用户名: 密码: 验证码:
植物叶片延迟发光的特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用超微弱发光测量系统,以口红吊兰和绿宝石喜林芋叶片为样品,对植物叶片延迟发光的一种新特性:生物光子在生物组织中的传递行为,以及这种行为与植物叶片衰老的关系进行了研究,主要内容包括:
     1.新现象的发现及其在生物光子学上的意义:在以往生物样品的延迟发光实验中,测量区域同时也是光照区域。无论是平行于叶脉还是垂直于叶脉分割叶片,同一叶片的整体与被分割的部分延迟发光规律和相互作用是相同的。在本文实验中,把叶片分为两个不同区域,一部分(A区域)被遮盖不能接受外界的光照,而另一部分(B区域)不做任何处理,光照B区域,测量A区域的延迟发光。结果发现:在外部条件一致时,整体叶片延迟发光曲线与局部叶片延迟发光出现了偏离;而且无论是只切断叶脉还是只保留叶脉(叶片其它部分保持连结),二者的延迟发光曲线均不相同,这说明叶片内部可能存在一个生物光场,光照后叶片中生物光子的传递并不依赖于叶脉或是叶肉组织等,可能存在其独特的通道;叶片的被光照区域(B区域)与被测区域(A区域)互相对换,结果表明:其延迟发光曲线衰减趋势一致,即生物光子的传递不具有方向性。
     2.生物光子传递行为与叶片衰老关系的研究:对植物叶片在自然衰老过程中生物光子传递进行了测量和分析。结果表明:在自然衰老过程中,随叶龄增加,其自身发光强度先增加后减小;没有生物光子传递的叶片整体的延迟发光强度变化规律是先升高再降低,生物光子传递后叶片的延迟发光强度变化规律是先降低再升高;生物光子传递前后延迟发光衰减参数1/P的夹角先增大再减小。
     3.植物叶片延迟发光的光谱特性研究:对绿宝石喜林芋成熟叶片在特定波长下的延迟发光特性进行了测量和分析,得到在400nm-640nm波长范围内其延迟发光衰减参数1/P随波长变化的光谱特性。结果表明:叶片在各个特定波长下“1/P光谱”特性不同;植物叶片延迟发光主要集中在大于500nm的长波波段,在这个波段内延迟发光强度最大;衰减参数1/P随波长的增加而上升,当波长大于500nm时,衰减参数1/P相对稳定,在这个波段条件下衰减参数1/P最大。
Using ultra-weak photon emission detective technique, we have investigated the delayed luminescence (DL) singularity which the transfer of biophoton in the biological tissue and the relation between the transfer and the senescence of plant leaves. The main contents are as follows:
     1. The finding of the Novel phenomenon and the significance of the phenomenon in the biophotonics:In the former experiments of DL, the area detected is just the same area that was illuminated, the DL curve has a tendency of approximate homology between a whole leaf and their parts, whatever this leaf is divided into two parts by paralleling along leaf venation or perpendicularity to leaf venation.
     In our experiments of DL, we dispose respectively two different part of a leaf, a part of the leaf (call it as A area) that is covered with opacity, other part of the leaf (B area) is illuminated, then, we measure the delayed luminescence of the A area, namely the area coverage that we measure is not the area coverage that is illuminated. The result shows that:at the similar exterior conditions, the DL curve has an angle between a whole leaf and their parts, which indicate that the DL interaction of them are dissimilarity; whatever leaf venation is cut or leaf venation is retained only(other the leaf parts are keepped in perfect). This result means that:there is a biophotons fields inside of the leaf and the biophotons fields have special passage that the transfer of biophoton independently on the nervation and the mesophyll tissue. We exchange the A area with the B area, then, B area that is covered with opacity, other A area is illuminated, we measure the delayed luminescence of the B area, the result shows that:The DL curve attenuation has a tendency of approximate homology with the state before exchange, which indicate that the transfer of biophoton haven't directivity.
