用户名: 密码: 验证码:
换热网络非线性特性及其全局最优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热网络是能源、石化等工业领域中的一个重要环节,良好的换热网络综合性能对于节省能源、增加经济效益有着至关重要的作用。因此,寻找性能优良的换热网络结构成为相关工作者的共同目标,换热网络的优化设计受到国内外学者越来越多的重视。换热网络优化设计本质上属于混合整数非线性规划问题,随着换热网络规模的不断扩大,其非线性特性表现得越来越严重,局部最优解以阶乘级别增长,在这种情况下如何有效地跳出局部最优解,实现换热网络的全局最优化就成了各国学者的工作焦点。鉴于此,本文通过对换热网络非线性特性的分析,提出和改进了多种换热网络优化方法,对换热网络的全局最优化进行了深入的探讨。
     论文首先对换热网络优化问题的非线性特性进行了深入分析,阐述了包括换热网络优化过程在内的混合整数非线性规划(MINLP)问题在求解过程中的难度。以换热网络的具体实例论证了换热网络MINLP问题中的非线性特性,通过某一特例的非线性的性能图谱来阐述二维变量,三维变量以及整型变量对换热网络非线性特性的影响,指出了顺序优化方法应用在这种优化问题上存在着陷入局部最优解的弊端。同时由于不同的优化顺序会导致最终优化结果的差异,本文通过对传统换热网络优化顺序改变,避免了换热网络优化过程中过早陷入局部最优解的问题,使优化质量得到一定程度的提高。
     在此基础上,从如何跳出局部最优解及如何改进换热网络优化质量的角度出发,提出了三种改进的换热网络优化方法——回路面积断开/合并的优化方法、改进的多起点方法以及次级超结构的换热网络模型,这些方法都在一定程度上能够避免换热网络优化过程陷入局部最优解,可以有效地打破热平衡,使其跳出局部最优解而继续优化进程。
     随后,首次将填充函数算法应用到换热网络的全局优化中,应用填充函数克服局部最优解的陷阱,使得在换热网络优化过程中,能够依靠填充函数和局部优化方法的交替操作跳出局部最优解,从而找到区域内的全局最优解。
     继之,首次提出了一种函数逼近割平面全局最优化方法,并将其应用到换热网络全局优化中。通过在一维和二维非线性问题上给出的求解步骤示例,阐述了该方法应用于全局最优化的总体策略。针对切割平面的区域界定这一困难问题的反问题,运用一维搜索的方法确定区域边界的上、下界,并采用函数逼近的方法,通过反复地等平面切割,使得换热网络总年费用的性能函数所对应的可行域不断缩小,直到找到全局最优解。
     最后将确定性方法和启发式方法有效地结合起来,应用到换热网络的全局优化上。由随机性方法产生初始结构,由确定性方法对初始结构的连续变量进行优化得到最优解,这样不但提高了搜索效率,同时也能相对地提高求解精度。
     总之,论文针对换热网络全局优化过程中的容易陷入局部最优解的难点,对其进行了深入的研究,并提出了多种方法来克服这些困难,为换热网络的全局优化研究提供了解决的思路和方法。
The perfect overall performances of heat exchanger networks (HENs) have crucialimpact on energy conservation and economic benefit in the energy, petroleum andchemical field. Therefore, desiging a HEN with excellent performance is the commongoals for all of the workers in this studing field, more and more attention is paid tooptimization design of HENs. The global optimization of HENs is a Mixed-IntegerNonlinear Programming problem(MINLP) in nature, With the development of networksscale, the nonlinear characteristics become more and more serious for HENsoptimization and the local optimal solutions will increase in the form of factorial. Forachieving global optimization, it should be important to escape from the local optimalsolution effectively. By analysing the nonlinear characteristics of HENs, this articalproposed and improved several HENs optimization methods for further investigatingthe global optimization problems.
     Firstly, the nonlinear characteristics of HENs was in-depth analysis, and explainingthe difficuly in the sloving process of mixed-integer nonlinear programming (MINLP),including the global optimization of HENs. Base on a specific HEN example, thenonlinear characteristics and the influence of continous variable and integar variable onHENs performance were investigated with performance atlas., it shows that it would beeasily prone to fall into a local optimal solution with sequence optimizing methods. Fordifferent optimizing sequence generates different results, this paper avoided theproblems of local optimal solutions by changing the optimizing sequence and thenimproved the optimization quality.
