用户名: 密码: 验证码:
分形半导体多层异质结构中的自旋极化输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选择具有重要应用价值和基础理论研究意义的两端具有铁磁接触的分形半导体多层异质结构(F/FSM/F)作为研究对象,针对其中的电子自旋极化输运现象、关联系数、电流以及散粒噪声等问题进行较为细致的研究,通过与两端具有铁磁接触的周期半导体多层异质结构(F/PSM/F)中的相关结果比较,揭示了一些新效应及其物理机制。旨在探索新的量子结构,为可能的具有特殊性质的非线性自旋电子学器件的设计开发提供理论依据。本文得到的主要结论如下:
     (1)在自旋极化输运过程中,提出了一种具有自相似结构的F/FSM/F异质结构。F/FSM/F异质结构可以看作是属于F/S/F异质结构的一种带有缺陷的具有严格周期性的F/PSM/F异质结构。
     (2)基于相干量子输运理论,考虑Rashba自旋-轨道耦合相互作用,我们系统地研究了F/FSM/F和相应F/PSM/F异质结构中半导体层厚确定和随机变化两种情况下的自旋极化电子的输运性质;分别讨论了两种不同结构的隧穿几率与结构迭代次数n、半导体多层结构的总长度d、Rashba自旋-轨道耦合强度kR /k0和半导体层厚随机变化的随机度R之间的依赖关系。计算结果表明,F/FSM/F异质结构的隧穿谱与F/PSM/F异质结构的隧穿谱相比具有许多有趣的特性。例如,更显著的量子尺寸效应、更加尖锐的局域共振峰和半导体层厚随机波动的稳定性等等。同时,我们也发现,在半导体层厚存在随机变化的F/PSM/F和F/FSM/F异质结构中,自旋向上和自旋向下电子的隧穿几率不仅在左右铁磁体磁化方向平行(P)时可以分离,而且在磁化方向反平行(AP)时也会分离。这一结果与层厚没有随机变化的情况明显不同。
     (3)借助关联系数研究了自旋极化电子输运过程中的分形行为。通过计算隧穿几率的关联系数表明:与F/PSM/F异质结构的隧穿谱相比,F/FSM/F异质结构的隧穿谱具有与半导体多层中各层的分形分布有关的部分自相似结构。也就是说,共振隧穿谱与几何结构之间有一个清晰而直接的关联。
     (4)基于相干量子理论和Landauer-Büttiker散射理论,考虑Rashba自旋-轨道耦合相互作用,我们系统地研究了电场作用下电子隧穿第四代F/FSM/F异质结构和相应F/PSM/F异质结构的自旋相关的散粒噪声的性质。计算并讨论了两种不同结构的电流、散粒噪声和Fano因子与半导体多层结构的总长度、Rashba自旋-轨道耦合相互作用、外加偏压以及两铁磁接触磁矩间夹角的依赖关系。结果表明,电流、散粒噪声和Fano因子具有强自旋依赖性,不仅能够通过外加偏压和Rashba自旋-轨道耦合相互作用进行调制,而且也与半导体多层的总长度和两铁磁接触磁矩间的夹角等结构参数密切相关。
     (5)与F/PSM/F异质结构相比,F/FSM/F异质结构的电流、散粒噪声和Fano因子具有一些有趣的物理性质。例如,更显著的量子尺寸效应、随着偏压或Rashba自旋-轨道耦合强度的增加表现出的低频非周期振荡规律以及随角度的增加出现的对Rashba自旋-轨道耦合强度的弱依赖性等。我们的结果进一步表明,在准一维自旋晶体管器件的实现和量子相干自旋电子学器件的设计上,F/FSM/F异质结构可能比F/PSM/F异质结构更占有优势。因此,我们的研究结果可能会促进和激发人们对介观输运过程中精细物理机制的进一步研究,也有可能用于优化未来自旋电子学器件的设计。
In this paper we investigate theoretically the spin-polarized transport properties of electrons tunneling through fractal semiconductor multilayers with two ferromagnetic contacts (F/FSM/F) in the presence of a spin-orbit interaction, which possess great potential in future applications. The spin-polarized transport properties of the F/FSM/F heterostructures are compared with that of periodic semiconductor multilayers again with ferromagnetic contacts (F/PSM/F). We expect to provide theoretical foundation for the development of nonlinear spintronic devices with our work. The main results obtained in this paper are listed below:
     (1) F/FSM/F heterostructures, a type of F/S/F having a self-similar structure have been introduced. A given F/FSM/F heterostructure can be understood as a strictly periodic F/PSM/F heterostructure with defects.
     (2) On the basis of coherent quantum theory, we have systematically investigated spin-polarized electron transport through the F/FSM/F and corresponding F/PSM/F heterostructures with and without randomly distributed variations in the semiconductor layer thicknesses but in the presence of a spin-orbit interaction. The dependence of the transmission coefficients for the two different structures on the degree of complexity, n , the total thickness of the SM structure, the strength of the Rashba spin-obit coupling and the degree of randomness in the semiconductor layer thicknesses has been discussed. The numerical results show that transmission spectra of the F/FSM/F heterostructures posses some distinctive properties, such as stability against the effects of randomness in the layer thicknesses, sharp localized resonances, and a more marked quantum size effect than in non-fractal structures. We have found that the transmission for spin-up and spin-down electrons can be separated not only in the P magnetizations but also in the AP magnetizations, which is different from the case for these structures without fluctuating layer thicknesses.
     (3) Fractal behavior in spin electron transport has been studied by means of the correlation coefficient. The correlation coefficient shows how the transmission coefficient for the F/FSM/F heterostructures has a self-similar structure associated with the fractal distribution of the SM structure. In other words, transmission spectra of the F/FSM/F heterostructures posses scalability than in non-fractal structures. This property illustrates a clear and direct correlation between the geometry of a structure and the spectra of resonant transmission.
     (4) On the basis of coherent quantum theory and the Landauer-Büttiker scattering formalism, we have systematically investigated the spin-dependent shot noise properties of electron tunneling through the fourth-stage F/FSM/F and the corresponding F/PSM/F heterostructures in the presence of the Rashba spin-orbit interaction and an electric field. The dependences of the current, shot noise and Fano factor for the two different structures on the total length of the SMs structure, the Rashba spin-obit interaction, the external bias voltage, and the angle between the magnetic moments in the two ferromagnetic contacts have been numerically calculated and discussed. The results indicate that the shot noise becomes strongly spin-dependent and can be greatly modulated not only by the external electric field and Rashba spin-orbit interaction, but also by the structural configuration and length of the semiconductor multilayers.
