用户名: 密码: 验证码:
非线性二维时频峰值滤波算法在地震勘探随机噪声压制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球对油气及矿藏资源需求量的不断增多,未知油气田及矿藏资源的开发成为目前地震勘探工作中的重点和难点。然而,地下构造及资源埋藏条件等不确定因素给勘探工作带来了很多困难。这就要求我们具备有效的地震资料处理手段,可以保证从地震勘探过程所采集到的地震数据中发现更多的有效信息,从而为新资源的开发提供有利依据。未知的埋藏条件及复杂的勘探环境使得采集到的地震数据中通常包含大量的噪声,具有较低的信噪比,有效信息淹没其中难以辨识。我们通常将地震噪声分为两大类:随机噪声和相关噪声。本文的研究对象是陆地地震勘探中的随机噪声,随机噪声是不规则的、没有规律的,且相邻道间彼此是互不相关的,它们没有固定的频率,几乎分布于整个频带,严重影响着地震记录的信噪比。因此随机噪声压制是地震数据处理中的重点和难点。我们针对复杂条件下地震资料中随机噪声的压制处理,分析了传统时频峰值滤波算法在地震勘探信号处理过程中存在的不足,基于径向轨线时频峰值滤波思想,提出了一种时频峰值滤波非线性二次轨线模型,并通过大量合成记录和实际地震资料,对新模型进行了性能验证。
     本文首先对地震勘探的基本原理、目前国内外研究现状以及地震波的性质等多方面地震勘探的相关知识进行了介绍,使我们可以更深的认识地震勘探,熟悉地震勘探信号处理的目的及研究意义。对时频峰值滤波方法的基本原理及现有改进时频峰值滤波方法的优缺点进行分析讨论,分别从轨线类型及特征、窗长的长短对去噪效果的影响等多个方面进行探讨,为后续研究奠定基础。针对新模型分别从模型的建立、滤波轨线的选取及样本重采样方案等方面进行详细说明。
     传统时频峰值滤波的输入信号是包含多个频率成分的一道地震记录,根据最优窗长与有效信号主频之间的关系可知,不同的频率具有各自不同的最优窗长。因此,传统时频峰值滤波中采用的固定窗长是无法实现对所有频率成分的有效估计的,部分频率成分会由于窗长不合适发生严重损失。其次,根据时频峰值滤波对湮没于高斯白噪声中线性信号的无偏估计性可知,含噪信号中有效信号的线性度越高,时频峰值滤波对其造成的估计偏差越小。而在最近被提出的径向轨线时频峰值滤波方法中,由于径向轨线的倾斜方向固定,而地震记录中的同相轴通常呈弯曲状态,且方向不固定,因此部分同相轴与轨线不能达到良好的匹配,从而造成有效信号的线性度得不到有效提高,可见径向轨线模型仍然存在缺陷,有待进一步改进。由于滤波轨线(即重采样轨迹)与同相轴的匹配程度决定了有效信号线性度提高的多少。于是,我们针对弯曲同相轴的情况,将平行的径向轨线发展为弯曲的二次轨线,分别提出了时频峰值滤波的抛物轨线模型及双曲轨线模型。对于弯曲的同相轴,二次轨线与轴的匹配程度明显高于径向轨线与同相轴的匹配程度,从而充分地提高了有效信号线性度。本文提出的二次轨线模型首先对含噪记录沿一些二次轨线进行重采样,将记录变换到一个新的作用域内,在新作用域内,有效信号的线性度大大提高,从而降低了时频峰值滤波过程中瞬时频率估计的偏差,更完整地保持了有效成分。
     在抛物轨线模型中,针对最优滤波轨线选取问题,我们采用了基于Canny算子的边缘检测法估计出含噪记录中同相轴的大致边缘,再利用曲线拟合技术通过这些边缘逻辑值拟合得到轴的包络线,并将包络线与不同弯曲程度的二次轨线进行相似度判定,相似度最大的轨线即为最优滤波轨线。在样本重采样过程中采用将时刻点与轨线交点作为样本点的提取方案。与按道与轨线交点的提取方案相比,该方案增加了采样序列中的样本数量,减少了提取数据序列中信号突变的现象,使采样结果更准确。同时为了保证提取样本序列的平滑性及有效成分的完整保持,我们还利用了插值技术对位移方向数据进行扩容,从而减少样本序列中的尖峰和毛刺,使滤波效果更理想,同时也更完整地保持了有效成分。在双曲轨线模型中,轨线的离心率可以随着记录中同相轴的弯曲程度进行调节,沿双曲轨线进行重采样的过程可以近似为将含噪地震记录由原来的位移-时间域变换到一个新的作用域。在新作用域内,有效信号主频降低,线性度大大提高。与抛物轨线模型相比,新模型在重采样过程中不是简单的采用就近原则,而是利用插值技术对数据进行扩容,提高了采样的准确度。此外,最优滤波轨线的选取方法适用性更强,原来的基于Canny算子的边缘检测法对同相轴的性质要求较高,且需要根据不同的含噪记录情况设定并调节阈值;而新模型中采用变离心率的轨线族,只要根据含噪记录中轴的分布趋势,选取适合的离心率范围即可,方便且实用性强。