     Furthermore, for escaping from a local optimal solution and improving theoptimization quality, this paper proposed three improved optimizing methods: heat loadloop breaking and merging method, improved multi-start method and secondarysuperstructure model. These methods could avoid the problems of optimal solutions andcontinue further optimization by breaking thermal equilibrium effectively.
     Subsquently, for overcoming trapping in the local optimal solutions, filled functionalgorithm was then introduced into HENs global optimization. With filled function andlocal optimizing methods alternately, the global optimal solution in solving domaincould be obtained by escaping from the local optimal solutions.
     Afterwards, the function approximation and cutting plane method for the global optimizing of HENs was presented. The typical example of the solving steps based onone-dimensional and two-dimensional nonlinear problems shows the general strategyapplying to the global optimization of HENs. To the inverse problem of confirming thesolving area boundary using cutting plane method, one-dimensional searching methodwas applied to determine the upper and lower bound of solving area boundary. Bycutting the plane repeatedly, the feasible region of performance function would shrinkcontinuously until the global optimal solution was obtained.
     Finally, the effectively combination of deterministic methods and randomizationmethods was applied to the global optimization of HENs. The initial structure generatedby randomization methods would be further optimized by deterministic methods, whichcould both improve the search efficiency and the solving precision relatively.
     In a word, for achieving HENs global optimization, the difficulty of easily trappingin optimal solutions in optimizing process was studied and sevel methods wereproposed corresponding to the existing problems
引文
[1]李军杰.换热网络总和优化及设备特征参数的关键技术研究[D].郑州.郑州大学.2005
    [2] Rudd. D.E., Watson.C.C. Strategy of Proeess Engineering[M].1968,1stEdition,JohnWiley&Sons, NewYork
    [3] Linnhoff. B, et al.User Guide on Proeess Integration for the Efficient Use of Energy [C]Oxford:Pergamon Press Ltd,1982
    [4] Masso, A. H.,&Rudd, D. F. Synthesis of system designs. II. Heuristic structuring[J].AIChE. Journal,1969,15,10–17
    [5]杨友麒,实用化工系统工程[M]。1989,第一版,化学工业出版社,北京,38-45
    [6]崔娥,尹洪超,热能系统分析与最优综合[M].1994,第一版,大连理工大学出版社,大连.45-51
    [7]毕立群,换热网络人工智能综合方法的理论研究与实践.学位论文[D],1996,北京化工大学,北京
    [8] Chen B J, Shen J, Sun Q,.DeveloPment of an expert system for synthesis of heatexehanger networks[J].ComPut.Chem.Engng,1989,13(11):1221-1227
    [9]李志红.基于专家系统有分流大规模换热网络超结构模型研究[J].石油化工设备,2000,(6):9-12
    [10] Grime L E,Rycheme rM D,Westerberg A W. The synthesis and evolution of networksof heat exchanger that figure the minimum number of units[J]. Chem. Engng.Commun,1982,14:339-360.
    [11] HartmannK,KausehusW,Wagenkneeht M. Optimal design of chemical Process systemsby fuzzy methods[J]. Proe. MATCHEM,1986, l:156-165
    [12] Chen B,Lu Z,Liu B L,Shi Z.Study on heat exchanger network with muiti-fluid heatexchanger[C]. Proeeedings of the International Conference on Energy andEnvironment,ICEE.1998,Shanghai
    [13]高维平,于为人,韩方煜.智能法合成最优换热网络[J].化工学报.1990,3:353-363
    [14]李志红,华贲.基于系统分解方法的换热网络分析与应用[J].石油学报,1999,(5):85-89
    [15] Floudas C A,Cirie A R,Grossmann I E. Automatic synthesis of oPimum heat exchangernetwork configurations[J]. AIChE,1986,32:276-290.