     2. The relation between the transfer of biophoton and the senescence of plant leaves:the transfer of biophoton was investigated during leaf natural senescence. The spontaneous luminescence intensities firstly increase and then decrease with the increasing of the leaf age in the process of natural senescence; the DL variety of the intensity of a whole leaf firstly increase and then decrease without biophotons transfer, but the DL intensity variety of the leaf firstly decrease and then increase after biophotons transfer; the DL attenuation curve without biophotons transfer have departure from the DL attenuation curve after biophotons transfer, whose change firstly increase and then decrease with the increasing of the leaf age.
     3. Spectral feature of delayed luminescence of plant Leaf:Within the scope of the 400nm-640nm spectrum, we gained the change of delayed luminescence attenuation parameter (1/P) of green emerald leaves at different wave-length, which was regarded as "the 1/P spectrum". The result shows that:The characteristic of "the 1/P spectrum" of plant leaf was dissimilar at different wave-length. The intensity of the delayed luminescence ascends with the wave-length increasing. However, when the wave-length exceeds 500nm, the intensity of DL remains stable; the 1/P parameter of plant leaf also ascend with the increasing of the wave-length, but when the wave-length exceed 500nm, the 1/P parameter of remain opposite stability, whose its change is very small with the wide range of the wave-length. The rule of "the 1/P Spectrum" reflected the interior interaction of plant leaf at different excitation states.
引文
[l]程海鹏,薛建华.生物中的超微弱发光[J].生物学通报,1999,34(11):15-17.
    [2]李淑丽,郑新亮,任兆玉.生物超微弱发光研究进展[J].激光杂志,2004,25(4):4-6.
    [3]P. A. Jursinic, In Light Emission by Plants and Bacteria[J], edited by J. Amesz, Govindjee, and D. C. Fork-Academic, London,1986:291-291.
    [4]甘子钊,韩汝珊,张学群.生命科学中的物理学[M].北京:北京大学出版社,1996,49-60.
    [5]陈江丽,李晔,夏靖波.微波场影响生物体超弱发光的研究[J].空军工程大学学报(自然科学版).2002,3(2):91-94.
    [6]谭石慈,邢达,唐永红,等.植物叶片超微弱发光光谱研究[J].光子学报,2000,29(11):961-965.
    [7]Hyun-Hee Jung,Joon-Mo Yang,Won-Myung Woo, et al. Year-long biophoton measurements: normalized frequency count analysis and seasonal dependency[J]. Journal of Photochemistry and Photobiology B:Biology.2005.78:149-154.
    [8]Yu Yan, Fritz-Albert Popp, Sibylle Sigrist, et al. Further analysis of delayed luminescence of plants[J]. Journal of Photochemistry and Photobiology B:Biology 2005.78:235-244.
    [9]D. Frckowiak, B. Smyk Interactions between photosynthetic pigments in organisms and in model systems [J]. PHOTOSYNTHETICA.2007.45 (1):1-8.
    [10]张菊平,张兴志,巩振辉.超微弱发光在蔬菜研究中的应用[J].中国农学通报,2006,22(1):220-222.
    [11]刑达,谭石慈,王维江等.自发和光诱导的生物超弱发光图象的探测[J].激光生物学报,1997,6(2):1035-1039.
    [12]张世民,傅俊杰,包劲松.超微弱发光分析法在辐照糖类检测中的应用[J].核农学报,2003,17(3):231-232.
    [13]M. W. Ho, X. Xu, S. Ross, and P. T. Saunders, In Recent Advances in Biophoton Research[J], edited by F. A. Popp, K. H. Li, and Q. Gu Q.-World Scientific, Singapore.1992:287-287.
    [14]R. Neurohr, In Recent Advances in Biophoton Research[J], edited by F. A. Popp, K. H. Li, and Q. Gu-World Scientific, Singapore.1992:375-376.
    [15]王成龙,范多旺,刑达,钱隆.植物光诱导延迟发光介导的酸性环境污染监测[J].光电子·激光,2006,17(3):337-342.