     (5) Compared to the F/PSM/F heterostructures, the current, shot noise, and Fano factor of the F/FSM/F heterostructures can exhibit a more marked quantum size effect, along with typical low-frequency aperiodic oscillations as the bias voltage or the Rashba spin-orbit coupling strength increases. There is little Rashba spin-orbit coupling strength dependence with increasing angle between the two magnetic moments of the left and right ferromagnets. Our results have further demonstrated that the F/FSM/F heterostructures have possible superiority over F/PSM/F heterostructures for the implementation of quasi-one-dimensional spin-transistor devices and the design of quantum coherent spintronic devices. Our results may thus shed light on and encourage further study of the subtle mechanisms in mesoscopic transport processes and help optimize the design of future spintronic devices.
引文
[1] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications[J]. Rev Mod Phys, 2004, 76(2): 323-410.
    [2] Prinz G A. Magnetoelectronics[J]. Science, 1998, 282(5394): 1660-1663.
    [3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M. Spintronics: A Spin-Based Electronics Vision for the Future[J]. Science, 2001, 294(5546): 1488-1495.
    [4] Mott N F. The electrical conductivity of transition metals[J]. Proc R Soc London, Ser. A, 1936, 153(880): 699-717; Mott N F. The resistance and thermoelectric properties of the transition metals[J]. Proc R Soc London, Ser. A, 1936,156(888): 368-382.
    [5] Campbell I A, Pert A, Pomeroy A R. Evidence for two current conduction iron[J]. Philos Mag, 1967,15(137): 977-983.
    [6] Fert A, Campbell I A. Two-Current Conduction in Nickel[J]. Phys Rev Lett, 1968,21(16): 1190-1192.
    [7] Moodera Jagadeesh S, Mathon, George. Spin polarized tunneling in ferromagnetic junctions[J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1-3): 248-273.
    [8] Meservey R, Tedrow P M, Fulde Peter. Magnetic Field Splitting of the Quasiparticle States in Superconducting Aluminum Films[J]. Phys Rev Lett, 1970, 25(18): 1270-1272.
    [9] Tedrow P M, Meservey R. Spin Polarization of Electrons Tunneling from Films of Fe, Co, Ni, and Gd[J]. Phys Rev B, 1973, 7(1): 318-326; Meservey R, Tedrow P M. Spin polarization of tunneling electrons from films of Fe, Co, Ni, and Gd[J]. Solid State Commun, 1972, 11(2): 333-336; Meservey R, Tedrow P M, Moodera J S. Electron spin polarized tunneling study of ferromagnetic thin films[J]. Journal of Magnetism and Magnetic Materials, 1983, 35(1-3): 1-6.
    [10] Kasuya T, Yanase A. Anomalous Transport Phenomena in Eu-Chalcogenide Alloys[J]. Rev Mod Phys, 1968, 40(4): 684-696.
    [11] Nagaev E L. Physics of Magnetic Semiconductors[M]. Moscow: Mir Publishers, 1983: 63、324.
    [12] Esaki L, Stiles P J, von Molnar S. Magnetointernal Field Emission in Junctions of Magnetic Insulators[J]. Phys Rev Lett, 1967, 19(15): 852-854.
    [13] Moodera J S, Hao X, Gibson G A, Meservey R. Electron-Spin Polarization in Tunnel Junctions in Zero Applied Field with Ferromagnetic EuS Barriers[J]. Phys Rev Lett, 1988, 61(5): 637-640.
    [14] Hao X, Moodera J S, Meservey R. Spin-filter effect of ferromagnetic europium sulfide tunnel barriers[J]. Phys Rev B, 1990, 42(13): 8235-8243.
    [15] Julliére M. Tunneling between ferromagnetic films[J]. Phys Lett A, 1975, 54(3): 225-226.
    [16] Moodera J S, Kinder Lisa R, Wong Terrilyn M, Meservey R. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions[J]. Phys Rev Lett, 1995, 74(16): 3273-3276.
    [17] Slonczewski J C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier[J]. Phys Rev B, 1989, 39(10): 6995-7002.
    [18] Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R, Mauri D. Giant magnetoresistive in soft ferromagnetic multilayers[J]. Phys Rev B, 1991, 43(1): 1297-1300.
    [19] Maekawa S, Gafvert U. Electron tunneling between ferromagnetic films[J]. IEEE Trans Magn, 1982, 18(2): 707-708.
    [20] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[J]. Phys Rev Lett, 1988, 61(21): 2472-2475.
    [21] Gijs M A M, Bauer G E W. Perpendicular giant magnetoresistance of magnetic multilayers[J]. Adv Phys, 1997, 46(3/4): 285-445.
    [22] Viret M, Berger S, Gabureac M, Ott F, Olligs D, Petej I, Gregg J F, Fermon C, Francinet G, Le Goff G. Magnetoresistance through a single nickel atom[J]. Phys Rev B, 2002, 66(22): 220401[4 pages].
    [23] Miyazaki T, Tezuka N. Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions[J]. J Magn Magn Mater, 1995, 151(3): 403-410.
    [24] Bychkov Yu A, Mel'nikov V I, Rashba E I. Effect of spin-orbit coupling on the energy spectrum of a 2D electron system in a tilted magnetic field[J]. Zh Eksp Teor Fiz, 1990, 98(2): 717-726 [Sov Phys JETP, 1990, 71(2): 401-405].
    [25] Tokura Y, Tomioka Y, Kuwahara H, Asamitsu A, Moritomo Y, Kasai M. Origins of colossal magnetoresistance in perovskite-type manganese oxides (invited)[J]. J Appl Phys, 1996, 79(8): 5288-5291.
    [26] Kobayashi K L, Kimura T, Sawada H, Terakura K, Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure[J]. Nature (London), 1998, 395(6703): 677-680.
    [27] Asamitsu A, Tomioka Y, Kuwahara H, Tokura Y. Current switching of resistive states in magnetoresistive manganites[J]. Nature (London), 1997, 388(6637): 50-52.
    [28] Barna? J, Fuss A, Camley R E, Grünberg P, Zinn W. Novel magnetoresistance effect in layered magnetic structures: Theory and experiment[J]. Phys Rev B, 1990, 42(13): 8110-8120.
    [29] Saito Y, Hashimoto S, Inomata K. Giant magnetoresistance dependence on Ar acceleration voltage in Co9Fe/Cu and Co3Fe/Cu multilayers[J]. Appl Phys Lett, 1992, 60(19): 2436-2438.
