用户名: 密码: 验证码:
冲击压缩下甲烷、氩气的高温辐射特性与反应流体动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究一些分子结构较简单的气体介质在不同冲击条件下的状态参数和反应流场的变化,首先用实验方法测量了冲击压缩下甲烷与氩气的高温辐射亮度历史,分别得到了气体冲击波速度、冲击温度等重要的冲击状态参数,然后分别用流体动力学理论模拟了气体的反应流体动力学过程。
     用二级轻气炮作为加载手段,加速平面钨飞片,撞击充有试验气体的铝靶盒。采用磁测速系统测量飞片的碰靶速度,用六通道瞬态光学高温计记录冲击压缩气体的高温辐射亮度历史,由此可以测量出气体中的冲击波速度并拟合出相应的冲击温度。分别选用甲烷(作为典型的多原子分子气体)和氩气(作为典型的惰性气体)进行了实验研究,实验的初始条件接近常态。
     在甲烷气体的冲击压缩实验中,飞片速度分别是4.8km/s、4.9km/s和5.1km/s,实验测出相应气体中的冲击波速度分别是8.4±0.2km/s、8.5±0.2km/s和8.9±0.2km/s。实验观察到所有信号很快上升到最大辐射亮度值,然后略有下降,说明受冲击压缩的甲烷气体高温辐射处于非平衡的辐射过程。在局域热动平衡假设下,借助六通道的测量数据采用不等权最小二乘法拟合出各次实验的表观辐射温度分别是4020±60K、4180±80K和4390±90K。首次通过实验发现甲烷气体在强冲击波作用下波后温升小而且伴随非平衡热辐射的事实,这些结果为研究甲烷的冲击反应流场及其冲击状态方程提供了重要的数据。
     在氩气的冲击压缩实验中,飞片速度分别是1.78km/s、2.00km/s和2.76km/s,实验测出相应气体中的冲击波速度分别是3.86±0.08km/s、4.10±0.09km/s和5.30±0.12km/s。实验观察到当飞片速度为1.78km/s时,各个通道记录到氩气辐射亮度的时间相关曲线是一条斜率很小的直线段,这正是光学薄介质的辐射特征,即受冲击压缩的氩气吸收系数接近常数;当飞片速度为2.00km/s时,405nm~650nm通道记录到的氩气辐射亮度的时间相关曲线是直线段,其余通道记录到的氩气辐射亮度的时间相关曲线是指数曲线段,说明气体的吸收系数随波长变化,受冲击压缩气体介质的光学厚度介于光学薄和光学厚之间;当飞片速度为2.76km/s时,所有通道记录到的辐射亮度的时间相关曲线是指数曲线段。本研究首次从实验上观察到冲击压缩下氩气高温辐射的这种变化规律,这对进一步研究冲击氩气的发光机理提供了直接的实验依据。
     用光学多通道分析仪(OMA)测量了飞片速度为1.77km/s时氩气的具有时间分辨的冲击光谱,观察到了二次冲击氩气的光谱结构但没有记录到一次冲击的光谱,进一步证实了氩气一次冲击光谱强度远远小于相同温度下的黑体辐射强度。此外,还观察到二次冲击的氩气光谱在450nm波长附近存在较强的光谱带,这可能与较弱电离状态下的束缚—自由态光子跃迁有联系。
     用流体力学方程组与多组元的化学反应方程组耦合,对飞片速度范围为3.0km/s~9.0km/s的9种冲击条件进行了甲烷气体的一维无粘冲击反应流数值模拟。在进行宏观化学反应动力
    
     冲击压缩下甲烷、氖气的高温辐射特性与反应流体动力学研究
    一
    学计算时,需要给出体系的基元反应数目和所有反应的Arrhen山s形式的速率常数。本文中,
    分别考虑了 7组元门反应模型和门组元 40反应模型,共作了 18种情况的计算。采用三阶
    WENO格式作无粘流的数值通量分裂和三阶 TVD Runge-Kutta方法作时间方向的离散,有效
    地捕捉到了流场中的强冲击波,并给出了各种计算条件下甲烷气体的冲击流场图象和冲击波
    参数。计算表明,当飞片速度低(3km儿)时,两种反应模型给出冲击状态参数的结果基本一
    致,因为这时甲烷气体冲击波后的成分变化很小,说明可以用更简单的化学反应模型描述高
    温甲烷的化学反应过程:当飞片速度增大时,甲烷分子迅速的离解,反应产物容易形成稳定
    的化八物(如C。H。,C。H;们,只有门纲元40反应棋刑的计算结果才能与实验结果接近。
     各种模型模拟出的压力冲击剖面显示,气体波后压力容易达到平衡状态,因此,把无化
    学反应的冻结模型算出的冲击波压力和温度作为初值,然后按定压反应进行了各种情况的非
    平衡区计算。模拟结果表明,冲击波后的非平衡区域更合理,与实验观察到的冲击甲烷辐亮
    度历史曲线规律基本一致,而且还十分清楚地得到了非平衡化学反应的过程。
     尽管 13组元 40反应模型给出了与实验结果接近,但冲击温度的计算值要略低于实验值,
    .(OLtt;?剖面给出的非平衡区域比实验观测到的非平衡区要窄得多。笔者认为,引起这种差
    异的主要原因在于目前选用的宏观化学反应动力学中并未考虑到各种分子的振动温度与平动
    砒度的差别而仅用了单温度模型,如果采川“双温度”模型可能会得到与实验更趋一致的结
    果。这有待于将来作进一步的研究。
     根据一维平面冲击波下的局域热动平衡假设,利用冲击波间断关系和描述气体电离平衡
    的Saha方程,分别计算了氦气和氖气在我们的实验条件下的Hugoniot数据。计算表明,较弱
    冲击波加热的氦气与氖气,其冲击波温度相差很大,因此相应的电离度也相差甚远。进一步
    的分析认为,氦气的原子量小,第一激发能
To study the variations of state parameters and chemically reacting flows of gases with simple molecular structures under different shock conditions,the radiance for time dependence of shock-heated methane as well as argon is measured,thus their shock velocities and temperatures are determined. Then chemically reacting flow fields of them are simulated by means of hydrodynamic theory. In this paper,methane and argon are respectively investigated.