    [16]D.Zbadretdinov, S.A.Kuznetsova, S.V.Poltev, A.K.Kukushkin. Backward electron transport in photosystem 2 reaction center and temperature dependence of delayed luminescence characteristics[J]. Bioelectro chemist ry.2002.56:13-16.
    [17]Popp, F. A, Li,K-H, Gu, Q. Recent Advances in Biophoton Reseach and Its Applications[J]. World Scientific Publishing, Singapore.1992.207-327.
    [18]刘太胜,李爱芬,顾继光,孙岁寒,段舜山.硒对紫球藻生长及光谱特性的影响[J].生态环境,2006,15(2):224-228.
    [19]Popp, F. A; Li, K-H; Gu, Q. Recent Advances in Biophoton Reseach and Its Applications[J]. World Scientific Publishing, Singapore.1992.1-46.
    [20]R.P.Bajpai. a squeezed state from a sample of Parmelia tinctorum[J], Physics Letters. 2004.A322:131-136.
    [21]R.P.Bajpai, S.Kumar, V.A.Sivadasan. Biophoton emission in the evolution of frequency stable damped oscillator[J], Applied Mathematics and Computation 1998.93:277-288.
    [22]F.A.Popp, J.J.Chang, et al. Evidence of non-classical (squeezed) light in biological systems[J], Physics Letters,2002.A 293:98-102.
    [23]Lev V. Beloussov. Exploring the dynamic background of the developmental processes and cell reactions with the use of an ultraweak photon Emission[J]. BioSystems 2003.68:199-212.
    [24]马世荣,惠延平,郭双平,程虹.人肝癌HepG2细胞超微弱发光的观察[J],2006,19(2),100-103.
    [25]Francesco Musumeci, Giuseppe Privitera, Agata Scordino, et al. Discrimination between normal and cancer cells by using spectral analysis of delayed luminescence [J].Applied physics letters.2005.86: 15390:1-3,
    [26]Yu Yan, Fritz-Albert Popp, et al. Further analysis of delayed luminescence of plants [J]. Journal of Photochemistry and Photobiology B:Biology.2005.78:235-244.
    [27]李光,杨海莲,陈静伟,等.温度对叶片延迟发光的影响[J].河北大学学报(自然科学版),2005,25(1):24-28.
    [28]张新萍,岳霞丽,胡先文等,水华鱼腥藻超弱发光光谱研究[J],化学与生物工程,2005,(4):50-54
    [29]Yoshida S. Molecular regulation of leaf senescence Review[J]. Current opinion in plant biology,2003, 6(1):79-84.
    [30]Abarca D, Martin M, Sabater B.Differential leaf stress responses in young and senescent plants[J], Physiologia plantarum,2001,113(3):409-415
    [31]李德红,刑达,谭石慈,王维江.绿豆和花生的超弱发光[J].植物生理学报.1998,24(2):177-182.
    [32]李德红,何永红,罗明珠,谭石慈,邢达,生长在不同光质下的花生幼苗的超弱发光[J],生物物理学报,1998,14(3):548-552.
    [33]罗明珠,李德红,梁计南,谭中文,陈培寿,段税,刘承宜.甘蔗叶片超弱发光和叶绿素含量,单茎重的关系研究[J].激光生物学报,2002,11(3):173-176.
    [34]谭石慈,唐永红,邢达.植物叶片的延迟发光光谱特性[J].激光生物学报,2001,10(3):207-207.
    [35]杜洪涛,刘世琦,蒲高斌,等.光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响[J].西北农业学报2005,14(1):41-45.
    [36]Popp F A,K H Li,Mei W P. Physical aspect of biophotns[J]. Experientia,1988,44:576-585
    [37]毛大璋,沈恂,张月敬,等.代谢抑制剂对萌发绿豆超弱发光的影响[J].生物物理学报,1988,4(2):116-120.
    [38]王华芳,伊伟伦,郑彩霞,等.植物的超弱发光[J].北京林业大学学报,1996,18(2):83-89.