    [30] Shintaku K, Daitoh Y, Shinjo T. Magnetoresistance effect and interlayer exchange coupling in epitaxial Fe/Au(100) and Fe/Au(111) multilayers[J]. Phys Rev B, 1993, 47(21): 14584-14587.
    [31] Yu Chengtao, Li Shuxiang, Lai Wuyan, Yan Minglang, Wang Yizhong, Wang Zhenxi. Giant magnetoresistance in Fe/Ag multilayers and its anomalous temperature dependence[J]. Phys Rev B, 1995, 52(2): 1123-1132.
    [32] Parkin S S P, Li Z G, Smith David J. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers[J]. Appl Phys Lett, 1991, 58(23): 2710-2712.
    [33] Zhang Xiangdong, Li Bo-Zang, Sun Gang, Pu Fu-Cho. Spin-polarized tunneling and magnetoresistance in ferromagnet/insulator(semiconductor) single and double tunnel junctions subjected to an electric field[J]. Phys Rev B, 1997, 56(9): 5484-5488.
    [34]曾谨言.量子力学(下册)[M].北京:科学出版社,1981: 569-591.
    [35] Bychkov Y A, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. J Phys C: Solid State Phys, 1984, 17(33): 6039-6045.
    [36] Lommer G, Malcher F, Rossler U. Spin splitting in semiconductor heterostructures for B→0[J]. Phys Rev Lett, 1988, 60(8): 728-731.
    [37] de Andrada e Silva E A, La Rocca G C, Bassani F. Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures[J]. Phys Rev B, 1994, 50(12): 8523-8533.
    [38] Grundler Dirk. Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers[J]. Phys Rev Lett, 2000, 84(26): 6074-6077.
    [39] Datta S, Das B. Electronic analog of the electro-optic modulator[J]. Appl Phys Lett, 1990, 56(7): 665-667.
    [40] Sun Qing-feng, Xie X C. Spontaneous spin-polarized current in a nonuniform Rashba interaction system[J]. Phys Rev B, 2005, 71(15): 155321[6 pages].
    [41] Sun Qing-feng, Xie X C. Bias-controllable intrinsic spin polarization in a quantum dot: Proposed scheme based on spin-orbit interaction[J]. Phys Rev B, 2006, 73(23): 235301[5 pages].
    [42] Dresselhaus G. Spin-Orbit Coupling Effects in Zinc Blende Structures[J]. Phys Rev, 1955, 100(2): 580-586.
    [43] Büttiker M. Voltage fluctuations in small conductors[J]. Phys Rev B, 1987, 35(8): 4123-4126.
    [44] Awschalom D D, Losss D, Samarth N. Semiconductor Spintronics and Quantum Computation. Series: Nanoscience and Technology[M]. Berlin Heidelberg: Springer-Verlag, 2002: 221.
    [45] Ohno H, Matrukura F, Ohno Y. Semiconductor Spin Electronics[J]. JSAP International, 2002, 5: 4-13.
    [46] Fabian J, Matos-Abiague A, Ertler C, Stano P, ?uti? I. Semiconductor spintronics[J]. Acta Physica Slovaca, 2007, 57(4/5): 565-907.
    [47] Nitta Junsaku. Semiconductor Spintronics[J]. NTT Technical Review, 2004, 2(6): 31-36.
    [48] Egues J Carlos, Burkard Guido, Loss Daniel. Rashba Spin-Orbit Interaction and Shot Noise for Spin-Polarized and Entangled Electrons[J]. Phys Rev Lett, 2002, 89(17): 176401[4 pages].
    [49] Sch?pers Th, Nitta J, Heersche H B, Takayanagi H. Interference ferromagnet/semi- conductor/ferromagnet spin field-effect transistor[J]. Phys Rev B, 2001, 64(12): 125314[5 pages].
    [50] Mireles Francisco, Kirczenow George. Coherent spin-valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions[J]. Phys Rev B, 2002, 66(21): 214415[13 pages]; Mireles Francisco, Kirczenow George. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires[J]. Phys Rev B, 2001, 64(2): 024426[13 pages].
    [51] Mireles F, Kirczenow G. From classical to quantum spintronics: Theory of coherent spin injection and spin valve phenomena[J]. Europhys Lett, 2002, 59 (1): 107-113.
    [52] Schmidt G, Ferrand D, Molenkamp L W, Filip A T, van Wees B J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor[J]. Phys Rev B, 2000, 62(8): R4790-R4793.
    [53] Hu C -M, Nitta Junsaku, Jensen A, Hansen J B, Takayanagi Hideaki. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts[J]. Phys Rev B, 2001, 63(12): 125333[4 pages].
    [54] Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem[J]. Phys Rev B, 2000, 62(24): R16267-R16270.
    [55] Alvarado Santos F, Renaud Philippe. Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs[J]. Phys Rev Lett, 1992, 68(9): 1387-1390.
    [56] Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Sch?nherr H -P, Ploog K H. Room-Temperature Spin Injection from Fe into GaAs[J]. Phys Rev Lett, 2001, 87(1): 016601[4 pages].
    [57] Hu C–M, Matsuyama T. Spin Injection Across a Heterojunction: A Ballistic Picture[J]. Phys Rev Lett, 2001, 87(6): 066803[4 pages].
    [58] Monsma D J, Lodder J C, Popma Th J A, Dieny B. Perpendicular Hot ElectronSpin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor[J]. Phys Rev Lett, 1995, 74(26): 5260-5263.
    [59] Rippard W H, Buhrman R A. Spin-Dependent Hot Electron Transport in Co/Cu Thin Films[J]. Phys Rev Lett, 2000, 84(5): 971-974.
    [60] Jansen R, van't Erve O M J, Kim S D, Vlutters R, Anil Kumar P S, Lodder J C. The spin-valve transistor: Fabrication, characterization, and physics (invited)[J]. J Appl Phys, 2001, 89(11): 7431-7436.
    [61] Fiederling R, Reuscher G, Ossau W, et al. Injection and Detection of a Spin Polarized Current in a Light-Emitting iode[J]. Nature, 1999, 402(12): 787-790.
    [62] Ohno Y, Young D K, Beschoten B, et al. Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure[J]. Nature, 2000, 402(12): 790-792.
    [63] Balents L, Egger R. Spin Transport in Interacting Quantum Wires and Carbon Nanotubes[J]. Phys Rev Lett, 2000, 85(16): 3464-3467.
    [64] Wang X F, Vasilopoulos P, Peeters F M. Beating of oscillations in transport coefficients of a one-dimensionally periodically modulated two-dimensional electron gas in the presence of spin-orbit interaction[J]. Phys Rev B, 2005, 71(12): 125301[8 pages].