     每一章节末尾给出了对整章内容的概括及创新点总结。对新模型利用不同合成地震记录进行性能检验,并分别与现有的几种常用去噪方法进行效果对比。与其他方法相比,二次轨线时频峰值滤波后,随机噪声得到了有效压制,同时有效同相轴变得更连续,有效成分保持完整。此外,新模型进一步被应用于实际地震资料随机噪声压制,并分别给出了整炮记录及部分记录的去噪结果。实验结果充分反映了新模型在低信噪比条件下同相轴恢复及随机噪声压制方面的优越性,处理后的同相轴变得更清晰,更连贯;且原本断裂的同相轴也连接起来,增加了可以从记录中获得的有效信息。
With the global demand for oil, gas and mineral resources increasing, thedevelopment of the unknown oil/gas fields and mineral resources becomes important anddifficult in seismic exploration work. However, the subsurface structure and the uncertainresources burial conditions bring about many difficulties to the exploration work. Itrequires us to have an effective means for the seismic data processing to guarantee morevalid information can be found from the collected seismic data in the seismic explorationprocess so as to provide a favorable basis for the new resources. Due to the unknownburial conditions and complex exploration environment, the seismic data usually containsa lot of noise during the acquisition. It makes the signal-to-noise ratio (SNR) is so low thatthe effective information is difficult to identify. Seismic noise is usually divided into twocategories: random noise and correlated noise. In this paper, we mainly talk about therandom noise in land seismic exploration. Random noise is irregular, no laws, andunrelated to each other between the adjacent channels. It does not have a fixed frequencyand distributes in almost the entire frequency band. It has a serious impact on the seismicrecords in SNR. Therefore the random noise suppression is an important and difficult taskin seismic data processing. We analyze the shortcomings of the conventionaltime-frequency peak filtering (TFPF) algorithm in seismic signal processing and propose aquadratic-trace model of TFPF based upon the radial filtering trace ideas. Moreover, theperformance of the new model is verified on different synthetic records and applied in realdata processing.
