用户名: 密码: 验证码:
小波变换和马尔可夫随机场在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据小波变换和马尔可夫随机场理论,针对图像处理技术中的图像去噪、图像分割和纹理合成三个重要课题进行了深入研究,主要工作及贡献如下:
     1.提出了一种新的基于小波域隐马尔可夫树模型的图像去噪算法。该算法采用三态隐马尔可夫树模型或分级隐马尔可夫树模型对图像进行多尺度统计建模,降低了计算复杂度,提高了模型参数的估计精度。对加性高斯白噪声进行图像去噪仿真实验,实验结果表明本文提出的图像去噪算法在峰值信噪比和主观视觉效果方面均优于传统图像去噪算法。
     2.提出了一种基于小波域自适应上下文结构的多尺度图像分割算法。该算法为了减小计算量,采用智能初始化和半树HMT模型参数加权训练算法,得到了可靠的初始分割;为了获得较好的区域一致性和边缘准确性,在进行尺度间融合时,采用自适应的上下文结构分别应用于图像纹理均质区域和图像纹理边缘,保证了图像大致轮廓的准确性和可靠性,提高了分割后图像纹理边缘的精确度。仿真实验结果表明本文提出的图像分割方法对合成纹理图像和自然界图像均有很好的分割效果。
     3.提出了一种新的基于马尔可夫随机场的纹理合成方法,该算法首先利用纹理图像及其子图像的统计特性的相似性,自动选取最佳邻域的大小,然后采用L邻域匹配快速搜索算法加速纹理合成。仿真实验结果表明,本文提出的纹理合成算法和传统算法相比,不仅减少了合成时间,而且获得了比较好的纹理图像合成效果。
In this dissertation, we focus on three important topics of image processing based on wavelet transform and Markov random field theory, which are image denoising, image segmentation, and texture synthesis. The main contributions are as follows:
     We develop a new approach to the wavelet-domain hidden Markov tree model for removing noise from the images. In order to undertake the accuracy of the model parameters and reduce computing expense, we use 3-state hidden Markov tree model(3SHMT) or hierarchical hidden Markov tree model(HHMT) for multiscale statistical image modeling. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of PSNR.
     A new image segmentation algorithm based wavelet, referred to as joint adaptive context and multiscale segmentation(JACMS) is developed. Towards achieving lower computational complexity, we propose an intelligent parameter initialization and half tree HMT model weighting training algorithm, when applied to image segmentation, this technique provides a reliable initial segmentation. In order to achieve higher accuracies of both texture classification and boundary localization during the interscale fusion, we develop adaptive context structures that are applied to homogeneous regions or/and texture boundaries, respectively. Experiments demonstrate that the proposed algorithms yield excellent segmentation results on both synthetic and real world data examples.
     A new MRF-based texture synthesis algorithm is proposed. First, the optimal neighbor size is automatically chosen using statistic characteristics similarity between the texture image and its subimage, then the L neighbor matching fast search algorithm is introduced to accelerate texture synthesis. Our texture synthesis methods can produce better results in little time than previous methods.