    [39]张新华,杨洪强.植物叶绿体和线粒体的超微弱发光[J].植物生理学通讯,2004,40(1):111-114.
    [40]F.A. Popp, Yu Yan. Delayed luminescence of biological systems interms of coherent states[J], Phys. Lett.,2002, A 293:93-97.
    [41]F.A. Popp, B.Ruth, P.Grass, et al. Emission of visible and ultraviolet radiation by active biological systems[J], Collect. Phenom, (Gordon & Breach) 1981,3:187-214.
    [42]F.A. Popp, Nagl W, KH Li. Biophoton emission, New evidence for coherence and DNA as a sourse[J]. Cell Biophys,1984,6:35-52.
    [43]Rattemeyer MR, Popp FA, Nagl W, et al. Evidence of photon emission from DNA in living cells[J]. Naturwissenschaften,1981,68:572-573.
    [44]王维江,韩俊英.生物超弱发光机制及其检测方法研究进展[J].广东工业大学学报,2000,17(1):49-54.
    [45]刘颂豪,孟耀勇,刘承宜.生物光子特点及其可能的机制[J].激光与红光,1997,(2):67-69.
    [46]Biswal U.C., Biswal B. Ultra-structural modifications and biochemical changes during senescence of chlorophasts[J]. Int.Rev.Cytol.1988,113:271-321.
    [47]Irena Rajcan, Lianne M. Dwyer, Matthijs Tollenaar. Note on relationship between leaf soluble carbohydrate and chlorophyⅡ concentrations in maize during leaf senescence[J]. Field Crops Research.1999,63:13-17.
    [48]Basanti Biswal. Carotenoid catabolism during leaf senescence and its control by light[J]. Journal of Photochemistry and Photobiology B:biology.1995,30:3-13.
    [49]袁政,张大兵.植物叶片衰老的分子机制[J].植物生理学通讯,2002,38(4):417-422.
    [50]张治礼,郑学勤,吕应堂.内源细胞分裂素调控油菜叶片衰老进程的研究[J],2005,3l(1):1-6.
    [51]Staden V, Cook E L, Cytokinine and senescence. lu:Nooden L D, Leopold A C eds, Senescence and Aging in Plant[J]. San Diego(USA):Academic Press.1988,281
    [52]Fridovich I. Superoxide dismutases[J]. Ann Rev Biochem,1975,44:147-159.
    [53]杨淑慎,高俊凤.活性氧,自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220
    [54]Huang Y. The importance of transmembrane flux of Ca2+ in regulating dark-induced senescence of detached corn leaves[J]. Bot Bull Acad Sin,1992,33:17-21
    [55]王孝威,曹慧.高等植物叶片的衰老[J].山西农业大学学报,2004,24(4):416-419
    [56]王维江,刑达,谭石慈等.生物样品超弱发光图象的探测与分析[J],生物物理学报,1997,13(4):677-682.
    [57]李晓兰.李雪华.蒋德明.刘志民.王红梅.兰柱.科尔沁沙地22种菊科草本植物叶片形态特征研究[J].生态学杂志,2005,24(12):1397-1401
    [58]秦宏伟.植物衰老及其调控机制的探讨[J].济宁师范专科学校学报,2005,26(6):12-13.
    [59]梁秋霞,曹刚强,苏明杰,秦广雍.植物叶片衰老研究进展[J].植物生理科学,2006,22(8):282-285.
    [60]杨晓玲,刘艳芳,郭守华,杨晴,王华芳.水杨酸延缓离体爬山虎叶片衰老的作用[J].植物生理学通讯,2005,41(6):779
    [61]王维江,邢达,谭石慈,韩俊英.红背桂叶片的延迟发光研究[J].量子电子学报,2000,17(4):310-314
    [62]曹晓兵,李光,廖祥如,等.盐胁迫下绿豆幼苗的超微弱发光[J].热带亚热带植物学报,2004,12(3):261-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700