    [16] PoPoulias S A, Grossmann I E.A structural optimization approach in Processanalysis.Part II:Heat recoverynetworks.ComPuters[J]. Chem.Engng.1983,7:707-721.
    [17] Gundersen T and Naess L.The synthesis of cost optimal heat exchanger networks[J].ComPut.Chem.Engng.,1988,12(6):503-530
    [18] Gaggioli R A, Sama D A, et al.Integration of a new process into an existing site:a casethe aPPlieation of energy analysis[J]. Journal of Engng for GasTurb&Power,1991,113:170-183
    [19] Linnhoff B,Flower J R.,Synthesis of heat exchanger network(I):systematic Generationof energy optimal network[J].AIChEJ,1978,24:633-642
    [20] Linnhoff B, Flower J R. Synthesis of heat exehanger networks(II):Evolutionarygeneration of networks with various criteria of optimality[J].AIChE J,1978,24:643-654
    [21] Linnhoff B,Mason D R, Wardle I. Understanding heat exchanger network[J]. Comput.Chem. Eng,1979(3),295-302
    [22] Linnhoff B,et al.User guide on process integration for the efficient use of energy[M].Oxford:Pergamon Press Itd.,1982
    [23] Linnhoff B,Hindmarsh E.The Pinch Design Method for Heat Exchanger Networks[J],Chemical Engineering Science.1983,38(5),745-763
    [24] Linnhoof, B.Pinch analysis-a state-of-the-art review[J]. Trans IChemE,71, Part A,1993,September
    [25] Medardo Serna-González,JoséMaría Ponce-Ortega.Total cost target for heat exchangernetworks considering simultaneously pumping power and area effects[J].AppliedThermal Engineering.2011,31:1964-1975
    [26]尹洪超,周东浩,崔峨.夹点技术与换热网络综合调优方法[J].节能,1994,(5):11-13
    [27]王莉,姚平经,袁一.换热器网络的新设计方法[J].化学工程,1995,23(1):25-30
    [28]尹洪超,袁一,王晓云,施光艳.换热器网络非等温混合目标同步最优综合[J].大连理工大学学报,1995,35(5):639-643
    [29]田盛丰.人工智能原理与应用[M].北京:北京理工大学出版社,1993
    [30]方海鹏,王其东,疯恩民,俞红梅,姚平经.基于遗传模拟退火算法的带约束换热网络综合问题[J].大连理工大学学报,2000,40(1):639-643
    [31] YU Hong-mei, FANG Hai-peng, YAO Ping-jing, YUAN Yi. A combined geneticalgorithm/simulated annealing algorithm for large scale system energy integration [J].Computers and Chemical Engineering,2000,24:2023-2035
    [32]魏关风,姚平经,罗行,Roetzel Wilfried.用遗传算法进行多股流换热器网络综合的研究[J].高校化学工程学报,2003(4):425-430
    [33] CHEN Dezhen,YANG Shanshan,LUO Xing. Et. An Explicit Solution for ThermalCalculation and Synthesis of Superstructure Heat Exchanger Networks[J].Chin. J. Chem.Eng.2007,15(2)296-301
    [34]张勤,崔国民,高孝忠,关欣.TS算法在常减压装置换热网络中的应用[J].化工进展,2006,25:509-512
    [35] B. Lin, D. C. Miller. Solving heat exchanger network synthesis problems with TabuSearch[J]. Computers and Chemical Engineering.2004,28:1451–1464
    [36]魏关锋,钱宇,姚平经.多流股换热器网络综合方法在原油预热系统中的应用[J].过程工程学报.2007,7(3):566-573
    [37]刘福安,房勇等.应用AspenPlus软件模拟模型指导气体分离装置和蒸汽管网挖潜.节能[J],2008,38(6):46-49
    [38]胡伟,刘加伟,邵建海. MTBE装置热联合节能分析及模拟优化[J].炼油技术与工程.2011,41(4):52-55
    [39]白玫.用Aspen Plus和夹点技术系统调优化工用能[J].石油化工技术与经济.2009,25(6),39-43
    [40]胡永锁. Aspen软件在换热网络能量分析中的应用[J].石油化工设备.2010,39(2),77-80
    [41] Timo Laukkanena, Tor-Martin Tveita, e.at. An interactive multi-objective approach toheat exchanger network synthesis[J].Computers and Chemical Engineering2010,34943-952
    [42] Miettinen, K.,&Makela. Comparative evaluation of some interactive referencepoint-based methods for multiobjective optimisation[J]. Journal of the OperationalResearch Society,1999,50(9),949–959.