    [65] Rashba E I. Properties of semiconductors with an extremum loop[J]. Sov Phys Solid State, 1960, 2: 1109-1122.
    [66] D'yakonov M I, Perel' V I. Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors[J]. Sov Phys JETP, 1971, 33(5): 1053-1059.
    [67] Hirsch J E. Spin Hall Effect[J]. Phys Rev Lett, 1999, 83(9): 1834-1837.
    [68] Zhang Shufeng. Spin Hall Effect in the Presence of Spin Diffusion[J]. Phys Rev Lett, 2000, 85(2): 393-396.
    [69] Murakami Shuichi, Nagaosa Naoto, Zhang Shou-Cheng. Dissipationless Quantum Spin Current at Room Temperature[J]. Science, 2003, 301(5638): 1348-1351.
    [70] Sinova Jairo, Culcer Dimitrie, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H. Universal Intrinsic Spin Hall Effect[J]. Phys Rev Lett, 2004, 92(12): 126603[4 pages].
    [71] Culcer Dimitrie, Sinova Jairo, Sinitsyn N A, Jungwirth T, MacDonald A H, Niu Q. Semiclassical Spin Transport in Spin-Orbit-Coupled Bands[J]. Phys Rev Lett, 2004,93(4): 046602[4 pages].
    [72] D'yakonov M I, Perel' V I. Possibility of orienting electron spins with current[J]. JETP Lett, 1971, 13(11): 467-469.
    [73] D'yakonov M I, Perel' V I. Current-induced spin orientation of electrons in semiconductors[J]. Phys Lett A, 1971, 35(6): 459-460.
    [74] Wunderlich J, Kaestner B, Sinova J, Jungwirth T. Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System[J]. Phys Rev Lett, 2005, 94(4): 047204[4 pages].
    [75] Governale M, Zülicke U. Spin accumulation in quantum wires with strong Rashba spin-orbit coupling[J]. Phys Rev B, 2002, 66(7): 073311[4 pages].
    [76] Mireles Francisco, Kirczenow George. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires[J]. Phys Rev B, 2001, 64(2): 024426[13 pages].
    [77] Matsuyama T, Hu C -M, Grundler D, Meier G, Merkt U. Ballistic spin transport and spin interference in ferromagnet/InAs(2DES)/ferromagnet devices[J]. Phys Rev B, 2002, 65(15): 155322[13 pages].
    [78] Kiselev A A, Kim K W. Prohibition of equilibrium spin currents in multiterminal ballistic devices[J]. Phys Rev B, 2005, 71(15): 153315[4 pages].
    [79] Cota Ernesto, Aguado Ramón, Platero Gloria. ac-Driven Double Quantum Dots as Spin Pumps and Spin Filters[J]. Phys Rev Lett, 2005, 94(10): 107202[4 pages].
    [80] Cummings A W, Akis R, Ferry D K. Electron spin filter based on Rashba spin-orbit coupling[J]. Appl Phys Lett, 2006, 89(17): 172115[3 pages].
    [81] Kiselev A A, Kim K W. T-shaped ballistic spin filter[J]. Appl Phys Lett, 2001, 78(6): 775-777.
    [82] Ohe Jun-ichiro, Yamamoto Masayuki, Ohtsuki Tomi, Nitta Junsaku. Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction[J]. Phys Rev B, 2005, 72(4): 041308[4 pages].
    [83] Moser J, Zenger M, Gerl C, Schuh D, Meier R, Chen P, Bayreuther G, Wegscheider W, Weiss D, Lai C -H, Huang R -T, Kosuth M, Ebert H. Bias dependent inversion of tunneling magnetoresistance in Fe/GaAs/Fe tunnel junctions[J]. Appl Phys Lett, 2006,89(16): 162106[3 pages].
    [84] van Kampen N G. The expansion of the master equation[J]. Adv Chem Phys,1976, 34: 245-309; van Kampen N G. Stochastic Processes in Physics and Chemistry[M]. Amsterdam: North-Holland, 1981: 358.
    [85] Aronov A G, Sharvin Yu V. Magnetic flux effects in disordered conductors[J]. Rev Mod Phys, 1987, 59(3): 755-779.
    [86] Webb R A, Washburn S, Umbach C P, Laibowitz R B. Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings[J]. Phys Rev Lett, 1985, 54(25): 2696-2699.
    [87] Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction[J]. IBM J Res Dev, 1957, 1(3): 223-231.
    [88] Büttiker M. Capacitance, admittance, and rectification properties of small conductors[J]. J Phys: Condens Matter, 1993, 5(50): 9361-9378.
    [89] Landauer R, Büttiker M. Resistance of Small Metallic Loops[J]. Phys Rev Lett, 1985, 54(18): 2049-2052.
    [90] Tang C S, Chu C S. Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field[J]. Phys Rev B, 1999, 60(3): 1830-1836.
    [91] van Wees B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D, Foxon C T. Quantized conductance of point contacts in a two-dimensional electron gas[J]. Phys Rev Lett, 1988, 60(9): 848-850.
    [92] Reed M A, Randall J N, Aggarwal R J, Matyi R J, Moore T M, Wetsel A E. Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure[J]. Phys Rev Lett, 1988, 60(6): 535-537.
    [93]阎守胜,甘子钊.介观物理[M].北京:北京大学出版社,1995: 1-5.
    [94] Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: San Francisco, Freeman, 1982: 74-83.
    [95] Mandelbrot B B. Fratcals:Form,Chance and Dimension[M]. New York: San Francisco, Freeman, 1977: 1-32.
    [96] Feder J. Fractals[M]. New York and London: Plenum Press, 1988: 31-35.
    [97]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社, 2003: 23-50.
    [98]文志英,范爱华,文志雄,苏维宜,杨展如,王炜,王牧,顾其钧.分形几何理论与应用[M].杭州:浙江科学技术出版社, 1998: 171-211.
    [99]刘式达,梁福明,刘式适,辛国君.自然科学中的混沌和分形[M].北京:北京大学出版社, 2003: 89-90.
    [100]杨展如.分形物理学[M].上海:上海科技教育出版社, 1996: 26-234.
    [101]盛爱兰,翟晓晴.分形在物理学中的应用[J].现代物理知识, 2002, 14(4): 16-17.
    [102]郑厚植.超微结构中的Landauer-Büttiker输运理论[J].物理学进展, 1992, 12(3): 249-278.
    [103]夏建白,朱邦芬.半导体超晶格[M].上海:上海科学技术出版社,1995: 83-111.
