory deducing, namely:As there is only single exciting force in the structure system, the zero points of relative frequency response function is the system poles; As there is only single exciting force in the structure system, at the system poles, relative frequency response function between any given two points on the system structure converges to a certain value, which has nothing to do with the amplitude and direction of the exciting force; As there are multi-exciting force in the structure system, at the system poles, relative frequency response function between any given two points on the system structure also converges to a certain value, which has nothing to do with the amplitude and direction of the multi-exciting forces.
     (2) A operational modal identification method are proposed under unknown multi-exciting forces, by applying three properties of relative frequency response function. That is, as there are multi-exciting forces in the structure system, at system poles, relative frequency response function between any given two points on the system structure also converges to a certain value, which has nothing to do with the amplitude and direction of each of multi-exciting forces, but at the non-system poles, relative frequency response function value between the given two points is changing with the exciting force changes. And unknown multi-exciting forces include white noise, harmonics, variable frequency excitation, and any other way of excitations.
     (3) A de-noising method based on wavelet entropy modulus maxima is proposed by combining with the wavelet maximum modulus singularity theory and wavelet energy entropy theory. Using the characteristics that information entropy can be quantitatively described as energy probability distribution in time-frequency domain, the method of adaptively fixing the noise threshold based on wavelet entropy, can effectively remove the continuously decreasing wavelet maximum modulus with the wavelet decomposition scale increasing, can reserve the continuously increasing wavelet maximum modulus with the wavelet decomposition scale increasing, and reconstruct the remaining wavelet maximum modulus after the effectively filtering. The method effectively separated the real signal from the strong background noise.
     (4)The actual dynamic characteristics of large-scale mine gearbox is identified by using harmonic wavelet packet transform and harmonic wavelet packet demodulated resonance.The modulated informations are separated from the vibration signal after transformation and the information are applied in analysis of work status, the type of injury and extent of injury for the gearbox. By extracting coefficient of the real and the imaginary in harmonic wavelet packet transform, the relative vibration directions of the input shaft and the output shaft is obtained, which is one of the model updating target parameters.
     (5) A mechanical joint modeling method is proposed. The method used beam element and shell element in the gearbox main body, and used equivalent spring and equivalent damper instead of gear engagement, and the inner ring and outer ring connection of the mechanical junction surface.
     (6) A mechanical model based on the combining stiffness is applied in modal frequency sensitivity analysis. Stochastic dynamics theory is introduced into the sensitivity analysis model updating method, and a modal frequency dynamic model updating method based on the stochastic combining stiffness is proposed. Obtained modal frequency sensitivity based on the combining stiffness, by analyzing the statistics of the sample response value,and updated corresponding combining stiffness, according to the comparison of mode shapes. It indicates that modal frequency model updating method based on stochastic combining stiffness is effective by experimental verification of the gearbox element model.
     (7) Structural dynamic model updating method is applied to the gearbox dynamic reliability analysis, and based on the model updated a gearbox dynamic reliability research methods is proposed. By using of gearbox structural dynamic model updated, to predict the vibration response of the real unmeasured point, based on stress strength interference theory; and by analyzing dangerous position of the gearbox, the reliability sensitivity and dynamic reliability analysis is carried out based on the theory of First Passage Failure mechanism. According to solved results, obtained the most important three factors for gearbox dynamic reliability, namely:the stochastic stiffness of gear pairs, the stochastic stiffness of input bearing in horizontal direction and the load of output shaft.
引文
[1]高立新.低速重载设备的事故分析和故障诊断技术研究[C].北京:2005中国钢铁年会论文集,2005:639-643.
    [2]韩捷,董辛旻,关惠玲,等.大型低速重载冶金转炉远程诊断系统关键技术研究[J].机械强度,2004,26(5):473-478.
    [3]闵佳音.基于模糊综合评判的重载齿轮热胶合和稳态温度场的研究[D].成都:电子科技大学,2008.
    [4]TORDION G V, GOUVIN R. Dynamic stability of a two-stage gear train under the influence of variable meshing stiffness[J]. ASME Journal of Engineering for Industry,1997,99: 785-791.