    [43] Miettinen, K.,&Makela. Synchronous approach in interactive multiobjectiveoptimization[J]. European Journal of Operational Research,2006,170(3),909–922
    [44] Lizbeth Anabel López-Maldonado, José María Ponce-Ortega, Juan GabrielSegovia-Hernández.Multiobjective synthesis of heat exchanger networks minimizingthe total annual cost and the environmental impact[J]. Applied Thermal Engineering.2011,31:1099-1113
    [45] M. Akbarnia, M. Amidpour, A. Shadaram. A new approach in pinch technologyconsidering piping costs in total cost targeting for heat exchanger network[J]. chemicalengineering research and design2009,87357-365
    [46] Ankur Pariyani, Abhigyan Gupta, Pallab Ghosh. Design of heat exchanger networksusing randomized algorithm[J]. Computers and Chemical Engineering.2006,301046–1053
    [47] Timo Laukkanen, Carl-Johan Fogelholm. A bilevel optimization method forsimultaneous synthesis of medium-scale heat exchanger networks based on grouping ofprocess streams[J]. Computers and Chemical Engineering.2011,35,2389-2400
    [48] R.K.C.Mehta,S. K. Devalkar And S. Narasimhan.An Optimization Approach ForEvolutionary Synthesis Of Heat Exchanger Networks[J]. Trans IChemE,2001,Vol.79,Part A
    [49] Ming Pan, Igor Bulatov, Robin Smith, Jin-Kuk Kim. Novel optimization method forretrofitting heat exchanger networks with intensified heat transfer[C].//E.N.Pistikopoulos, M.C. Georgiadis and A.C. Kokossis21st European Symposium onComputer Aided Process Engineering–ESCAPE21.2011, Elsevier B.V.:1864-1868.
    [50] Krishna M. Yerramsetty, C.V.S. Murty. Supply and target based superstructure synthesisof heat and mass exchanger networks[J].Computers and Chemical Engineering2008,32:1861–1876
    [51] Sherali, H. D.,W. P. Adams.A Hierarchy of Relaxations Between the Continuous andConvex Hull Representations for Zero-one Programming Problems[J]. SIAM.1990(3),411–430
    [52] Sherali, H.D., Adams, W.P., Driscoll, P.J.Exploiting special structures in constructing ahierarchy of relaxations for0-1mixed integer problems [J]. Oper. Res.1998,46(3),396–405
    [53] Sahinidis, N.V., Tawarmalani, M.: Applications of global optimization to process andmolecular design [J]. Comput. Chem. Eng.2000(24),2157–2169
    [54] Sherali, H.D., Desai, J.. A global optimization RLT-based approach for solving the hardclustering problem [J]. Glob. Optim.2005,32(2),281–306
    [55] Ostrovsky, G.M., Achenie, L.E.K., Sinha,M.. On the solution ofmixed-integer nonlinearprogramming models for computer aided molecular design [J]. Comput. Chem. Eng.2002(26),645-660
    [56] Tawarmalani, M., Sahinidis, N.V.. Global optimization of mixed-integer nonlinearprograms: a theoretical and computational study. Math. Program [J].2004,99(3),563-591
    [57]汪祖柱,程家兴.求解组合优化问题的一种方法——分枝定界法[J].安徽大学学报.2004(1),10-14
    [58] Westerlund, T., Skrifvars, H., Harjunkoski, I., P rn, R.: An extended cutting planemethod for a class of non-convex MINLP problems[J]. Comput. Chem. Eng.1998,22(3),357–365
    [59] Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to globaloptimization[J]. Math. Program.2005,103(2),225–249
    [60] Sherali, H.D., Lee, Y., Kim, Y.: Partial convexification cuts for0-1mixed-integerprograms[J]. Eur. J. Oper.Res.2005,165(3),625–648