     This paper analyzes the shortcomings of the conventional TFPF method in seismic dataprocessing. In the conventional TFPF, the input signal is a channel of seismic record thatcontains plurality of frequency components. According to the relationship between theoptimal window length (WL) and the dominant frequency of the effective signal, we knowthat different frequencies components have different optimal window lengths (WLs). Thus,the fixed window length (WL) used in the conventional TFPF can not be suitable for allfrequencies components. Some frequencies components will have serious damage due tothe unsuitable WL. According to the unbiased estimate property of time-frequency peakfiltering (TFPF) for the linear signal; we know that the higher of the linearity of theeffective signal in the input signal is, the smaller the deviation of TFPF brings about. Thus,improvement of the linearity of the effective signal through resampling the noisy recordsalong some filtering traces is the core idea of the principle of trace-based TFPF.Meanwhile, the matching degree of the filter trace (sample trajectory) and the reflectionevents determines the linearity enhancement of the effective signal. In2011, Wu et al. proposed a radial-trace time-frequency peak filtering (RT-TFPF) method using radialtraces. In this method, the noisy record is resampled along some radial traces to improvethe linearity of the effective signal. However, due to the fixed inclination direction oftraces, the reflection events are usually bent in shape, and the direction is not fixed.Sometimes, the reflection events and the trace can not achieve a good match. So, we focuson the case of bent events and develop the traces from parallel form to the quadratic form.In this paper, we propose a quadratic-trace time-frequency peak filtering includingparabolic-trace model and hyperbolic-trace model. For the case of bent events, thematching degree of the quadratic traces is clearly higher than the radial traces. Thus, thelinearity level of the effective signal is enhanced greater.
     In the selection of the optimal filtering traces, we have adopted edge detection methodto obtain the approximate edge of the events. Then, we get the envelope of the eventsthrough the curve fitting and compute the similarity of the envelope with quadratic curvesof different bending degree. The greatest similarity corresponds to the optimal filteringtrace. In the resampling process, we take the intersection point of time and the filteringtrace as the sample point to increase the number of samples in the extracted sequences. Inaddition, in order to ensure the smoothness of the extracted sample sequence, we alsomake use of interpolation techniques to reduce the spikes and glitches in the samplesequence. In the hyperbolic-trace model, the bending degree of the filtering trace isadjustable. Meanwhile, we deduce that along hyperbolic traces resampling process can beapproximated by the noised original seismic record x-t domain to the e-t domain. In thenew domain, the dominant frequency of the effective signal decreases and the linearity isimproved greatly. Different sample sequences have different eccentricity, which coincideswith the variable eccentricity mentioned originally. In the quadratic-trace model presentedin this paper, the noisy record is resampled along some quadratic traces. Then the noisyrecord is transformed into a new domain, where the linearity if the effective signal isgreatly improved and thereby the deviation of the instantaneous frequency estimation isreduced.
     Firstly, the basic principle of seismic exploration, the current research status and thenature of seismic wave and other aspects of seismic exploration related knowledge wereintroduced, so that we can get a deeper understanding of seismic exploration and seismicsignal processing. Moreover, the basic principles of TFPF and its existing improvedmethods are illustrated and the advantages and disadvantages are analyzed and discussed,respectively. The effects of the filtering trace and the window length (WL) on the noisereduction are discussed, respectively. Finally, we use different synthetic records to test theperformance of the quadratic-trace model, and compare it with several existing commonlyused de-noising methods. The experimental results verify that after the quadratic-tracetime-frequency peak filtering (TFPF), the random noise has been effectively suppressedand the effective events become more continuous. In addition, we further applied the novel model to the actual seismic data in random noise suppression. The entire shotrecords and some records denoising results are both given. Experimental results show thesuperiority of the novel model in the events recovery and random noise suppressionsufficiently under low SNR conditions. The reflection events become clearer, morecontinuous; meanwhile some originally broken events are linked to provide more validinformation.
引文
[1]陆基孟.地震勘探原理[M].北京:石油工业出版社,1982.
    [2]何樵登.地震勘探——原理和方法[M].北京:地质出版社,1980.
    [3] O. Yilmaz. Seismic data processing [J]. Soc. Expl. Geophys,1987.
    [4]张希山,张建英,郑玉霞等.复杂地区低信噪比地震资料处理方法研究[J].石油地球物理勘探,2002,37(增刊):40-43.
    [5]安锋,张光德,段卫星等.陆上地震勘探随机干扰分析.油气地质与采收率[J].2006,13(4):62-64
    [6]张明友,吕明.近代信号处理理论与方法[M].国防工业出版社,2005.
    [7]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社,1998.
    [8] Ristau J P and Moon W M. Adaptive filtering of random noise in2-D geophysical data [J],Geophysics,2001,66:342–349.