    [104] Büttiker M. Four-Terminal Phase-Coherent Conductance[J]. Phys Rev Lett, 1986, 57(14): 1761-1764; Büttiker M. Symmetry of electrical conduction[J]. IBM J Res Dev, 1988, 32(3): 317-323.
    [105] Datta S. Electronic transport in mesoscopic system[M]. Cambridge, England: Cambridge University Press, 1995: 161.
    [106] Ferry D K, Goodnick S M. Transport in Nanostructures[M]. Cambridge, England: Cambridge University Press, 1997: 91-208.
    [107] Bratkovsky A M, Osipov V V. High-Frequency Spin-Valve Effect in a Ferromagnet- Semiconductor-Ferromagnet Structure Based on Precession of the Injected Spins[J]. Phys Rev Lett, 2004, 92(9): 098302[4 pages].
    [108] Jiang K M, Zheng Z M, Wang Baigeng, Xing D Y. Switching effect in spin field- effect transistors[J]. Appl Phys Lett, 2006, 89(1): 012105[3 pages].
    [109] Sarkar Angik, Bhattacharyya T K. A nonmagnetic spintronic adder[J]. J Appl Phys, 2007, 101(3): 036108[3 pages].
    [110] Alvarado S F. Tunneling Potential Barrier Dependence of Electron Spin Polarization[J]. Phys Rev Lett, 1995, 75(3): 513-516.
    [111] Guo Yong, Yu Xiao-Wei, Li Yu-Xian. Spin filtering and spin-polarization reversal inmultilayered ferromagnetic metal/semiconductor heterostructures[J]. J Appl Phys, 2005, 98(5): 053902[7 pages].
    [112] Poggio M, Steeves G M, Myers R C, Stern N P, Gossard A C, Awschalom D D. Spin transfer and coherence in coupled quantum wells[J]. Phys Rev B, 2004, 70(12): 121305[4 pages].
    [113] Sanada H, Arata I, Ohno Y, Chen Z, Kayanuma K, Oka Y, Matsukura F, Ohno H. Relaxation of photoinjected spins during drift transport in GaAs[J]. Appl Phys Lett, 2002, 81(15): 2788-2790.
    [114] Allwood D A, Xiong Gang, Cooke M D, Faulkner C C, Atkinson D, Vernier N, Cowburn R P. Submicrometer Ferromagnetic NOT Gate and Shift Register[J]. Science, 2002, 296(5575): 2003-2006.
    [115] Wang X F, Vasilopoulos P, Peeters F M. Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides[J]. Phys Rev B, 2002, 65(16): 165217[10 pages].
    [116] Schliemann John, Egues J Carlos, Loss Daniel. Nonballistic Spin-Field-Effect Transistor[J]. Phys Rev Lett, 2003, 90(14): 146801[4 pages].
    [117] St?eda P, ?eba P. Antisymmetric Spin Filtering in One-Dimensional Electron Systems with Uniform Spin-Orbit Coupling[J]. Phys Rev Lett, 2003, 90(25): 256601[4 pages].
    [118] Bychkov A, Rashba E I. Properties of a 2D electron-gas with lifted spectrum degeneracy[J]. JETP Lett, 1984, 39(2): 78-81.
    [119] Moroz A V, Barnes C H W. Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems[J]. Phys Rev B, 1999, 60(20): 14272-14285; Moroz A V, Samokhin K V, Barnes C H W. Spin-Orbit Coupling in Interacting Quasi-One-Dimensional Electron Systems[J]. Phys Rev Lett, 2000, 84(18): 4164-4167.
    [120] Ficker T, Benesovsky P. Deterministic fractals[J]. Eur J Phys, 2002, 23(4): 403-408.
    [121] Karman G P, McDonald G S, New G H C, Woerdman J P. Laser optics: Fractal modes in unstable resonators[J]. Nature, 1999, 402(6758): 138.
    [122] Makarov K A, Pavlov B S. Quantum scattering on a Cantor bar[J]. J Math Phys, 1994,35(4): 1522-1531.
    [123] Chuprikov N L. The transfer matrices of the self-similar fractal potentials on the Cantor set[J]. J Phys A: Math Gen, 2000, 33(23): 4293-4308.
    [124] Chuprikov N L, Zhabin D N. Electron tunnelling through a self-similar fractal potential on the generalized Cantor set[J]. J Phys A: Math Gen, 2000, 33(23): 4309-4316.
    [125] Monsoriu J A, Villatoro F R, Marín M J, Urchueguía J F, Fernández de Córdoba P. A transfer matrix method for the analysis of fractal quantum potentials[J]. Eur J Phys, 2005, 26(4): 603-610.
    [126]Lang Roy, Nishi Kenichi. Electronic state localization in semiconductor superlattices[J]. Appl Phys Lett, 1984, 45(1): 98-100.
    [127] Diez E, Sánchez A, Domínguez-Adame F. High conductance in random superlattices with correlated disorder[J]. Solid State Electronics, 1996, 40(1-8): 433-436.
    [128] Lorusso G F, Capozzi V, Staehli J L, Flesia C, Martin D, Favia P. Absorption spectra of GaAs/AlxGa1-xAs random superlattices at 2 K[J]. Phys Rev B, 1996, 53(3): 1018-1021.
    [129] Fujiwara K, Tsukada N, Nakayama T, Nishino T. Linear polarization effects in anisotropic photoemission from GaAs/AlAs short-period superlattices[J]. Appl Phys Lett, 1987, 51(21): 1717-1719.
    [130] Kopf R F, Schubert E F, Harris T D, Becker R S. Photoluminescence of GaAs quantum wells grown by molecular beam epitaxy with growth interruptions[J]. Appl Phys Lett, 1991, 58(6): 631-633.
    [131] Sugiyama I, Hobbs A, Ueda O, Shinohara K, Takigawa H. Structural properties of CdTe-ZnTe strained-layer superlattice grown on GaAs by hot-wall epitaxy[J]. Appl Phys Lett, 1991, 58(24): 2755-2757.
    [132] Parks C, Ramdas A K, Melloch M R, Ram-Mohan L R. Piezomodulated-reflectivity study of minibands in AlxGa1-xAs/GaAs superlattices[J]. Phys Rev B, 1993, 48(8): 5413-5421.
    [133] Meyer J R, Reisinger A R, Harris K A, Yanka R W, Mohnkern L M. Monolayer thickness fluctuations in infrared photoluminescence for [211]-oriented HgTe-CdTe superlattices[J]. Appl Phys Lett, 1994, 64(5): 545-547.