    [61] Sherali, H.D., Fraticelli, B.M.P.. Enhancing RLT relaxations via a new class ofsemidefinite cuts[J]. Glob.Optim.2002,22(1–4),233–261
    [62] Wang, Y.J., Liang, Z.: A deterministic global optimization algorithm for generalizedgeometric programming[J].Appl. Math. Comput.2005,168,722-737
    [63] P rn, R., Westerlund, T.: A cutting plane method for minimizing pseudo-convexfunctions in mixed integer case[J]. Comput. Chem. Eng.2000(24),2655–2665
    [64] Kesavan, P., Barton, P.I.: Generalized branch-and-cut framework for mixed-integernonlinear optimization problems[J]. Comput. Chem. Eng.2000,24,1361-1366
    [65] Tawarmalani, M., Sahinidis, N.V.. A polyhedral branch-and-cut approach to globaloptimization. Math. Program[J].2005,103(2),225–249
    [66] Emet, S.,Westerlund, T..Comparisons of solving a chromatographic separation problemusing MINLP methods[J]. Comput. Chem. Eng.2004,28(5),673–682
    [67] Zhu, Y., Kuno, T. A. disjunctive cutting-plane-based branch-and-cut algorithm for0-1mixed-integer convex nonlinear programs[J]. Ind. Eng. Chem. Res.2006,45(1),187-196
    [68] Westerlund, T., Skrifvars, H., Harjunkoski, I., P rn, R.. An extended cutting planemethod for a class of non-convex MINLP problems[J]. Comput. Chem. Eng.1998,22(3),357–365
    [69]赵茂先,高自友.基于单纯形方法的双层线性规划全局优化算法[J].应用数学.2006,19(3):642~647
    [70]郑朝晖,张焱,裘聿皇.一种基于复数编码的遗传算法[J].控制理论与应用,2003,20(1):97-100
    [71]乔家庆,付平,孟升卫.基于个体差异的遗传选择算子设计[J].电子学报,2006,34(12A):2414-2416
    [72]范青武,王普,高学金.一种基于有向交叉的遗传算法[J].控制与决策,2009,24(4):542-546
    [73] MURAT A,NOVRUZ A. Development a new mutation operator to solve thetraveling salesman problem by aid of genetic algorithms[J]. Expert systems withapplications,2011,38(3):1313-1320
    [74]黄炎,蒋培,王嘉松等.基于可调变异算子求解遗传算法的欺骗问题[J].软件学报,1999,10(2):216-219
    [75]葛继科,邱玉辉,吴春明等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916
    [76]王东于,李绍荣.模糊禁忌搜索算法用于求解分配问题[J].计算机科学,2003,30(7):167-169
    [77]贺一,邱玉辉,刘光远等.多维背包问题的禁忌搜索求解[J].计算机科学,2006,33(9):169-172
    [78]王伟,余利华.基于贪心法和禁忌搜索的实用高校排课系统[J].计算机应用研究,2007,27(11):2873-2876
    [79]周子康,杨衡,唐万生.基于分层抽样的模拟禁忌混合智能优化算法TSII[J].计算机工程,2006,32(9):175-177
    [80]王林川,李漫,张木子等.基于蚁群禁忌搜索混合算法的配电网重构[J].吉林电力,2010,38(5):34-36
    [81]林俊龙,何晨.基于集合覆盖和禁忌搜索算法的WCDMA基站布局[J].上海交通大学学报,2007,41(6):924-928
    [82]董宏光,秦立民,王涛等.基于自适应并行禁忌搜索的精馏分离序列优化综合[J].化工学报,2004,55(10):1669-167
    [83]李文勇,李泉永.基于模拟退火的全局优化算法[J].桂林电子工业学院学报,2001,21(2),33-36
    [84]王华,唐国金.函数优化问题的一种异步并行模拟退火算法[J].控制与决策.2005,20(5),579-582
    [85]席自强.单纯形-模拟退火算法[J].湖北工学院学报.2000,15(1),27-29
    [86]杜修力,曾迪.一种高效的全局数值优化方法:演化-单纯形算法[J].土木工程学报2003,35(5):46-51
    [87]王宇平,刘大莲.基于平滑技术和一维搜索的全局优化进化算法及其收敛性[J].计算机学报.2006,29(4),670-675
    [88]王晓丽,周国标.跨越函数法:一类全局优化的新策略[J].上海交通大学学报.2006,40(9),1630-1635
    [89]蔡延光,钱积新,孙优贤.全局优化的了望算法[J].广东工业大学学报.2006,23(2),1-11
    [90]宋巨龙,钱富才.一种求非线性全局最优解的分形算法[J].系统工程与电子技术2005,27(12),2051-2054
    [91] Luo, Y.Q., Yuan, X.G., Liu, Y.J.: An improved PSO algorithm for solving non-convexNLP/MINLP problems with equality constraints[J]. Comput. Chem. Eng.2007,31(3),153–162
    [92] Adjiman C.S., Androulakis I.P., Floudas C.A. Global optimization of mixed-integernonlinear problems[J]. AIChE Journal,2000,46,1769-1797