    Aluminum target chambers filled with gaseous samples are impacted by projectiles (tungsten alloy WggMogNFei) which are accelerated by a two-stage light gas gun. The velocities of projectiles impacting targets are measured by means of a magnet velocity induction system (MAVIS). The radiance signals of gases compressed by shock waves are recorded by an instantaneous six-channel optical pyrometer system,thereof the shock velocities and the temperatures in shocked gases can be gained. Methane (as a typical poly-atomic molecule gas) and argon (as a typical inert gas) are investigated through shock experiments respectively. In each experiment,the unshocked specimen is in the state of normal atmosphere and room temperature.
    In the experiments with gaseous methane,when the velocities of projectiles are 4.8km/s,4.9km/s and 5.1km/s,the measured shock velocities in methane are 8.4 +0.2 km/s,8.6+0.2km/s and 8.9+0.3km/s,respectively. The radiance signal of every channel rapidly rises to a maximum with time,then slightly falls,which indicates that the thermal radiation of shock-compressed methane is in a thermodynamic non-equilibrium state. Assuming that local thermodynamic equilibrium (LTE) is reached during shock loading,the seeming radiance temperatures of methane gases under shock conditions mentioned above are 4020 + 60K,4180 + 80K and 4390 + 90K,respectively,using the fit of inequable-weight least squares procedure to the data of six channels. By this work,it is found that although shock in gaseous methane is very strong,the temperature in shock downstream is very low,and shock-induced thermal radiation of gaseous methane is in a non-equilibrium process. These data is instructive to the simulation of shock flows for methane.
    In the experiments with gaseous argon,when the velocities of projectiles are 1.78km/s,2.00km/s and 2.76km/s,the measured shock velocities in argon are 3.86+0.08km/s,4.10+ 0.09km/s and 5.30+ 0.12km/s,respectively. When projectile velocity is 1.78km/s,which is corresponding to the radiation properties of 'optically thin medium',i.e. absorptivity of shocked argon is a very small constant (independent of wavelength). When projectile velocity is 2.00km/s,the radiant intensities of the gas in the shock downstream linearly or exponentially varied with time. These results indicate that the absorptivities of the shocked argon are dependent of different wavelengths and the optical depth of the shocked argon is situated between that of 'optically thin medium' and that of 'optically thick medium'. When projectile velocity is 2.76km/s,the radiant intensities of the gas in the shock downstream exponentially varied with time. The regular pattern of radiance for shocked argon is observed
    
    
    
    through the shock experiments,which gives direct evidence to study the luminous mechanism of gaseous argon under shock compression.