引文
[1] Daubechies. The wavelet transform: time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1993, 36(5): 961~1005
    [2] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Anal Machine Intell, 1989, 11(7): 674~693
    [3] R.Yong. An introduction to nonlinear Fourier series. New York: Academic Press, 1980, 1~150
    [4] Albert Boggess著,小波与傅里叶分析基础(芮国胜,康健等译),北京:电子工业出版社,2004
    [5] Shubha Kadambe. Application of the wavelet transform for pitch detection of speed signals. IEEE Transactions on Inform and Theory, l992, 38(2): 917~924
    [6] W. Hess. Pitch detection of speed signals: algorithms and devices. Berlin: Springer Verlag, 1983
    [7]王玉平,蔡元龙,多尺度B样条小波边缘检测算子,中国科学A辑,1995,25(4):626~437
    [8]张宗平,刘贵忠,杨一文,嵌入分层聚类的小波零树图像编码,计算机学报,2002,25(11):1189~1194
    [9]刘峰,基于小波变换的图像扩散滤波方法,中国科学E辑,2006,36(6):668-677
    [10]李小斌,田铮,基于谱聚类的图像多尺度随机树分割,中国科学E辑,2007,37(8):1073~1085
    [11] Zhijun Wang. A comparative analysis of image fusion methods. IEEE Trans. Geoscience and Remote Sensing, 2005, 43(6): 1391~1402
    [12] Huilin Xiong. A translation and Scale-invariant adaptive wavelet transform. IEEE Transactions on Image Processing, 2000, 9(3): 2100~2108
    [13] Vladimir Katkovnik, Karen Egiazarian, Jaakko Astola. A spatially adaptive nonparametric regression image deblurring. IEEE Transactions on Image Processing, 2005, 14(10): 1469~1478
    [14] Junmei Zhong, Ruola Ning. Image denoising based on wavelets and multifractals for singularity detection. IEEE Transactions on Image Processing, 2005, 14(10): 1435~1447
    [15] Michael Sühling. Myocardial motion analysis from B-mode echocardiograms. IEEE Transactions on Image Processing, 2005, 14(4): 525~536
    [16] Dongming Peng, Mi Lu. Non-RAM-based architectural designs of wavelet-based digital systems based on novel nonlinear I/O data space transformations. IEEE Transactions on VLSI System, 2005, 13(1): 58~74
    [17] Erwan Le Pennec, Stéphane Mallat. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing, 2005, 14(4): 423~438
    [18] Ilya Zavorin Jacqueline Le Moigne. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery.IEEE Transactions on Image Processing, 2005, 14(6): 770~782
    [19] Iano, Y.,Da Silva F.S., Cruz A.L.M. A fast and efficient hybrid fractal-wavelet image coder. IEEE Transactions on Image Processing, 2006, 15(1): 98~105
    [20] Anil Anthony Bharath, Jeffrey Ng. A steerable complex wavelet construction and its application to image denoising. IEEE Transactions on Image Processing, 2005, 14(7): 948~959
    [21] Jalal M. Fadili, Larbi Boubchir. Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Transactions on Image Processing, 2005, 14(2): 231~240
    [22] David A. Clausi, Huang Deng. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing, 2005, 14(7): 925~936
    [23] Grigoryan A. M. 2-D and 1-D multipaired transform frequency-time wavelets. IEEE Transactions on Signal Processing, 2000, 49(2): 344~353
    [24] Hyun-wook Park. Motion estimation using low-band-shift method for wavelet-based moving-picture coding. IEEE Transactions on Image Processing, 2000, 9(4): 577~587
    [25] Yang X, Ramchandran K. Scalable wavelet video coding using aliasing-reduced hierarchical motion compensation. IEEE Transactions on Image Processing, 2000, 9(5): 778~791
    [26] Robert D. Nowak. Wavelets-based transformations for nonlinear signal processing. IEEE Transactions on Signal Processing, 1999, 47(7): 1852~1865
    [27] Heijmans. Nonlinear multiresolution signal decomposition schemes II morphological wavelets. IEEE Transactions on Image Processing, 2000, 9(11): 1862~1876
    [28] J. K. Romberg, H. Choi, R. G. Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing, 2001, 10(7): 1056~1068.