    [9] Jeng Y, Li Y W, Chen C S. Adaptive filtering of random noise in near-surface seismic andground-penetrating radar data [J]. Journal of Applied Geophysics,2009,68(1):36-46.
    [10] Buttkus B and Bonnemann C. Enhancement of deep seismic reflections in pre-stack data byadaptive filtering [J]. Pure and Applied Geophysics,1999,156(1-2):253-178.
    [11] Bekara M and Baan M. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics,2009,74: V89–V98.
    [12] Huang N E, Shen Z and Long S R. The empirical mode decomposition and Hilbert spectrum fornonlinear and nonstationary time series analysis [J]. Proc. R. Soc, London A,2002,454:903-995.
    [13] Freire S. L. and Ulrych T. J. Application of singular value decomposition to vertical seismicprofiling [J]. Geophysics,1985,53(6):778-785.
    [14]吴亚东,符溪和文鹏飞等.奇异值分解压制随机噪声的方法及应用.新疆石油地质,2004,24(2):144-145.
    [15] Deng X Y, Yang D H, Yang B J. LS-SVR with variant parameters and its practical applications forseismic prospecting data denoising [J]. IEEE International Symposium on Industrial Electronics,2008:1060-1063.
    [16] Li Y J, Yang B J, Li Y. Combining SVD with wavelet transform in synthetic seismic signaldenoising [C]. Proceedings of the2007International Conference on Wavelet Analysis and PatternRecognition, Beijing, China,2007:1831-1836.
    [17] Bekara M, Baan V D. Local singular value decomposition for signal enhancement of seismic data[J]. Geophysics,2007,72(2):59-65.
    [18] Lu Y H and Lu W K. Edge-preserving polynomial fitting method to suppress random seismicnoise [J]. Geophysics,2009,74: V69–V73.
    [19] Yuan S Y and Wang S X. Edge-preserving noise reduction based on Bayesian inversion withdirectional difference constraints [J]. J. Geophys. Eng.2013,10(2):1–10.
    [20] Canales L L. Random noise reduction [C].54th Annual International Meeting, SEG, ExpandedAbstracts,1984:525-527.
    [21] Abma R and Claerbout J. Lateral prediction for noise attenuation by t-x and f-x techniques [J].Geophysics,1995,60:1887-1896.
    [22]陈湛文,刘勇,王春梅.基于空间变换的F-X域地震去噪新方法.大庆石油地质开发,2002,21(3):74-75.
    [23] Harris P E and White R E. Improving the performance of f-x prediction filtering at lowsignal-to-noise ratios [J]. Geophys, Prospect,1997,45:269–302.
    [24]康冶,于承业,甲卧等. f-x域去噪方法研究[J].石油地球物理勘探,2003,38(2):136-138.
    [25]蔡加铭,周兴元,吴律. f-x域算子外推去噪技术研究[J].石油地球物理勘探,1999,34(3):325-331.
    [26]国九英,周兴元,杨慧珠. f-x, y域随机噪音衰减[J].石油地球物理勘探,1995,30(2):207-215.
    [27] Oropeza V and Sacchi M. Simultaneous seismic data denoising and reconstruction viamultichannel singular spectrum analysis [J]. Geophysics,2011,76: V25-V32.
    [28] Sacch M Di, Ulrych T J and Walker C J. Interpolation and extrapolation using a high-resolutiondiscrete Fourier transform [J]. IEEE Transactions on Signal Processing,1998,46:31-38.
    [29]王振国,周熙襄,李晶.基于小波变换的最小光滑滤波去噪.石油地球物理勘探,2002,37(6):594-600.
    [30] Zhang R F and Ulrych T J. Physical wavelet frame denoising [J]. Geophysics,2003,68:225–231.
    [31] Xu Y, Weaver J B and Healy D M. Wavelet transform domain filters: a spatially selective noisefiltration technique [J]. IEEE Transactions on Image Processing,1994,3(6):747-758.