    Reshocked argon spectra with time resolution at 1.8km/s projectile velocity are measured by means of an optical multi-channel analyzer (OMA). But the signals of single-shocked argon spectra with time resolution are so weak that they cannot be observed. It is further demonstrated that the radiation intensity of single-shocked argon is far smaller than that of black body at the corresponding temperature. Besides,a relatively strong spectral band near 405nm wavelength for re-shocked argon is found,which may be caused by the jumps of bound-free states or of free-free states for atomic argon.
    For gaseous methane,the one-dimensional multicomponent reacting flow in thermochemical nonequilibrium behind a normal shock wave is computed from an inviscid an
引文
1 孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社,1995.
    2 孙承伟,卫玉章,周之奎.应用爆轰物理,北京:国防工业出版社,2000.
    3 NELSON H F, PARK C. WRITING E E. Titan Atmospheric Composition by Hypervelocity Shock Layer Analysis. AIAA, 1989:1770.
    4 MORRISON R T, BOYD R. Organic Chemistry (3rd). Allyn and Bacon, 1973. 复旦大学化学系有机化学教研组译.有机化学(上册).北京:科学出版社,1980.
    5 MITCHELL R E, KEE R J. A General Purpose Computer Code for Predicting Chemical Kinetic Behavior behind Incident and Reflected Shocks. SAND82-8205, 1982. KEE R J, MILLER J A, JEFFERSON T H. Chemkin: A General-purpose, Problem-independent, Transportable, Fortran Chemical Kinetics Code Package. SAND80-8003, 1980.
    6 KEE R J, MILLER J A, JEFFERSON T H. Chemkin: A General-purpose, Problem-independent, Transportable, Fortran Chemical Kinetics Code Package. SAND80-8003, 1980.
    7 MOORE C E. Atomic Energy Levels. In: Natl. Bur Stand. (U.S.) Natl. Stand. Ref Data Seri. (35/Ⅵ), 1971: 211.
    8 MITCHNER M, KRUGER H Jr. Partially Ionized Gases. New York: John Wiley & Sons Inc, 1973.
    9 张寿齐,王炳成,谢明恕,等.炸药能量利用的某些可能途径.爆炸与冲击,1984,4(3):87.
    10 泽尔道维奇,菜依捷尔.激波和高温流体动力学现象物理学(上、下册).张树材译.北京:科学出版社,1980.
    11 GORANSON B, BANCROFT D, BURTON B L, et al. Dynamic Determination of the Compressibility of Metals. J. Appl. Plays., 1955, 26 (2): 1472
    12 DUFF R E, HOUSTON E. Measurement of the Chapman-Jouguet Pressure and Reaction Zone in a Detonating High Explosive. J. Chem. Phys., 1955, 23 (7): 1268.
    13 KOZLOV G I, KNORRE V G. Single-pulse Shock Tube Studies on Kinetics of the Thermal Decomposition of Methane. Combs. Flame, 1962, 6 (4): 253.
    14 GREENE E F, TAYLOR R L, PATTERSON W L Jr. Pyrolysis of Simple Hydrocarbons in Shock Waves. J. Phys. Chem., 1958, 62: 238.
    15 HARTIG R, TROE J, \VAGNER H GG. Thermal Decomposition of Methane behind Reflected Shock Waves. In: Thirteenth Symposium (Int.) on Combustion. The Combustion Institute, 1971, 147.
    16 NAPIER D H, SUBRAHANYAM N. Pyrolysis of Methane in a Single Pulse Shock Tube. J. Appl. Chem. Biotechnol., 1072, 22: 303.
    
    
    17 GARDINER W C Jr., OWEN J H. Rate and Mechanism of Methane Pyrolysis from 2000 to 2700K. In: Fifteenth Symposium (Int.) on Combustion. The Combustion Institute, 1974: 857.
    18 SETZMANN U, WAGNER W J. A New EOS and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 635K at Pressures up to 1000MPa. J. Phys. Chem. Ref. Data, 1991,20 (6): 1061.