    [5]IWATUSBON, ARII S. KAWAI R. Coupled lateral torsional vibration of rotor system rained by gears(Part I Analysis by transfer matrix method)[J]. Bulletin of JSME,1984,27: 271-277.
    [6]NERIYAV, BHAT R B, SANKERTS. Coupled torsional vibration of a geared shaft system using finite element analysis[J]. The Shock and Vibration Bulletin,1984,55:13-25.
    [7]TAKATSUN, KATOM, ISHIKAWAM, etal.Building block approach of the vibration transmission in a single stage gearbox (Transfer characteristics of gear mesh induced vibration to the gear housing) [J]. Transactions of JSME,1991,57:2126-2131.
    [8]唐增宝.提高多级齿轮传动系统动态性能的优化设计[J].机械工程学报,1994,30(5):65-75.
    [9]沈允文,李树庭,蔺天存.齿轮系统减振设计的结构度分析[J].机械工程学报,1996,32(50):13-18.
    [10]王立华,李润方等.高速重载齿轮的有限元分析[J].中国机械工程,2003,20(10):1773-1777.
    [11]Ahmadian H, Gladwell G M L, Ismail F. Parameter Selection Strategies in Finite Element Model Updating [J]. Journal of Vi-bration and Acoustics,1997,119(1):37-45.
    [12]Marwala T, Sibisi S. Finite Element Updating Using Bayesian Framework and Modal Properties [J]. Journal of Aircraft,2005,42(1):275-278.
    [13]Xiong Y, Chen W, Tsui K L, et al. A Better Understanding of Model Updating Strategies in Validating Engineering Models [J]. Computer Methods in Applied Mechanics and Engineering,2009,198 (15/16):1327-1337.
    [14]张令弥.动态有限元模型修正技术及其在航空航天结构中的应用[J].强度与环境,1994(2):10-17.
    [15]Ren W X, Chen H B. Finite Element Model Updating in Struc-tural Dynamics by Using the Response Surface Method [J]. En-gineering Structures,2010,32(8):2455-2465.
    [16]Schedlinski C, Wagner F, Bohnert K, et al. Test-based Computational Model Updating of a Car Body in White [J]. Sound and Vibration,2005,39(9):19-23.
    [17]费庆国,张令弥,郭勤涛GARTEUR有限元模型修正与确认研究[J].航空学报,2004,25(4):372-375.
    [18]Li X Y. Damage Identification from Wavelet-based Acceleration Response Sensitivity [D]. Hong Kong:The Hong Kong Polytechnic University,2008.
    [19]Moaveni B. System and Damage Identification of Civil Structures [D]. San Diego:University of California,2007.
    [20]Parloo E, Cauberghe B, Benedettini F, et al. Sensitivity-based Operational Mode Shape Normalization:Application to a Bridge [J]. Mechanical System and Signal Processing, 2005,19(1):43-55.
    [21]Jaishi B基于环境振动的土木工程结构有限元模型修正[D].福州:福州大学,2005.
    [22]Huang M S, Zhu H P. Finite Element Model Updating of Bridge Structures Based on Sensitivity Analysis and Optimization Algorithm [J]. Wuhan University Journal of Natural Science, 2008,13(1):87-92.
    [23]Mottershead J E, Link M, Friswell M I. The Sensitivity Method in Finite Element Model Updating:A Tutorial[J]. Mechanical Systems and Signal Processing,2011,25(7):2275-2296.
    [24]Beck J L, Au S K. Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation [J]. Journal of Engineering Mechanics,2002,128(4): 380-391.
    [25]Marwala T. Finite-element-model Updating Using Computational Intelligence Techniques-applications to Structural Dynamics [M]. London:Springer,2010:25-182.
    [26]Kim G H, Park Y S. An Automated Parameter Selection Procedure for Finite-element Model Updating and its Applications [J]. Journal of Sound and Vibration,2008,309(3/5): 778-793.
    [27]Salvini P, Vivio F. Dynamic Reduction Strategies to Extend Modal Analysis Approach at Higher Frequencies [J]. Finite Element in Analysis and Design,2007,43(11/12):931-940.