    [32] Fu Y and Zhang Ch Q. Seismic Data De-noising Based on Second Wavelet Transform [C].International Conference on Advanced Computer Theory and Engineering,2008:186-189.
    [33]高静怀,毛剑,满蔚仕等.叠前地震资料噪声衰减的小波域方法研究[J].地球物理学报,2006,49(4):1155-1163.
    [34]王西文,刘全新,高静怀,刘洪,李幼铭.地震资料在小波域的分频处理与重构[J].石油地球物理勘探,2001,36(1):78-85.
    [35]付燕..基于小波变换的地震信号分时分频相关去噪[J].2002,30(6):52-54.
    [36]章珂,刘贵忠,邹大文、钱俊生、李凤歧.二进小波变换方法的地震信号分时分频去噪处理[J].地球物理学报,1996,39(2):265-271.
    [37]杨立强,宋海斌,郝天瑶,江为为.基于二维小波变换的随机噪声压制方法研究[J].石油物探,2005,44(1):4-6.
    [38] Cao Siyuan and Chen Xiangpeng. The Second-generation Wavelet Transform and its Applicationin Denoising of Seismic Data. APPLIED GEOPHYSICS,2005,2(2):70-74.
    [39]詹毅,周熙襄.小波包分析与奇异值分解(SVD)叠前去噪方法[J].石油地球物理勘探,2004,39(4):394-397.
    [40] Herrmann F and Hennenfent G. Non-parametric seismic data recovery with curvelet frames [J].Geophysical Journal International.2008,173:233–248.
    [41] R. Neelamani. Curvelets-a versatile tool for denoising seismic data [C]. Signal Processing (EAGE)of the70thEAGE Conference&Exhibition,2008.
    [42] Tang G, Ma J W. Application of total-variation-based curvelet shrinkage for three-dimensionalseismic data denoising [J]. IEEE Geoscience and Remote Sensing Letter,2011,8:103-107.
    [43] Neelamani R, Baumstein A I and Gillard D G. Coherent and random noise attenuation using thecurvelet transform [J]. The Leading Edge,2008,27:240–248.
    [44] Shan L Y, Fu J R and Zhang J H. Curvelet Transform and its Application in Seismic DataDenoising [C]. International Conference on Information Technology and Computer Science,2009:396-399.
    [45] Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscaleand nonlinear approach [J]. Geophysics,2008b,73(1): A1-A5.
    [46]彭才,常智,朱仕军.基于曲波变换的地震数据去噪方法[J].石油物探,2008a,47(5):461-464.
    [47]彭才,常智,韩朝军等.基于Contourlet变换的地震噪声衰减[J].勘探地球物理进展,2008b,31(4):274-277.
    [48] M. Naghizadeh. Seismic data interpolation and denoising in the frequency-wavenumber domain[J]. Geophysics.2012,77:71-80.
    [49] Liu C, Liu Y, Yang B J. A2D multistage median filter to reduce random seismic noise[J].Geophysics.2006,7(5):105-110.
    [50] Duncan G and Beresford G. Median filter behavior with seismic data[J]. Geophysical Prospecting,1995,43(3):329-345.
    [51]刘喜武,刘洪,李幼铭.独立分量分析及其在地震信息处理中应用初探[J].地球物理学进展,2003,18(1):90-96.
    [52]彭才,朱仕军,孙建库等.基于独立成分分析的地震数据去噪[J].勘探地球物理进展,2007a,30(1):30-32.
    [53] Jones I F and Levy S. Signal-to-noise ratio enhancement in multichannel seismic data via theKarhunen-Loeve transform [J]. Geophysical Prospecting,1987,35(1):12-32.
    [54] Fomel S. Towards the seislet transform [C].76th Ann. Internat. Mtg., Soc. Expl. Geophys.,Expanded Abstracts,2006:2847–2851.
    [55] Kim S M and Wang S Y. A Wiener filter approach to the binaural reproduction of stereo sound[J]. Journal of the Acoustical Society of America,2003,114(6):3179-3188.