    19 董维中.气体模型对高超声速再入钝体气动参数计算影响的研究.空气动力学学报,2001,19(2):197。
    20 KOFFI-KPANTE K, ZEITOUN D, LABRACHERIE L. Computation and Experimental Validation of N_2-CH_4-Ar Mixture Flows behind Normal Shock Wave. Shock Waves, 1997, 7 (6): 351.
    21 GNOFFO P A, SHINN L, GUPTA R N. Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium. NASA TP-2867, 1989.
    22 KIEFER J H, KUMARAN S S. Rate of CH_4 Dissociation over 2800-4300K: The Low-pressure-limit Rate Constant. J. Phys. Chem., 1993, 97(2): 414.
    23 ALPHER R A. The Saha Equation and the Adiabatic Exponent in Shock Wave Calculations. J. Fluid Mech., 1957, 2: 123.
    24 MCCHESNEY M. Equilibrium Shock-wave Calculations in Inert Gas, Multiply Ionized Debye-H(?)ckel plasmas. Can. J. Phys., 1964, 42 (12): 2473.
    25 BOND J W Jr., WATSON K M, WELCH J A Jr. Atomic Theory of Gas Dynamics. Addison-Wesley, 1965.
    26 ERSKINE D. Opacity Measurements in Shock-generated Argon Plasmas. J. Quant. Spectrosc. Radiat. Transfer, 1994, 51:97
    27 陈敬平,章冠人,经福谦.冲击压缩下稠密Ar等离子体温度测量.爆炸与冲击,1999,19(3):204~209.
    28 王藩侯,陈敬平,孟续军,等.冲击压缩产生的氩等离子体辐射不透明度研究.物理学报,2001,50(7):1308.
    29 KONDRATIEV V N. Determination of the Rate Constant for Thermal Cracking of Methane by Means of Adiabatic Compression and Expansion. In: Tenth Symposium (Int.) on Combustion. The Combustion Institute, 1965:319.
    30 CHEN C J, BACK M H. The thermal Decomposition of Methane. Ⅰ .Kinetics of the Primary Decomposition to C_2H_6+H_2; Rate Constant for the Homogeneous Unimolecular Dissociation of Methane and Its Pressure Dependence. Can. J. Chem., 1975, 53: 3580.
    31 TABAYASHI K, BAUER S H. The Early Stage of Pyrolysis and Oxidation of Methane. Combs. Flame, 1979, 34 (1): 63.
    
    
    32 KLEMM R B, SUTHERLAND J W, RABINOWITZ M J, et al. Shock Tube Kinetic Study of Methane Dissociation: 1726K≤T ≤2134K. J. Phys. Chem., 1992, 96: 1786.
    33 COBOS C J, TROE J. Theory of Thermal Unimolecular Reactions at High Pressure. Ⅱ. Analysis of Experimental Results. J. Chem. Phys., 1977, 83 (3): 1010.
    34 BAULCH D L, COBOS C J, COX R A, et al. Evaluated Kinetic Data for Combustion Modeling. J. Phys. Chem. Ref. Data, 1992, 21 (3): 411.
    35 KERLEY G I. A Theoretical Equation of State for Methane. J. Appl. Phys., 1980, 51(10): 5368.
    36 ROSS M, REE F H. Repulsive Forces of Simple Molecules and Mixtures at High Density and Temperature. J. Chem, Phys., 1980, 73(12): 6146.
    37 NELLIS W J, REEF H, VAN THIEL M, et al. Shock Compression of Liquid Carbon Monoxide and Methane to 90GPa(900kbar). J. Chem. Phys., 1981,75(6): 3055~3063.
    38 RADOUSKY H B, MITHELL A C, NELLIS W J. Shock Temperature Measurements of Planetary Ices: NH_3, CH_4, and "Synthetic Uranus". J. Chem. Phys., 1990, 93(11): 8235.
    39 蔡灵仓.中国工程物理研究院研究生院,绵阳:博士学位论文,1999.
    40 BOSLOUGH M B. A Model for Time Dependence in Shock-induced Thermal Radiation of Light. J. Appl. Phys., 1985, 58(9): 3394~3399.
    41 唐敬友,谷岩,胡海波,等.冲击压缩下甲烷的状态参数实验研究.流体力学实验与测量,2001,15(4):30-36.