    [28]韩芳,钟冬望,汪君.基于贝叶斯法的复杂有限元模型修正研究[J].振动与冲击,2012,31(1):39-43.
    [29]秦玉灵,孔宪仁,罗文波.基于径向基函数响应面的机翼有限元模型修正[J].北京航空航天大学学报,2011,37(11):1465-1470.
    [30]张保强,郭勤涛.基于复模态模型修正方法的磁悬浮轴承支承参数识别[J].南京航空航天大学学报,2010,42(6):748-752.
    [31]袁爱民,戴航,孙大松.考虑边界条件约束和参数灵敏度的斜拉桥有限元模型修正[J].应用基础与工程科学学报,2010,18(6):900-909.
    [32]王元清,姚南,等.基于最优化理论的多阶段模型修正及其在桥梁安全评估中的应用[J].工程力学,2010,27(1):91-97.
    [33]李辉,丁桦.结构动力学模型修正方法研究进展[J].力学进展,2005,35(2):170-180.
    [34]Oberkampf W L, Trucano T G, Hirsh C. Verification, validation, and predictive capability in computational engineering and physics [J].Applied Mechanics Reviews,2004,57 (5): 345-384.
    [35]郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展一模型确认[J].力学进展,2006,36(1):36-42.
    [36]Xiong Y, Chen W, Tsui K L, et al. A better understanding of model updating strategies in validating engineering models [J].Computer Methods in Applied Mechanics andEngineering,2009,198(15-16):1327-1337.
    [37]Goge D. Automatic updating of large aircraft models using experimental data from ground vibration testing [J]. Aerospace Science and Technology,2003,7(1):33-45.
    [38]Steenackers G, Guillaume P. Finite element model updating taking into account the uncertainty on the modal parameters estimates [J].Journal of Sound and Vibration, 2006,296 (4-5):919-934.
    [39]Link M, Friswell M I. Working Groupl:Generation of validated structural dynamic models-results of a benchmark study utilizing the GARTEUR SM-AG19 test-bed [J].Mechanical Systems and Signal Processing,2003,17 (1):9-20.
    [40]Goge D, Link M. Results obtained by minimizing naturalfrequency and mode shape errors of a beam model [J].Mechanical Systems and Signal Processing,2003,17 (1):21-27.
    [41]Thonon C, Golinval J C. Results obtained by minimising natural frequency and MAC-value errors of a beam model [J].Mechanical Systems and Signal Processing,2003,17 (1): 65-72.
    [42]D' ambrogio W, Fregolent A. Results obtained by minimising natural frequency and antiresonance errors of a beam model [J].Mechanical Systems and Signal Processing, 2003,17(1).29-37.
    [43]Hanson D, Waters T P, Thompson D J, et al. The role of anti-resonance frequencies from operational modal analysis in finite element model updating [J].Mechanical Systems and Signal Processing,2007,21 (1):74-97.
    [44]费庆国,张令弥,李爱群,等.基于不同残差的动态有限元模型修正的比较研究[J].振动与冲击,2005,24(4):24-26.
    [45]Bijaya J, Ren W X. Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique [J]. Mechanical Systems and Signal Processing,2007,21 (5):2295-2317.
    [46]Bijaya J, Ren W X. Damage detection by finite element model updating using modal flexibility residual [J].Journal of Sound and Vibration,2006,290 (1-2):369-387.
    [47]杨智春,王乐,李斌,等.结构动力学有限元模型修正的目标函数及算法[J].应用力学学报,2009,26(2):288-296.
    [48]李伟明.有限元模型修正方法及自由度匹配迭代技术研究[D].上海:上海交通大学,2011.
    [49]袁爱民.基于灵敏度分析的有限元模型修正技术若干关键问题研究[D].南京:东南大学,2006.
    [50]Asma F, Bouazzouni A. Finite element model updating using FRF measurements [J]. Shock and Vibration,2005,12 (5):377-388.