    [56] Izquierdo M A G, Hernandez M G, Graullera O, et al. Time-frequency Wiener filtering forstructural noise reduction[J]. Ultrasonics,2002,40(1):259-261.
    [57] Lin H B, Li Y and Yang B J. Recovery of seismic events by time-frequency peak filtering [C].Image processing, IEEE International conference on,2007,5: V-441-V444.
    [58] Lin H B, Li Y and Xu X C. Segmenting time-frequency peak filtering method to attenuation ofseismic random noise [J]. Chinese J.Geophys.(in Chinese),2011,54(5):1358-1366.
    [59]林红波.时频峰值滤波随机噪声消减技术及其在地震勘探中的应用[D].长春:吉林大学,2007.
    [60] Elboth T, Presterud I V and Hermansen D. Time-frequency seismic data denoising [J]. Geophys.Prospecting,2010,58(3):441–453.
    [61] Boashash B and Mesbah M. Signal enhancement by time-frequency peak filtering [J]. IEEETransactions on Signal processing,2004,52(4).
    [62] Li Y, Lin H B and Yang B J. The influence of limited linearization of time window on TFPFunder the strong noise background [J]. Chinese J.Geophys (in Chinese),2009,52(7):1899-1906.
    [63] Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution formulti-component signals analysis [J]. IEEE Transactions on Signal Processing,2001,49:2232–2239.
    [64]陈光化,曹家麟,王健.应用自适应时频分布的瞬时频率估计[J].2002,24(1):31-33.
    [65] Lin H B, Li Y and Yang B J. Varying-window-length time-frequency peak filtering and itsapplication to seismic data [C]. International Conference on Computational Intelligence andSecurity,2008:429-432.
    [66] Wu N, Li Y, and Yang B J. Noise attenuation for2-D seismic data by radial-trace time-frequencypeak filtering [J]. IEEE Geoscience and Remote Sensing Letters,2011,8(5):874-878.
    [67] Tian Y N, Li Y. Parabolic-trace time-frequency peak filtering for seismic random noiseattenuation. Geoscience and remote sensing letters,2013,10.1109/LGRS.2013.2250906.
    [68]林红波,李月,叶文海等.时频峰值滤波去噪技术及其应用[J].地球物理学进展,2008,23(6):1953-1957.
    [69]林红波,李月,潘伟.时频峰值滤波信号增强方法在实际地震资料处理中的应用[J].吉林大学学报(地球科学版),2007,37(5):1038-1041.
    [70]林红波,李月.基于时频峰值滤波去除地震图像中的随机噪声[J].哈尔滨工业大学学报.2005,37:66-68.
    [71]金雷,李月,杨宝俊.用时频峰值滤波方法消减地震勘探资料中随机噪声的初步方法[J].地球物理学进展,2005,20(3):724-728.
    [72]金雷.时频峰值滤波在地震勘探资料中随机噪声压制的研究[D].长春:吉林大学,2006.
    [73]吴宁.基于时频峰值滤波的勘探地震资料消噪方法的研究[D].长春:吉林大学,2007.
    [74]林红波.时频峰值滤波随机噪声消减技术及其在地震勘探中的应用[D].长春:吉林大学,2007.
    [75]李诗宽.基于自适应时频峰值滤波的地震信号去噪研究[D].长春:吉林大学,2009.
    [76]李月,林红波,杨宝俊等.强随机噪声条件下时窗类型局部线性化对TFPF技术的影响[J].地球物理学报,2009,52(7):1899-1906.
    [77]李月,林红波,杨宝俊等.强随机噪声条件下时窗类型局部线性化对TFPF技术的影响[J].地球物理学报,2009,52(7):1899-1906.
    [78] Adelaide,Australia, M. Arnold, B. Boashash, Time frequency peak filtering: A non-model basedsignal enhancement scheme. International Symposium on Information Theory and its Applications(ISITA-94) Sydney, Australia, November.1994:671-676.