    42 谭华,金属的冲击波温度测量(Ⅰ)——高温计的标定和界面温度的确定.高压物理学报,1994,8(4):254.
    43 王藩侯.中国工程物理研究院,绵阳:博士后研究工作报告,1999.
    44 徐锡中,张万箱等.实验物态方程理论导引.北京:科学出版社,1986.
    45 傅德薰.计算空气动力学.北京:宇航出版社,1994.
    46 黄华.国防科举技术大学研究生院,长沙:博士学位论文,1999.
    47 JANAF Thermochemical Tables. Natl. Stand Ref Data Set (U.S, Natl Bur. Stand.), 1985: No.14.
    48 SHUEN J S, LIOU M S, VAN LEER B. Inviscid Flux-splitting Algorithms for Real Gases with Non-equilibrium Chemistry. J. Compt. Phys., 1990, 90: 371.
    49 水鸿寿.一维流体力学差分方法.北京:国防工业出版社,1998.
    50 SFIU C W. Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. ICASE Report, 1997, 97~65.
    51 KEE R J, J A MILLER, JEFFERSON T H. Chemkin: A General-purpose, Problem-independent, Transportable, Fortran Chemical Kinetics Code Package.SAND80-8003, 1980.
    
    
    52 KEE R J, RUPLEY F M. CHEMKIN-Ⅱ: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics. SAND89-8009B, 1989.
    53 STEWART P H, SMITH G P, GOLDEN D M. The Pressure and Temperature Dependence of Methane Decomposition. Int. J. Chem. Kinet. 1989, 21(10): 923.
    54 PARK C. Assessment of Two-temperature Kinetic Model for Dissociating and Weakly Ionizing Nitrogen. J Therm. and Heat Transf. 1988, 2: 8.
    55 MARRONE P V, TREANOR C E. Chemical Relaxation with Preferential Dissociation from Exited Vibrational Levels. Phys. Fluids, 1963, 6:1215.
    56 卞荫贵,徐立功.气动热力学.合肥:中国科学技术大学出版社,1997.
    57 PILLOW M E. Intensities in Band Systems of CH. Proc. Phys. Soc. A, 1955, 68:547~548.
    58 HERZBERG G. The Bakerian Lecture: the Spectra and Structures of Free Methyl and Free Methylene. Proc. Roy. Soc., Ser. A, 1961,262:291.
    59 HERZBERG G, JOHN J W C. The Spectrum and Structure of Singlet CH_2. Proc. Roy. Soc. A, 1967, 295: 107.
    60 HERZBERG G. The Spectra and Structures of Simple Free Radicals-An Introduction to Molecular Spectroscopy. Cornell University Press, 1971. 徐积啎,张有珑,张允武译.简单自由基的光谱与结构——分子光谱学导论.科学出版社,北京:1989.
    61 MAVRODINEANU R, BOITEUX H. Flame Spectroscopy. John Wiley & Sons, Inc., 1965.
    62 COWAN G R, HORNIG D F. The Experimental Determination of the Thickness of a Shock Front in a Gas. J. Chem. Phys. 18(8): 1008.
    63 KELLY A J. Atom-atom Ionization Cross Sections of the Noble Gases—Argon, Krypton, and Xenon. J. Chem. Phys. 1966, 45(5): 1723.
    64 裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.北京:科学出版社,1980.
    65 吴其芬,陈伟芳.高温稀薄气体热化学非平衡流动的DSMC方法.长沙:国防科技大学出版社,1999.
    66 ROGERS F J. Equations of States of Partially Ionized Dense Plasmas. In: Eliezer S, Ricci R A. Proceedings of International School of Physics 《Enrico Fermi》. Amsterdam: North-Holland Elsevier Science Publishers B V, 1991.
    67 ROGERS F J, IGLESIAS A, Wilson B G. Update on the Opacity Code. In: Kim Y K, Elton R C. AIP Proceedings 206 (Atomic Processes in Plasmas). New York: Gaithersburg, MD 1989.
    68 陈敬平.中国工程物理研究院研究生部,绵阳:博士学位论文,1998.
    69 唐敬友,伍绍珍,王藩侯,等.冲击波加热的氦气与氩气对电探针导通的影响.高压物理学报,2000,14(4):285~290.
    
    
    70 1977.