    [134] M?der Kurt A, Wang Lin-Wang, Zunger Alex. Electronic consequences of random layer-thickness fluctuations in AlAs/GaAs superlattices[J]. J Appl Phys, 1995, 78(11): 6639-6657.
    [135] Zhang Zhi-Yong, Xiong Shi-Jie. Effect of layer-thickness randomness on gap solitons and optical bistability in nonlinear superlattices with photonic stop gaps[J]. Phys Rev B, 1997, 55(16): 10302-10307.
    [136] Esmailpour A, Esmaeilzadeh M, Faizabadi E, Carpena P, Tabar M Reza Rahimi. Metal-insulator transition in random Kronig-Penney superlattices with long-range correlated disorder[J]. Phys Rev B, 2006, 74(2): 024206[7 pages].
    [137] Craciun F, Bettucci A, Molinari E, Petri A, Alippi A. Direct experimental observation of fracton mode patterns in one-dimensional Cantor composites[J]. Phys Rev Lett, 1992, 68(10): 1555-1558.
    [138] Petri A, Alippi A, Bettucci A, Cracium F, Farelly F, Molinary E. Vibrational properties of a continuous self-similar structure[J]. Phys Rev B, 1994, 49(21): 15067-15075.
    [139] Johnson M. Theory of spin-dependent transport in ferromagnet-semiconductor heterostructures[J]. Phys Rev B, 1998, 58(22): 9635-9638; Johnson M, Silsbee R H. Spin-injection experiment[J]. Phys Rev B, 1988, 37(10): 5326-5335.
    [140] Hu Liangbin, Gao Ju, Shen Shun-Qing. Conductance modulations in spin field-effect transistors under finite bias voltages[J]. Phys Rev B, 2004, 69(16): 165304[8 pages].
    [141] Li Yu-Xian, Guo Yong, Li Bo-Zang. Rashba spin-orbit effect on electronic transport in ferromagnetic/semiconductor/ferromagnetic nanostructures under an applied electric field[J]. Phys Rev B, 2005, 71(1): 012406[4 pages].
    [142] Krsmanovic N, Lynn K G, Weber M H, Tjossem R, Gessmann Th, Szeles Cs, Eissler E E, Flint J P, Glass H L. Electrical compensation in CdTe and Cd0.9Zn0.1Te by intrinsic defects[J]. Phys Rev B, 2000, 62(24): R16279-R16282.
    [143] Nitta Junsaku, Akazaki Tatsushi, Takayanagi Hideaki, Enoki Takatomo. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure[J]. Phys Rev Lett, 1997, 78(7): 1335-1338.
    [144] Ramaglia V M, Cataudella V, Filippis G De, Perroni C A. Ballistic transport inone-dimensional loops with Rashba and Dresselhaus spin-orbit coupling[J]. Phys Rev B, 2006, 73(15): 155328[9 pages].
    [145] Gvozdi? D M, Ekenberg U. Efficient switching of Rashba spin splitting in wide modulation-doped quantum wells[J]. Appl Phys Lett, 2007, 90(5): 053105[3 pages].
    [146] Li Yu-Xian, Di Bing. Effect of the Rashba spin-orbit interaction on transport in a multichannel ferromagnet/semiconductor nanowire[J]. J Appl Phys, 2006, 100(8): 083708[4 pages].
    [147] Zhang Ying-Tao, Li You-Cheng. Rashba spin-orbit effect on spin-tunneling time in a ferromagnetic/semiconductor/ferromagnetic heterojunction with a tunnel barrier[J]. J Appl Phys, 2006, 99(1): 013907[7 pages].
    [148]谢征微,李伯臧.处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法[J].物理学报, 2002,51(2): 399-405.
    [149] Guo Yong, Wang Hao, Gu Bing-Lin, Kawazoe Yoshiyuki. Electric-field effects on electronic tunneling transport in magnetic barrier structures[J]. Phys Rev B, 2000, 61(3): 1728-1731.
    [150] Sakurada Y, Uozumi J, Asakura T. Fresnel diffraction by one-dimensional regular fractals[J]. Pure Appl Opt, 1992, 1(1): 29-40.
    [151] Ikeguchi Tohru, Aihara Kazuyuki. Difference correlation can distinguish deterministic chaos from 1/fα-type colored noise[J]. Phys Rev E, 1997, 55(3): 2530-2538.
    [152] Qi Xiang-Hong, Kong Xiao-Jun, Liu Jian-Jun. Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well[J]. Phys Rev B, 1998, 58(16): 10578-10582.
    [153] Herling G H, Rustgi M L. Spatially dependent effective mass and optical properties in finite parabolic quantum wells[J]. J Appl Phys, 1992, 71(2): 796-799.
    [154] Shafir Ehud, Shen Min, Saikin Semion. Modulation of spin dynamics in a channel of a nonballistic spin field effect transistor[J]. Phys Rev B, 2004, 70(24): 241302[4 pages].
    [155] Sato Y, Kita T, Gozu S, Yamada S. Large spontaneous spin splitting in gate-controlled two-dimensional electron gases at normal In0.75Ga0.25As/In0.75Al0.25As heterojunctions[J]. J Appl Phys, 2001, 89(12): 8017-8021.
    [156] Johnson J B. Thermal Agitation of Electricity in Conductors[J]. Phys Rev, 1928, 32(1): 97-109.
    [157] Nyquist H. Thermal Agitation of Electric Charge in Conductors[J]. Phys Rev, 1928, 32(1): 110-113.
    [158] Schottky W.über spontane Stromschwankungen in verschiedenen Elektrizit?ts- leitern[J]. Ann Phys (Leipzig), 1918, 57(23): 541-567.
    [159] Kogan S. Electronic Noise and Fluctuations in Solids[M]. Cambridge, England: Cambridge University Press, 1996: 275-277.
    [160] de Jong M J M, Beenakker C W J. Shot noise in mesoscopic systems[J]. in“Mesoscopic Electron Transport”, edited by L.P. Kouwenhoven, G. Sch?n, and L.L. Sohn, NATO Advances Studies Institute (ASI), Series E: Applied Sciences (Kluwer Academic Plublishers, Dordrecht), 1997, 345: 225-258.
    [161] Büttiker M. Scattering theory of thermal and excess noise in open conductors[J]. Phys Rev Lett, 1990, 65(23): 2901-2904.
    [162] Beenakker Carlo, Sch?nenberger Christian. Quantum Shot Noise[J]. Physics Today, 2003, 56(5): 37-42.
    [163] Levitov L S, Lesovik G B. Charge distribution in quantum shot noise[J]. JETP Lett, 1993, 58(3): 230-235.