    [29] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 1989, 77(2): 257~285
    [30] Baker J, The DRAGON system-an overview. IEEE Transactions on Acoustics Speech and Signal Processing, 1975, 23(1): 24~29
    [31] Jelinek F. Continous speech recognition by statistical methods. Proceedings of the IEEE, 1976, 64(4): 532~555
    [32] Crouse M. S., Nowak R. D., Baraniuk R.G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 1998, 46(4): 886~902
    [33] Lei tianhu, Udupa Jayaram K. Performance evaluation of finite normal mixture model-based image segmentation techniques. IEEE Transactions on Image Processing, 2003, 12(10): 1153~1169
    [34] Mallat S, Hwang W L. Singulary detection and processing with wavelets, IEEE Transactions on Information Theory, 1992, 38(2): 617-643
    [35] Mallat S, Zhong S. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710~732
    [36] Donoho D L. De-nosising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613~627
    [37] Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425~455
    [38] Donoho D L, Johnstone I M. Adaptiving to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 1995, 90(432): 1200~1224
    [39] Donoho D L. Johnstone I M, Minimax estimation via wavelet shrinkage. Annals of Statistics, 1998, 26(3): 879~921
    [40] Donoho D L, Johnstone I M. Ideal denoising in an orthonormal basis chosen from a library of bases. Compt. Rend. Acad. Sci. Paris, Ser I, 1994(319): 1317~1322
    [41]林玲,杨余飞,基于L1拟合与光滑正则化的图像去噪声问题的半光滑性分析,湖南师范大学自然科学学报,2006,2:32~34
    [42]陈喜春,曹峰梅,金伟其,基于极坐标的相向运动图像模糊的递归模型,光子学报,2007,36(3):552~556
    [43]张军保,宋红军,基于小波域高斯-柯西混合模型的SAR图像降噪声算法,中国科学院研究生院学报,2006,23(2):159~164
    [44]李旭超,朱善安,小波域图像降噪概述,中国图像图形学报,2006,11(9):1201~1209
    [45]郭小卫,田铮,刘保利,小波域隐Markov树模型的图像去噪快速算法,西北工业大学学报,2004,22(4):457~462
    [46]章毓晋,图像分析,北京:清华大学出版社,2005
    [47]章毓晋,图像处理,北京:清华大学出版社,2006
    [48]章毓晋,图像理解,北京:清华大学出版社,2007
    [49]薛健,田捷,何晖光等,基于3D Widgets的三维人机交互平台的设计与实现,计算机仿真,2006,23(1):230~235
    [50]句彦伟,田铮,徐海霞,SAR图像分割的Bootstrap广义多分辨似然比检验方法,宇航学报,2006,27(4):664~669
    [51] David Marr著,视觉计算理论(姚国正等译),北京:科学出版社,1988
    [52] S.Z.Li. Markov Random Field Modeling in Image Analysis. Tokyo: Springer-Verlag, 2001
    [53]马颂德,计算机视觉,北京:科学出版社,2003
    [54]薛峰,基于样图的纹理合成技术研究:[博士学位论文],合肥;合肥工业大学,2006
    [55]刘景,基于样图的二维纹理合成技术研究:[硕士学位论文],南京;河海大学,2003
    [56]许存禄,陈雁秋,卢汉清,基于统计地形特征的纹理检索方法,计算机研究与发展,2006,43(4):702~707
    [57] Daubechies I. Where do wavelets come from?– A personal point of view. Proc. IEEE, 1996, 84(4): 510~513
    [58] Grossman A. Morlet J, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 1984, 15(4): 723~736
    [59] Str?mberg J O. A modified franklin system and higher order spline systems on IRs as unconditional bases for hardy space. Proc. Conf. in Honor of Antomi Zygmund, 1981, 2: 475~493
    [60] C.Sidney Burrus著,小波与小波变换导论(程正当译),北京:机械工业出版社,2007
    [61] Meyer Y. Wavelets algorithms and applications. Society for Industrial and Applied Mathematics, 1993
    [62] Daubechies I. Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics. 1998, 41(7): 909~996
    [63] Daubechies I. Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992
    [64] Coifman R. Entropy based algorithm for best basis selection. IEEE Trans. Inform. Theory, 1992, 38(2): 713~718
    [65] Wickerhauser M V. INRIA lectures on wavelet packet algorithms. Technical report, Washington University, 1991
    [66] Ramchandran K, Vetterli M. Best wavelet packet bases in a rate-distortion sense. IEEE Transactions on Image Processing, 1993, 2(2): 160~175
    [67] Cohen A. Daubechies I, Bi-orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, 45(5): 485~560
    [68] Vetterli M, Herley C. Wavelet and filter banks: theory and design. IEEE Trans. Signal Processing, 1992, 40(9): 2207~2232