    71 章冠人.光子流体动力学理论基础.北京:国防工业出版社,1996.
    72 李世昌.高温辐射物理与量子辐射理论.北京:国防工业出版社,1992.
    73 彭其先,胡绍楼,唐敬友.冲击光谱的多通道时间分辨测量.光电子·激光,2001,12(10):1051.
    74 经福谦.实验物态方程导引(第二版).北京:科学出版社,1999.
    75 HORN P D, GUPTA Y M. Wavelength Shift of the Ruby Luminescence R Lines under Shock Compression. Appl. Phys. Lett. 1986, 49: 856.
    76 KONDO K I, AHRENS T J. Shock-induced Radiation Spectra of Fused Quartz. J. Appl. Phys. 1983, 54(8): 4382.
    77 PETSCHEK H E, ROSE P H, GLICK H S, et al. Spectroscopic Studies of highly Ionized Argon Produced by Shock Waves. J. Appl. Phys. 1955, 26(1): 83.
    78 SCHMITT D R, AHRENS T J, SVENDSEN B. Shok-induced Melting and Shear Banding in Single-crystal NaCl. J. Appl. Phys. 1988, 63(1): 99.
    79 KORMER S B. Sov. Phys. USPEKI, 1968, 11(2): 229
    80 罗教明.中国工程物理研究院,绵阳:博士后研究工作报告,1996.
    81 唐志平.冲击相变研究的现状与趋势.高压物理学报,1994,8(1):14.
    82 GUSTAVSEN R L, GUPTA Y M. Time Resolved Raman Measurements in α-quartz Shocked to 60 kbar. J. Appl. Phys. 1994, 75(6): 2837.
    83 GUPTA Y M, HORN P D, YOO C S. Time-resolved Raman Spectrum of Shock-compressed Diamond. Appl. Phys. Lett. 1989, 55(1): 33.
    84 YANG JINGGUO, YANG CANGLI, HA YUANQIAN, el al. A New Kind of Spectrum Analytical Instrument fbr Measuring Time-resolved Spectrum of Single Pulse Light. SPIE, 1998, V3558: 622.
    85 彭其先,胡绍楼,谭显祥,等.冲击波阵面瞬态光谱测试技术研究.爆轰波与冲击波,1999,(4):179.
    86 BOND J W Jr. Structure of A Shock Front in Argon. Phys. Rev. 1957, 105(6): 1683.
    87 TERAO K, HOZAKA M, KAITOH H. Experimental Study on the Ionization of Argon Gas in A Non-equilibriurn State behind Reflected Shock Waves. In: TREANOR C E, HAOOC C E. Proc. of the 13th Int. Symp. on Shock Tubes and Waves. 1982, pp495.
    88 GLASS I l, LIU W S. Effects of Hydrogen Impurities on Shock Structure and Stability in Ionizing Monatomic Gases, Part l Argon. J Fluid Mech. 1978, 84: 55.
    89 KANIEL A, IGRA O, BEN-DOR G, et al. Ionization behind Strong Normal Shock Waves in
    
    Argon. Phys. Fluids, 1986, 29(11) : 3618.
    90 WEYMANN H D. University of Maryland Institute for Fluid Mechanics. Tech. Note BN-144, 1985.
    91 BRAUN C G, KUNC J A. Collisional-radiative Coefficients from a Three-level Atomic Model in Non-equilibrium Argon Plasmas. Phys. Fluids, 1988, 30(2) : 499.
    92 BRAUN C G, KUNC J A. An Analytical Solution of a Collisional-radiative Model for Non-equilibrium Argon Plasmas. Phys. Fluids, 1988, 31(3) : 671.
    93 BRAUN C G, KUNC J A. Atom-atom Inelastic Collision and Three-body Atomic Recombination in Weakly Ionized Argon Plasmas. Phys. Fluids, 1989, B1(1) : 258.
    95 MCCHESNEY M, JONES N R. Equilibrium Properties of Shock Ionized Xenon. Proc. Phys. Soc., 1964,84:983
    96 洪延.国防科学技术大学,长沙:博士学位论文,1997.
    97 WANG FAN-HOU, CHEN J1NG-P1NG, MENG XU-JUN, et al. Opacity of Shock-generated Argon Plasmas. Chin. Phys. Lett. 2001, 18(7) : 291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700