    [164]夏建白.现代半导体物理[M].北京:北京大学出版社, 2000: 236.
    [165] Schoelkopf R J, Burke P J, Kozhevnikov A A, Prober D E, Rooks M J. Frequency Dependence of Shot Noise in a Diffusive Mesoscopic Conductor[J]. Phys Rev Lett, 1997, 78(17): 3370-3373.
    [166] Büttiker M. Scattering Theory of Current and Intensity Noise-Correlations in Conductors and Wave Guides[J]. Phys Rev B, 1992, 46(19): 12485-12507.
    [167] Nagaev K E. On the shot noise in dirty metal contacts[J]. Phys Lett A, 1992, 169(1-2): 103-107.
    [168] Steinbach Andrew H, Martinis John M, Devoret Michel H. Observation of Hot-Electron Shot Noise in a Metallic Resistor[J]. Phys Rev Lett, 1996, 76(20): 3806-3809.
    [169] Nagaev K E. Influence of electron-electron scattering on shot noise in diffusivecontacts[J]. Phys Rev B, 1995, 52(7): 4740-4743.
    [170] Kozub V I, Rudin A M. Shot noise in mesoscopic diffusive conductors in the limit of strong electron-electron scattering[J]. Phys Rev B, 1995, 52(11): 7853-7856.
    [171] Dutta P, Horn P M. Low-frequency fluctuations in solids: 1/f Noise[J]. Rev Mod Phys, 1981, 53(3): 497-516.
    [172] Weissman M B. 1/f Noise and other slow, nonexponential kinetics in condensed matter[J]. Rev Mod Phys, 1988, 60(2): 537-571.
    [173] Feng Shechao, Lee Patrick A, Stone A Douglas. Sensitivity of the Conductance of a Disordered Metal to the Motion of a Single Atom: Implications for 1/f Noise[J]. Phys Rev Lett, 1986, 56(18): 1960-1963.
    [174] Landauer R. The noise is the signal[J]. Nature, 1998, 392(16): 658-659.
    [175] Kulik I O, Omel'yanchuk A N. Nonequilibrium fluctuations in normal-metal point contacts[J]. Sov J Low Temp Phys, 1984, 10(3): 158-164.
    [176] Khlus V A. Current and Voltage fluctuation in microjunctions between normal metals and superconductors[J]. Sov Phys JETP, 1987, 66(6): 1243-1248.
    [177] Lesovik G B. Excess Quantum Noise in 2D Ballistic Point Contacts[J]. Pis'ma Zh Eksp Teor Fiz, 1989, 49(9): 513-515 (JETP Lett, 1989, 49(9): 592-594).
    [178] Yurke B, Kochanski G P. Momentum noise in vacuum tunneling transducers[J]. Phys Rev B, 1990, 41(12): 8184-8194.
    [179] Büttiker M. The quantum phase of flux correlations in waveguides[J]. Physica B: Condensed Matter, 1991, 175(1-3): 199-212.
    [180] Martin Th, Landauer R. Wave-packet approach to noise in multichannel mesoscopic systems[J]. Phys Rev B, 1992, 45(4): 1742-1755.
    [181] Blanter Y M, Büttiker M. Shot noise in mesoscopic conductors[J]. Phys Rep, 2000, 336(1-2): 1-166.
    [182] Wu B H, Cao J C. Magnetotransport through a ring conductor with Rashba spin-orbit interaction[J]. Phys Rev B, 2006, 74(11): 115313[9 pages].
    [183] He Yuhui, Hou Danqiong, Han Ruqi. Spin-current shot noise in mesoscopic conductors[J]. J Appl Phys, 2007, 101(2): 023710[7 pages].
    [184] Dragomirova R L, Nikoli? B K. Shot noise of spin-polarized charge currents as a probe of spin coherence in spin-orbit coupled nanostructures[J]. Phys Rev B, 2007, 75(8): 085328[8 pages].
    [185] Zhu Rui, Guo Yong. Dresselhaus spin-orbit coupling effect on the shot noise in resonant double-barrier structures[J]. Appl Phys Lett, 2007, 90(23): 232104[3 pages]; Qin Ling, Guo Yong, Zhu Jia-Lin. Spin-dependent shot noise in ferromagnet/ quantum dot/ferromagnet tunneling system[J]. Phys Lett A, 2007, 366(1-2): 124-129.
    [186] Zhu Rui, Guo Yong. Spin-dependent shot noise in a two-dimensional electron gas modulated by magnetic barriers and Rashba spin-orbit coupling[J]. J Appl Phys, 2008, 103(7): 073717[5 pages].
    [187] de-Picciotto R, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D. Direct observation of a fractional charge[J]. Nature, 1997, 389(11): 162-164.
    [188] Saminadayar L, Glattli D C, Jin Y, Etienne B. Observation of the e/3 Fractionally Charged Laughlin Quasiparticle[J]. Phys Rev Lett, 1997, 79(13): 2526-2529.
    [189] Griffiths T G, Comforti E, Heiblum M, Stern Ady, Umansky V. Evolution of Quasiparticle Charge in the Fractional Quantum Hall Regime[J]. Phys Rev Lett, 2000, 85(18): 3918-3921.
    [190] Jehl X, Payet-Burin P, Baraduc C, Calemczuk R, Sanquer M. Andreev Reflection Enhanced Shot Noise in Mesoscopic SNS Junctions[J]. Phys Rev Lett, 1999, 83(8): 1660-1663.
    [191] Jehl X, Sanquer M, Calemczuk R, Mailly D. Detection of doubled shot noise in short normal-metal/superconductor junctions[J]. Nature, 2000, 405(1): 50-53.
    [192] Kozhevnikov A A, Schoelkopf R J, Prober D E. Observation of Photon-Assisted Noise in a Diffusive Normal Metal-Superconductor Junction[J]. Phys Rev Lett, 2000, 84(15): 3398-3401.
    [193] Lefloch F, Hoffmann C, Sanquer M, Quirion D. Doubled Full Shot Noise in Quantum Coherent Superconductor-Semiconductor Junctions[J]. Phys Rev Lett, 2003, 90(6): 067002[3 pages].
    [194] van den Brom H E, van Ruitenbeek J M. Quantum Suppression of Shot Noise inAtom-Size Metallic Contacts[J]. Phys Rev Lett, 1999, 82(7): 1526-1529.
    [195] Ludoph B, Devoret M H, Esteve D, Urbina C, van Ruitenbeek J M. Evidence for Saturation of Channel Transmission from Conductance Fluctuations in Atomic-Size Point Contacts[J]. Phys Rev Lett, 1999, 82(7): 1530-1533.