    [69] Vaidyanathan P P. Orthonormal filter banks as convolvers, and convolutional coding gain. IEEE Trans. Signal Processing, 1993, 41(6): 2110~2130
    [70] Zou H, Tewfik A H. Discrete orthogonal M-band wavelet decomposition. Proceedings ICASSP, San Francisco, 1992, 4: 605~608
    [71] Steffen P. Theory of regular M-band wavelet bases. IEEE Trans. Signal Processing, 1993, 41(2): 3497~3511
    [72] Cohen A, Daubechies I, Vail P. Wavelets on the interval and fast wavelet transforms. Applied and Computational Harmonic Analysis, 1993, 1(1): 54~81
    [73] Micchelli C A, Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets. Applied and Computational Harmonic Analysis, 1994, 1(4): 391~401
    [74] Chui K, Lian J. A study of orthonormal multi-wavelet. Applied Numerical Mathematics, 1996, 20(3): 273~298
    [75] Hardin D P, Marasovich J A. Biorthogonal multi-wavelets on [-1,1]. Applied and Computational Harmonic Analysis, 1999, 7(1): 34~53
    [76] Goodman T N T, Lee S L. Wavelets of multiplicity r. Transactions of the American Mathematical Society, 1994, 342(1): 307~324
    [77] Geronimo J, Hardin D, Massopust P. Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory, 1994, 78(3): 373~401
    [78] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 1996, 3(2): 186~200
    [79] Sweldens W. The lifting scheme: A construction of second generation wavewlets. SIAM Journal of Mathematical Analysis, 1998, 29(2): 511~546
    [80] Reichel J, Menegaz G, Nadenau M J. Integer wavelet transform for embedded lossy to lossless image compression. IEEE Transactions on Image Processing, 2001, 10(3): 383~392
    [81] Lin C J, Zhang B, Zheng Y F. Packed integer wavelet transform constructed by lifting scheme. IEEE Trans. Circuits and Systems for Video Technology, 2000, 10(8): 1496~1501
    [82] Mallat S. Multiresolution approximation wavelet orthogonal bases of L2(R). Transactions of the American Mathematical Society, 1989, 315: 69~87
    [83] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps. J. Fourier Anal., 1998, 4(3): 245~267
    [84] Baum L E. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov process. Inequalities, 1972, 3: 1~8
    [85] Baum L E, Egon J A. An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for Ecology. Bull. Amer. Meteorol. Soc., 1967, 73: 360~363
    [86] Baum L E, Petrie T. Statistical inference for probabilistic function of Finite state Markov chains. Ann. Math. Stat., 1966, 37: 1554~1563
    [87] Baum L E, Petrie T, Soules G, et al. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov processes. Ann. Math. Stat., 1970,41: 164~171
    [88] Bahl L R, Jelinek F. Decoding for Channels with insertions, deletions, and substitutions with applications to speech recognition. IEEE Trans. IT, 1975, 21(2): 404~411
    [89] Bahl L R, Jelinek F, Mercer R L. A maximum likelihood approach to continuous speech recognition. IEEE Trans. PAMI, 1983, 5(1): 179~190
    [90] Itou K, Hayarnizu S, Tanaka H. Continuous speech recognition by context dependent phonetic HMM and an efficient algorithm for finding N-best sentence hypotheses. Proc. ICASSP’92, 1992, I: 21~24
    [91] Lenvinson S E, Rabiner L R, Sondhi M M. An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. BSTJ, 1983, 62(4): 1035~1074
    [92] Rabiner L R, Juang B H. An introduction to hidden markov models. IEEE ASSP Magazine, 1986, 3(1): 4~16
    [93] Chen M.Y., Kundu A., Srihari S.N. Variable duration HMM and morphological segmentation for handwritten word recognition. IEEE Transactions on Image Processing, 1995, 4(12): 1675~1689