    [51]Esfandiari A, Bakhtiari-Nejad F, Rahai A. Structural model updating using frequency response function and quasi-linear sensitivity equation [J].Journal of Sound and Vibration,2009,326 (3-5):557-573.
    [52]Link M, Weiland M. Damage identification by multi-model updating in the modal and in the time domain [J].Mechanical Systems and Signal Processing,2009,23 (6):1734-1746.
    [53]Sedaghati R, Soucy Y, Etienne N. Efficient estimation of effective mass for complex structures under base excitations [J].Canadian Aeronautics and Space Journal,2003, 49 (3):795-1797.
    [54]吴颉尔.正则化方法及其在模型修正中的应用[D].南京:南京航空航天大学,2007.
    [55]Titurus B, Friswell M I. Regularization in Model Updating [J]. International Journal for Numerical Methods in Engineering,2008,75(4):440-478.
    [56]Avitabile P. Twenty Years of Structural Dynamic Modification-Areview [J]. Sound and Vibration,2003,37(1):14-27.
    [57]韩建平,董小军,钱炯.基于环境振动测试的钢筋混凝土渡槽空腹桁架拱有限元模型修正[J].兰州理工大学学报,2009,35(5):122-125.
    [58]张保强,陈国平等.基于模态频率和有效模态质量的有限元模型修正[J].振动与冲击,2012,31(24):69-73.
    [59]房长宇,张耀庭,等.基于参数不确定性的预应力混凝土梁模型修正[J].华中科技大学学报(自然科学版),2011,39(11):87-91.
    [60]谭冬梅,瞿伟廉.基于提升小波包和模糊模式识别的结构有限元模型修正[J].振动与冲击,2011,30(8):193-198.
    [61]王金明,李伟明,彭明峰.基于ICMCM法的GARTEUR结构有限元模型修正研究[J].振动与冲击,2011,30(5):90-95.
    [62]苏忠亭,徐达等.基于模态试验的某火炮身管有限元模型修正[J].振动与冲击,2012,31(24):54-59.
    [63]万华平,任伟新,魏锦辉.基于高斯过程响应面的结构有限元模型修正方法振动与冲击,2012,31(24):82-87.
    [64]王蕾,郁胜,李宾宾等.基于径向基神经网络的桥梁有限元模型修正[J].土木工程学报,2012,45(2):11-15.
    [65]张保强,陈国平,郭勤涛.使用有效模态质量和遗传算法的有限元模型修正[J].振动、测试与诊断,2012,32(4):577-580.
    [66]王靳然,王永峰.复合材料结构导弹振动特性分析及模型修正[J].现代防御技术,2012,40(4):63-66.
    [67]祁泉泉,辛克贵.改进的Berman-Baruch法在非比例阻尼有限元模型修正中的应用[J].工程力学,2012,29(7):1-5.
    [68]张纯,宋固全,等.改进的正则化模型修正方法在结构损伤识别中的应用[J].工程力学,2012,29(2):29-33.
    [69]韩芳,钟冬望,磨季云.基于改进响应面法的结构模型修正研究[J].武汉理工大学学报(交通科学与工程版),2012,36(1):196-198.
    [70]郭崇岭,栗帅.基于相关性理论的空间遥感器结构模型修正[J].航天返回与遥感,2012,33(1):32-38.
    [71]曹宏瑞,何正嘉.机床一主轴耦合系统动力学建模与模型修正[J].机械工程学报,2012(3)88-94.
    [72]陈建军,王小兵.随机参数智能板结构的动态特性分析[J].西安电子科技大学学报,2004,31(5):661-665.
    [73]赵雷,陈虬.随机有限元动力分析方法的研究进展[J].力学进展,1999,29(1):9-18.
    [74]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-441.
    [75]高伟,陈建军,刘伟.随机参数智能析架结构动力特性分析[J].应用力学学报,2003,20(1)123-127.
    [76]彭晨宇,苏荣华.大型振动筛动态有限元模型建立及精度分析[J].煤炭学报,2012,37(2)344-349.
    [77]苏荣华,彭晨宇,刘强.预热温度对金属激光弯曲成形过程的影响分析[J].应用基础与工程科学学报,2009,17:144-150.