    [93] Lin X., Floudas C.A., Kallrath J..Global solution approach for a nonconvex MINLPproblem in product portfolio optimization[J]. Journal of Global optimization,2004,26:267-275
    [94] Zamora J.M., Grossmann I.E.. A global MINLP optimization algorithm for thesynthesis of heat exchanger networks with nostream splits[J]. Computers and chemicalengineering,1998,22:367-384
    [95] Lee A., Grossmann I.E.. A global optimization algorithm for nonconvex generalizeddisjunctive programming and applications to process systems[J]. Computers andchemical engineering,2001,25:1675-1697
    [96] amkumar Karuppiah, Grossmann I.E.. Global optimization for the synthesis ofintegrated water systems in chemical processes[J]. Computers and ChemicalEngineering,2006,30:650-673
    [97] Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method,αBB, for general twice-differentiable NLPs–I[J]. Theoretical advances. Comput. Chem.Eng.1998,22(9),1137–1158
    [98] Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB,for general twice–differentiable NLPs–II[J]. Implementation and computationalresults. Comput. Chem. Eng.1998,22(9),1159–1179
    [99] Zamora, J.M., Grossmann, I.E.:Continuous global optimization of structured processsystemsmodels.Comput[J]. Chem. Eng.1998,22(12),1749–1770
    [100]Christodoulos A. Floudas, Zeynep H. Gümü, and Marianthi G. Ierapetritou. GlobalOptimization in Design under Uncertainty: Feasibility Test and Flexibility IndexProblems[J]. Ind. Eng. Chem. Res.,2001,40(20),4267–4282
    [101]R. Karuppiah, K. C. Furman, and I. E. Grossmann. Global optimization for schedulingrefinery crude oil operations[J]. Computers and Chemical Engineering,2008,32(11),2745–2766
    [102]Ruiz J. P., Grossmann I.E.. Grossmann. Strengthening of lower bounds in the globaloptimization of Bilinear and Concave Generalized Disjunctive Programs[J]. Computers&Chemical Engineering,2010,34:914-930
    [103]María Lorena Bergamini, Ignacio Grossmann, Nicolás Scenna, Pío Aguirre. Animproved piecewise outer-approximation algorithm for the global optimization ofMINLP models involving concave and bilinear terms[J]. Computers&ChemicalEngineering,2008,32:477-493
    [104]Kesavan P., Allgor R.L.,Gadzke E.P., Barton P.. Outer approximation algorithms forseparable nonconvex mixed-integer nonlinear problems[J]. Mathematical Programming,2004,100:17-535
    [105]F. Pettersson Heat exchanger network design using geometric mean temperaturedifference[J]. Computers and Chemical Engineering.2008,32:1726–1734
    [106]Bergamini, M.L., Scenna, N.J., Aguirre, P.A.: Global optimal structures of heatexchanger networks by piecewise relaxation[J]. Ind. Eng. Chem. Res.2007,46(6),1752–1763
    [107]Wang Y., Achenie L.E.K.. A hybrid global optimization approach for solvent design[J].Computers and chemical engineering,2002,26:1415-1425
    [108]Hadi Soltani, Sirous Shafiei.Heat exchanger networks retrofit with consideringpressure drop by coupling genetic algorithm with LP (linear programming) and ILP(integer linear programming) methods[J]. Energy.2011,36:2381-2391
    [109]Daniel R L, Wang Hao, Shalev Ofir. A generalized method for HEN synthesis usingstochastic optimization-I. General framework and MER optimal synthesis [J].Computers and Chemical Engineering,1998,22(10):1503-1513.