    [79] Mesbh M, Boashash B. Reduced bias time-frequency peak filtering[C].6thinternationalsymposium on signal processing and its applications, Kuala Lumour.2001,1:327-330.
    [80] Roessgen M, Boashash B. An investigation of time-frequency peak filtering applied to FSKsignals[C]. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis,Philadelphia, USA, October1994.
    [81] M. Roessgen. B. Boashash, M. Deriche. Preprocessing noisy EEG data using time-frequency peakfiltering[C]. Proceedings of15th Annual International Conference of the IEEE Medicine andBiology Society, San Diego, California, USA,1993:28-31.
    [82] Gruchala, H and Czyzewski, M. The instantaneous frequency measurement receiver in thecomplex electromagnetic environment Microwaves [J], Radar and Wireless Communications.MIKON-200415th International Conference,2004,1(17-19):155–158.
    [83] Arnold M J, Rossgen M, Boashash B. Filtering real signals through modulation and peakdetection in the time-frequency plane[C]. In Proceedings of the IEEE international Conference onAcoustics, Speech and Signal Processing, ICASSP94, III:345-348.
    [84] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Part1:fundamentals; part2: algorithms and applications, Proc. IEEE,1992,80:520-538.
    [85] Ostlund N, Yu J and Karsson J S. Improved maximum frequency estimation with application toinstantaneous mean frequency estimation of surface electromyography [J]. IEEE Trans. BiomedEng.2004,51(9):1541-1546.
    [86] Hussain Zahir M, Boashash B. Adaptive Instantaneous frequency estimation of multicomponentFM signals using quadratic time-frequency distributions [J]. IEEE Trans. Signal Processing.2000,50(8):657-660.
    [87] Borda, Monica, Nafornita. A new instantaneous frequency estimation method based on the use ofimage processing techniques [J]. ImageProcessing: Algorithms and Systems II. Proceedings of theSPIE,2003,5014:147-156.
    [88] Hassanpour H, Meshah M, Boashash B. Time-frequency based newborn EEG seizure detectionusing low and high frequency signatures[J]. Physiol. Meas.2004,25:935-944.
    [89] Stankovic L J and Katkovnik V. Algorithm for the instantaneous frequency estimation usingtime-frequency distributions with adaptive window width [J]. IEEE Signal Processing Letters,1998,5(9):224-227.
    [90] Claerbout J F. Ground roll and radial traces. Stanford Univ., Stanford, CA, Stanford ExplorationProject Report,1983, SEP-35.
    [91] Henley D. The radial trace transform: An effective domain for coherent noise attenuation andwavefield separation [C]. Proc.69th Annu. Int. Meeting., Soc. Exploration Geophys. ExpandedAbstracts,1999:1204–1207.
    [92] Brown M and Claerbout J. A pseudo-unitary implementation of the radial trace transforms [J].Proc. Soc. Exploration Geophysicists,2000,70:2115–2118.
    [93] Henley D C. Coherent noise attenuation in the radial trace domain [J]. Geophysics,2003,68(4):1408–1416.
    [94]夏洪瑞,唐勇.径向道技术在消除相干噪声中的应用[J].勘探地球物理进展,2007,30(6):448-454.
    [95]刘志鹏,陈小宏,李景叶.径向道变换压制相干噪声方法研究[J].地球物理学进展,2007,23(4):1199-1204.
    [96] Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence.1986, PAMI8(6):679-698.
    [97] Li E, Zhu SH L and Zhu B SH. An adaptive edge-detection method based on the Canny operator
    [C]. International Conference on Environmental Science and Information Application Technology.2009,1:465-469.
    [98] Wang Zh and He S. X. An adaptive edge-detection method based on Canny algorithm [J]. Journalof Image and Graphics,2004,9(8):957-962.
    [99]刘志鹏,陈小宏,李景叶.径向道变换压制相干噪声方法研究[J]. Progress in Geophysics.2008:1199-1204.
    [100] Brown M and Claerbout J. A pseudo-unitary implementation of the Radial Trace Transform.Stanford University,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700