    [78]Su Ronghua, Peng Chenyu. Application of Computer Simulation in Shaft Tower Vibration Control under Hoisting Dynamic Load[C]. ICEC2010:22-25.
    [79]Su Ronghua, Zhu Liuqing, Peng Chenyu. CAE Applied to Dynamic Optimal Design for Large-scale Vibration Screen [C]. CDEE2010:316-320.
    [80]Su Ronghua, Ding Wenwen, Peng Chenyu. Vibration Analysis of Multi-Rope Friction Hoist and Shaft Tower [C].2010Internatio-nal Conference on Measuring Technology and Mechatronics Automation:1071-1074.
    [81]苏荣华,刘伟军,龙日升.不同基板预热温度对激光金属沉积成形过程温度场的影响[J].工程设计学报,2009,16(1):44-49,67.
    [82]苏荣华,王永岩.随机减振中两类不同作用的动力吸振器[J].振动与冲击,2000,19(2):32-33,66.
    [83]陈建军,黄居锋,赵颖颖.随机参数链式结构系统的动力特性分析[J].中国机械工程,2005,16(1):16-19.
    [84]陈建军,黄居锋,等.随机参数轴盘扭转结构系统动力特性优化[J].机械工程学报,2005,41(8):180-184.
    [85]王小兵,陈建军,李金平,刘国梁.基于随机因子法的随机结构动力特性分析研究[J].振动与冲击,2008,27(2):4-5.
    [86]胡太彬,陈建军,王小兵.不均匀随机参数析架结构的随机反应分析[J].工程力学,2007,24(2):123-131.
    [87]陈龙,陈建军,赵崇,李金平.随机参数结构最优控制的闭环响应分析[J].振动与冲击,2010,29(1): 34-37.
    [88]苏荣华,裴忠强,杨琳.随机结构复合随机振动传递规律的分析[J].应用基础与工程科学学报,2005(10):64-69.
    [89]苏荣华,梁冰,王婷,裴忠强.线性随机系统振动模态参数变异规律的研究[J].应用基础与工程科学学报,2005,13(2):207-215.
    [90]苏荣华,刘强,彭晨宇.直线振动筛随机结构模态频率分析[J].应用基础与工程科学学报,2012,20(4):632-641.
    [91]易平,林家浩,赵岩.线性随机结构的非平稳随机响应变异性分析[J].固体力学学报,2002,23(1):93-97.
    [92]P. Guillaume, L. Hermans, H. Van der Auweraer. Maximum likelihood identification of modal parameters from operational data[J]. in:Proceedings of the 17th International Modal Analysis Conference (IMAC17),1999:1887-1893.
    [93]E. Parloo, P. Guillaume, B. Cauberghe. Maximum likelihood identification of non-stationary operational data[J]. Journal of Sound and Vibration,2003,262 (1):161-173.
    [94]L. Hermans, H. Van der Auweraer. Modal testing and analysis under operational conditions: industrial applications[J]. Mechanical Systems and Signal Processing,1999,13 (2) 193-216.
    [95]P. Mohanty, D. J. Rixen. Operational modal analysis in the presence of harmonic excitations[J]. Journal of Sound and Vibration,2004,270 (1-2):93-109.
    [96]P. Mohanty, D. J. Rixen. Modified era method for operational modal analysis in the presence of harmonic excitations[J]. Mechanical Systems and Signal Processing,2006,20 (1) 114-130.
    [97]C. Devriendt, P. Guillaume. The use of transmissibility measurements in output-only modal analysis[J]. Mechanical Systems and Signal Processing,2007,21 (7):2689-2696.
    [98]B. Peeters, H. Van der Auweraer, P. Guillaume, J. Leuridan. The PolyMAX frequency-domain method:a new standard for modal parameter estimation[J]. Shock and Vibration (special issue dedicated to Professor Bruno Piombo),2004 (11):395-409.
    [99]L. Hermans, H. Van der Auweraer. Modal testing and analysis of structures under operational conditions:industrial applications[J]. Mechanical Systems and Signal Processing,1999,13 (2):193-216.