    [110]刘琳琳,都健,肖丰,陈理,姚平经.基于虚拟温度法的间歇过程换热器网络综合[J].计算机与应用化学.2009,26(8):1017-1021
    [111]都健,李春妮,陈理.基于虚拟温度法的间歇过程换热网络结构优化[J].化工学报,2010,61(12):3162-3166
    [112]崔国民,陆贞,张勤.多股流换热器网络及其衍生网络综合优化.化工进展[J].2006,25:533-536
    [113]张勤,崔国民,张磊磊,关欣.隔代强制进化遗传算法在换热网络优化中应用.热能动力工程[J].2006,21(6):608-611
    [114]苏文杰.换热网络优化规则及求解策略研究[D],大连,大连理工大学,2006.
    [115]Tantimuratha, L., Kokossis, A. C.,&Muller, F. U. The heat exchanger network designas a paradigm of technology integration[J]. Applied Thermal Engineering,2000,20,1589–1605.
    [116]Benoit Allen, Myriam Savard-Goguen, Louis Gosselin.Optimizing heat exchangernetworks with genetic algorithms for designing each heat exchanger includingcondensers[J]. Applied Thermal Engineering.2009,29:3437–3444
    [117]李志红,华贲,尹清华,何耀华.人工智能与数学规划的集成用于换热网络最优合成设计的研究[J].石油化工,1998,(9):660-668
    [118]Xing Luo, Qing-YunWen, Georg Fiega, A hybrid genetic algorithm for synthesis ofheat exchanger networks[J]. Computers and Chemical Engineering.2009,33,1169–1181
    [119]M.A.S.S. Ravagnani, A.P. da Silva, A.L. Andrade.Detailed equipment design in heatexchanger networks synthesis and optimization[J].. Applied Thermal Engineering2003,23:141-151
    [120]Mihaela Morar, Paul Serban Agachi. Review: Important contributions in developmentand improvement of the heat integration techniques[J]. Computers and ChemicalEngineering,2010,34:1171-117
    [121]G. L. Nemhauser. L. A. Wolsey. Integer and Combinatorial Optimization[M].wiley-interscience: New York,1988
    [122]A.Schrijver.Theory of Linear and Integer Programming[M],John wile, Chichester.1998
    [123]Kaj-Mikael Bjork,Roger Nordman. Solving large-scale retrofit heat exchanger networksynthesis problems with mathematical optimization methods[J], Chemical Engineeringand Processing,2005,44(12),869-879.
    [124]张光澄.非线性最优化计算方法[M].高等教育出版社.2005,7,51-55
    [125]张济川.机械最优化设计及应用实例[M]。新时代出版社.1990,109-114
    [126]H. Niederreiter, P. J. Shiue. Monte Carlo and Quasi-Monte Carlo Methods in ScientificComputing[C].New York: Springer-Verlag,1995.
    [127]G.. Larcher, H. Niederreiter, P. Hellekalek, P. Zinterhof. Monte Carlo andQuasi-Monte Carlo Methods[C]. New York: Springer-Verlag,1998
    [128]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985
    [129]Linnhoff,. B.,&Ahmad, S. Cost optimum heat exchanger networks.1.Minimumenergy and capital using simple models for capital cost[J]. Computers&ChemicalEngineering,1990,14(7),729-750.