    [196] Iannaccone G, Crupi F, Neri B, Lombardo S. Suppressed shot noise in trap-assisted tunneling of metal-oxide-semiconductor capacitors[J]. Appl Phys Lett, 2000, 77(18): 2876-2878.
    [197] Bulashenko O M, RubíJ M. Shot noise as a tool to probe an electron energy distribution[J]. Physica E, 2002, 12(1-4): 857-860.
    [198] Safonov S S, Savchenko A K, Bagrets D A, Jouravlev O N, Nazarov Y V, Linfield E H, Ritchie D A. Enhanced Shot Noise in Resonant Tunneling via Interacting Localized States[J]. Phys Rev Lett, 2003, 91(13): 136801[4 pages].
    [199] Chen Yuanzhen, Webb Richard A. Full shot noise in mesoscopic tunnel barriers[J]. Phys Rev B, 2006, 73(3): 035424[5 pages].
    [200] Jiang K M, Yang Jun, Zhang R, Wang Hongyan. Ballistic transport properties in spin field-effect transistors[J]. J Appl Phys, 2008, 104(5): 053722[6 pages].
    [201] Egues J Carlos, Burkard Guido, Loss Daniel. Datta-Das transistor with enhanced spin control[J]. Appl Phys Lett, 2003, 82(16): 2658-2660.
    [202] Sandhu J S, Heberle A P, Baumberg J J, Cleaver J R A. Gateable Suppression of Spin Relaxation in Semiconductors[J]. Phys Rev Lett, 2001, 86(10): 2150-2153.
    [203] Cahay M, Bandyopadhyay S. Conductance modulation of spin interferometers[J]. Phys Rev B, 2003, 68(11): 115316[5 pages].
    [204] Cahay M, Bandyopadhyay S. Phase-coherent quantum mechanical spin transport in a weakly disordered quasi-one-dimensional channel[J]. Phys Rev B, 2004, 69(4): 045303[10 pages].
    [205] Chuprikov N L, Spiridonova O V. A new type of solution of the Schr?dinger equation on a self-similar fractal potential[J]. J Phys A: Math Gen, 2006, 39(37): L559-L562.
    [206] Monsoriu Juan A, Villatoro Francisco R, Marín María J, Pérez Jezabel, Monreal Llúcia. Quantum fractal superlattices[J]. Am J Phys, 2006, 74(9): 831-836.
    [207] Liu De, Kong Xiao-Jun. Spin-polarized electron transport in fractal semiconductor multilayers with two ferromagnetic contacts[J]. J Appl Phys, 2008, 104(2): 023707[9 pages].
    [208] Buika B R, Martinek J, Micha?ek G, Barna? J. Shot noise in ferromagnetic single-electron tunneling devices[J]. Phys Rev B, 1999, 60(17): 12246-12255.
    [209] Sauret O, Feinberg D. Spin-Current Shot Noise as a Probe of Interactions in Mesoscopic Systems[J]. Phys Rev Lett, 2004, 92(10): 106601[4 pages].
    [210] Lamacraft A. Shot noise of spin-polarized electrons[J]. Phys Rev B, 2004, 69(8): 081301[4 pages].
    [211] Wang Baigeng, Wang Jian, Guo Hong. Shot noise of spin current[J]. Phys Rev B, 2004, 69(15): 153301[4 pages].
    [212] Foros Jorn, Brataas Arne, Tserkovnyak Yaroslav, Bauer Gerrit E W. Magnetization Noise in Magnetoelectronic Nanostructures[J]. Phys Rev Lett, 2005, 95(1): 016601[4 pages].
    [213] Mishchenko E G. Shot noise in a diffusive ferromagnetic-paramagnetic-ferromagnetic spin valve[J]. Phys Rev B, 2003, 68(10): 100409[4 pages].
    [214] Nagaev K E, Glazman L I. Current fluctuations in a spin filter with paramagnetic impurities[J]. Phys Rev B, 2006, 73(5): 054423[6 pages].
    [215] Egues J Carlos, Burkard Guido, Saraga D S, Schliemann John, Loss Daniel. Shot noise and spin-orbit coherent control of entangled and spin-polarized electrons[J]. Phys Rev B, 2005, 72(23): 235326[27 pages].
    [216] Belzig W, Zareyan M. Spin-flip noise in a multiterminal spin valve[J]. Phys Rev B, 2004, 69(14): 140407[4 pages].
    [217] Zareyan M, Belzig W. Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors[J]. Phys Rev B, 2005, 71(18): 184403[12 pages].
    [218] Hatami M, Zareyan M. Shot noise in diffusive ferromagnetic metals[J]. Phys Rev B, 2006, 73(17): 172409[4 pages].
    [219] Abdollahipour B, Zareyan M. Magneto shot noise in noncollinear diffusive spinvalves[J]. Phys Rev B, 2006, 73(21): 214442[8 pages].
    [220] Zhang Ying-Tao, Guo Yong, Li You-Cheng. Rashba spin-orbit effect on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions[J]. Phys Status Solidi B, 2005, 242(14): 2960-2966.
    [221] Adachi Sadao. GaAs, AlAs, and AlxGa1-xAs Material parameters for use in research and device applications[J]. J Appl Phys, 1985, 58(3): R1-R29.
    [222] Molenkamp Laurens W, Schmidt Georg, Bauer Gerrit E W. Rashba Hamiltonian and electron transport[J]. Phys Rev B, 2001, 64(12): 121202[4 pages].
    [223] Larsen Morten H?gsbro, Lunde A Mathias, Flensberg Karsten. Conductance of Rashba spin-split systems with ferromagnetic contacts[J]. Phys Rev B, 2002, 66(3): 033304[4 pages].
    [224] Wu Han-Chun, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. Rashba spin-orbit effect on traversal time in ferromagnetic/semiconductor/ferromagnetic heterojunction[J]. J Appl Phys, 2003, 93(9): 5316-5320.
    [225] Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A, Yassievich I N. Spin-dependent resonant tunneling in symmetrical double-barrier structures[J]. Phys Rev B, 2005, 71(15): 155313[5 pages].
    [226] Li Wan, Guo Yong. Dresselhaus spin-orbit coupling effect on dwell time of electrons tunneling through double-barrier structures[J]. Phys Rev B, 2006, 73(20): 205311[7 pages].
    [227] Davies John H, Egues J Carlos, Wilkins John W. Effect of incoherence on current and shot noise in resonant tunneling: An exactly solvable model[J]. Phys Rev B, 1995, 52(15): 11259-11265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700