    [100]R. Brincker, L. Zhang, P. Andersen. Modal identification of output-only systems using frequency domain decomposition[J]. Smart Materials and Structures,2001 (10):441-445.
    [101]A. M. R. Ribeiro, N.M. M. Maia, J. M. M. Silva. On the generalization of the transmissibility concept[J]. Mechanical Systems and Signal Processing,2000,14 (1):29-35.
    [102]N.M. M. Maia, J. M. M. Silva, A. M. R. Ribeiro. The transmissibility concept in multi-degree-of-freedom systems [J]. Mechanical Systems and Signal Processing,2001, 15 (1):129-137.
    [103]J. Plunt.Finding and fixing vehicle NVH problems with transfer path analysis[J]. Sound and Vibration,2005 (39):12-16.
    [104]张洪,周劲松,等.基于运行模态参数辨识的客车运行平稳性研究[J].铁道学报,2007,29(1):31-35.
    [105]张义民,张守元,等.运行模态分析中谐波模态识别方法研究及应用[J].振动、测试与诊断,2008,28(3):197-200,298.
    [106]徐立新,岳林.基于相关函数和小波分析的运行模态参数识别方法[J].机械工程与自动化,2009(4):34-36.
    [107]李怀鹏,岳林.基于峭度的运行模态分析中谐波的识别方法[J].机械工程与自动化,2010(4):26-28,31.
    [108]王卓,闫维明,叶列平.网壳结构运行模态分析的模型试验[J].清华大学学报(自然科学版),2011,51(6):755-759.
    [109]黄琴,王彤,张海黎.基于随机减量的运行模态频域分析方法[J].南京航空航天大学学报,2011,43(6):770-773.
    [110]王彤,张令弥.运行模态分析的频域空间域分解法及其应用[J].航空学报,2006,27(1):62-66.
    [111]郭苏杰,王俊,张宇峰.运行模态分析技术在桥梁状态评估中的应用[J].现代交通技术,2007,4(3):42-44,48.
    [112]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯.模态分析理论与试验[M].白化同,译.北京:北京理工大学出版社,2001.
    [113]刘强.矿井提升机数字恒减速制动控制器的设计[J].微计算机信息,2009,25(13):43-45.
    [114]刘强.基于PLC的通用型电液比例阀数字控制器研制[J].仪表技术与传感器,2009(3):75-77.
    [115]刘强,苏荣华.强背景噪声下的小波熵模极大值消噪方法[J].探测与控制学报,2012,34(3)82-87.
    [116]刘强,苏荣华.基于小波熵的矿用齿轮箱振动信号相关去噪法[J].科技导报,2011,29(21)36-40.
    [117]Yanxue Wang, Zhengjia He, Yanyang Zi. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform [J]. Mechanical Systems and Signal Processing,2010,24:119-137.
    [118]H. X. Chen, Patrick S. K. Chua, G. H. Lim. Adaptive wavelet transform for vibration signal modelling and application in fault diagnosis of water hydraulic motor[J]. Mechanical Systems and Signal Processing,2006,20:2022-2045.
    [119]曾庆虎,刘冠军,邱静.基于小波相关特征尺度熵的预测特征信息提取方法研究[J].中国机械工程,2008,19(10):1193-1196.
    [120]侯宏花,等.基于小波熵的心电信号去噪处理[J].中国生物医学工程学报,2010,29(1):22-28.
    [121]YANG J Y, ZHANG Y Y, ZHU Y SH. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension [J]. Mechanical Systems and Signal Processing,2007,21 (5) 2012-2024.
    [122]NEWLAND D E. Harmonic wavelet analysis[J].Proc. R. Soc. Land:A,1993,443:203-225.
    [123]李舜酩.谐波小波包方法及其对转子亚频轴心轨迹的提取[J].机械工程学报,2004,40(9)133-137.
    [124]张文斌,周晓军,杨先勇,等.基于谐波窗方法的转子轴心轨迹提纯[J].振动与冲击,2009,28(8):74-77,200.
    [125]柏林,董鹏飞,刘小峰.瞬频特征的谐波小波域提取与应用[J].振动与冲击,2010,29(8)131-135,149.