    [130]Zhu, X. X., O’Neill, B. K.et al. A method for automated heat exchanger synthesis usingblock decomposition and non-linear optimization[J]. Chemical Engineering Research&Design Part A,1995,73(11),919-930
    [131]Lewin, D.R., Wang, H,&Shalev, O. A Generalized method for HEN synthesis usingstochastic optimization. I. General framework and MER optimal synthesis[J].Computers&Chemical Engineering,1998,22(10),1503-1513
    [132]张勤,崔国民.换热网络综合的蒙特卡罗复合形法[C].中国工程热物理传热传质会议.2006,南京,1003-1007
    [133]Su J L, Motard R L. Evolutionary synthesis of heat exchanger networks[J].Computers and Chemical Engineering,1984,8,67-80
    [134]姚平经.全过程系统能量优化综合[M].大连理工大学出版社.1995,53-55.
    [135]S. Ahmad, Heat Exchanger Networks: Cost Tradeoffs in Energy and Capital, Ph.D.Thesis, UMIST Manchester
    [136]M.A.S.S. Ravagnani. Heat exchanger network synthesis and optimisation using geneticalgorithm, Applied Thermal Engineering.2005,25,1003-1017
    [137]Ge R.P. The Theory of Filled Function Methods for Finding Global Minimizers ofNonlinearly Constrained Minimization Problems[J]. J.of Comput.Math,1987,5(1),1-9.
    [138]Ge, R. P. A Filled Function Method for Finding a Global Minimizer of a Function ofSeveral Variables[J]. Mathematical Programming.1990,46,191-204.
    [139]Ge, R. P. and Qin, Y. F. A Class of Filled Functions for Finding Global Minimizers of aFunction of Several Variables[J], Journal of Optimization Theory and Applications.1987,54(2),241-252.
    [140]Ge, R. P. and Qin, Y. F. The global convexized filled functions for globallyoptimization[J]. Applied Mathematics and Computation.1990,35,131-158.
    [141]Ge, R.. P., Huang, H., A continuous approach to nonlinear integer programming[J],Applied Mathematics and Computation.1989,34,39-60
    [142]Ge, R. P,Qin, Y. F,A class of filled functions for finding a global minimizer of afunction of Several Variables[J]. Journal of Optimization Theory and A pplications.1987,54(2),241-252
    [143]Liu, Xian. Finding Global Minima with a Computable Filled Function[J]. Journal ofGlobal Optimization.2001,19,151-161
    [144]Zhang,L.S., NG, Ch. K., Li.D., Tian,W.W., A new filled function method for globaloptimization[J]. Journal of global optimization.2004,28,17-43.
    [145]Cetin B C,Barthen J,Burdick J W. Terminal repeller unconstrained subenergytunneling (TRUST) for fast global optimization[J]. Journal of Optimization andapplications,1993,77(2),97-102.
    [146]孔敏.一类改进的非光滑规划的填充函数[J].系统科学与数学.2000,20(2),149-152
    [147]Lewin D R, Wang H, Shalev O. A Generalized Method for HEN Synthesis UsingStochastic Optimization-I. General Framework and MER[J]. Optimal Synthesis.Comput Chem Eng,1998,22(10),1503-1513.
    [148]Lewin, D R. A Generalized Method for HEN Synthesis Using Stochastic Optimization-II. The Synthesis of Cost-optimal Networks[J]. Comput Chem Eng,1998,22(10):1387-1405
    [149]陆贞.多股流换热器网络的综合及衍生约束优化[D].上海,上海理工大学,2007.
    [150]J.E.Kelley. the Cutting Plane Method for Solving Convex Programs[J]. Journal ofSIAM,1960,8(4),703-712
    [151]T. Westerlund, F. Pettersson. An Extended Cutting Plane Method for Solving ConvexMINLP Problems[J]. Computers chem.. Eng.1995,19,131-136
    [152]肖云汉.供能和用能系统优化组合的热经济学分析[D].北京,清华大学,1993.
    [153]袁一,尹洪超.换热网络同步最优综合方法——改进的MINLP转运模型法[J].化工学报.1996,47(1),77-84
    [154]张勤,崔国民,关欣.基于蒙特卡罗遗传算法在换热网络优化中的应用.石油机械[J].2007,35(5),19-22
    [155]张勤.直接蒙特卡罗/模拟退火混合策略优化换热网络[D].上海,上海理工大学.2007
    [156]张慧平.过程系统工程综合方法及其求解策略的研究[D].北京,北京化工大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700