    [126]Lotridis S J. Damage detection in gear system susing empirical mode decomposition[J]. Engineering Structures,2004,26:1833-1841.
    [127]Newland D E. Wavelet analysis of vibration:part 1.2[J]. Journal of Vibration and Acoustics,1994,116 (10):409-420.
    [128]李瑰贤,周铭,韩继光,等.改进谐波小波及其在振动信号时频分析中的应用[J].振动工程学报,2001,14(4):388-391.
    [129]DuanH, Gautam A, Shaw B D, etal. Harmonic wavelet analysis of modulated tunable diode laser absorption spectroscopy signals[J].Appl. Opt,2009,48:401-407.
    [130]Akira T, Mitsuhiko M. Adaptive L-filters Based on Fuzzy Rules[C]. ISCAS,1995,2:961-964.
    [131]任东海,尹文庆,胡飞.基于LabVIEW的三种相位差测量法的对比分析[J].科学技术与工程,2010(1):263-268.
    [132]张筠,董亚婷,董绍平.旋转机械状态监测与故障诊断中相位分析的应用[J].振动、测试与诊断,1998,18(2):139-142.
    [133]张伟.结构可靠性理论与应用[M].北京:科学出版社,2008,46-50.
    [134]李清富,高健磊,乐金朝,等.工程结构可靠性原理[M].郑州:黄河水利出版社,1999,45-49.
    [135]吕震宙,宋述芳,李洪双,等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009.9:99-105.
    [136]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.10:18-22.
    [137]武清玺.结构可靠性分析及随机有限元法—理论、方法、工程应用及程序设计[M].北京:机械工业出版社,2005.2:129-136.
    [138]张义民.机械零件可靠性分析的参数灵敏度分析[J],机械强度,2003,25(6):657-660.
    [139]史妍妍,孙志礼,闫明.基于响应面法的隐式极限状态函数可靠性灵敏度分析方法[J].机械科学与技术,2009,28(5):648-651.
    [140]赵洁.机械可靠性分析的响应面法研究[D].西安:西北工业大学,2006.
    [141]李伟平,王世东,周兵,等.基于响应面法和NSGA-Ⅱ算法的麦弗逊悬架优化[J].湖南大学学报(自然科学版),2011,38(6):27-32.
    [142]闫明,孙志礼,杨强.基于响应面方法的可靠性灵敏度分析方法[J].机械工程学报,2007,43(10):67-71.
    [143]GaoW, ChenJ. J., MaH. B.Dynamic response analysis of closed loop control system for intelligent truss structures based on probability[J]. Structural Engineering & Meehanies,2003,15 (2):239-248.
    [144]张义民.任意分布参数的机械零件的可靠性灵敏度设计[J].机械工程学报,2004,40(8):100-105.
    [145]张义民,刘巧伶,闻邦椿.汽车零部件可靠性灵敏度计算和分析[J].中国机械工程,2005,16(1):1026-029.
    [146]王世鹏,张义民,解艳彩.广义随机空间内相关系数的可靠性灵敏度[J].中国机械工程,2007,18(23):2752-2755.
    [147]杨搏,朱平,余海东,等.基于模态分析法的车身NVH结构灵敏度分析[J].中国机械工程,2005,19(3):361-364.
    [148]何红妮,吕震宙.线抽样可靠性灵敏度的方差分析[J].中国机械工程,2008,19(10):1153-1156.
    [149]乔红威,吕震宙.非平稳随机激励下随机结构的动力可靠性分析[J].固体力学学报,2008,29(1):36-40.
    [150]张崎,李兴斯.海上导管架平台可靠性分析抽样-模拟方法[J].大连理工大学学报,2006,46(2):166-169.
    [151]马延德,张松涛,刘伟伟.大型半潜式钻井平台安全关键技术研究[J].中国造船,2003,44(2):53-60.
    [152]黄益民,刘伟,刘永寿,岳珠峰.充液管道模态的参数灵敏度及其共振可靠性分析[J].振动与冲击,2010,29(1):193-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700