    [94] Vlontzos J.A., Kung S.Y. Hidden Markov models for character recognition. IEEE Transactions on Image Processing, 1992, 1(14): 539~543
    [95] Agazi O.E., Kuo S.S. Hidden Markov model based optical character recognition in the presence of deterministic transformations. Pattern Recognition, 1993, 26: 1813~1826
    [96] El-Yacoubi A., Gilloux M., Sabourin R., et al. An HHM-based approach for off-line unconstrained handwritten word modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(8): 752~760
    [97] Chen J.L., Kundu A. Unsupervised texture segmentation using multichannel decomposition and hidden Markov models. IEEE Transactions on Image Processing, 1995, 4(5): 603~620
    [98] Wu W.R., Wei S.C. Rotational and gray scale transform invariant texture classification using spiral resampling, Subband decomposition, and hidden Markov model. IEEE Transactions on Image Processing, 1996, 5(10): 1423~1435
    [99] C.Anton-Haro, J.A.R. Fonollosa, and J.R. Fonollosa. Blind channel estimation and data detection using hidden Markov models. IEEE Transactions on Signal Processing, 1997, 45(1): 241~247
    [100] Kaleh G.K., ValletR. Joint parameter estimation and symbol detection for linear and nonlinear unknown channels. IEEE Transactions on communications, 1994, 42(7): 2406~2414
    [101] A. Pikrakis, S. Theodoridis, and D. Kamarotos. Classification of Musical Patterns using Variable Duration Hidden Markov Models. IEEE Transactions on Speech and Audio Processing, 2006, 14(5): 1795~1807
    [102] Hansen M, Yu B. Wavelet thresholding via MDL for natural images. IEEE Transactions on Information Theory, 2000, 46(5): l778~l788
    [103] Moulin P, Liu J. Analysis of muhiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Transactions on Information Theory, 1999, 45(3): 909~919
    [104] Simoncelli E P. Modeling the joint statistics of images in the wavelet domain. Proceedings of SPIE 44th Annual Meeting, Denver, 1999, 38(13): 188~195
    [105] G. Fan, X.G.Xia. Wavelet-based texture analysis and synthesis using hidden Markov models. IEEE Trans. Circuits and Systems, Part I, 2003, 50(1): 106~120
    [106] Choi H, Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing, 2001, 10(9): 1309~1321
    [107] Fan G, Xia X G. Image denoising using local contextual hidden Markov model in the wavelet domain. IEEE Signal Processing Letters, 2001, 8(5): 125~128.
    [108] Mihcak M K,Kozintsev 1, Ramchandran K, et a1. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, 6(12): 300~303
    [109] Malfait M, Roose D. Wavelet-based image denoising using a Markov random field a prior model. IEEE Transactions on Image Processing, 1997, 6(4): 549~565
    [110] Strela V, Poailla J, Simoncelli E P. Image denoising using a local gaussian scale mixture model in the wavelet domain. Proceedings of SPIE Conference on Wavelets Applications in Signal and Image Processing VIII, San Diego, CA, 2000, 41(19): 363~371
    [111] Pizurica A, Philips W, Lemahieu I, et a1. A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Transactions on Image Processing, 2002, 11(5): 545~557
    [112] Liu J, Moulin P. Image denoising based on scale—space mixture modeling of wavelet coeficients. Proceedings of IEEE International Conference on Image Processing, Kobe Japan, 1999: 386~390
    [113] Shapiro J M. Embedded image coding using zerotrees of wavelet coeficients. IEEE Transactions on Signal Processing, 1993, 41(12): 3445~3462
    [114] Said A, Pearlman W A. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits System and Video Technology, 1996, 6(3): 243~250
    [115] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744~2756
    [116] Willsky A S. Muhiresolution markov models for signal and image processing. Proceedings of the IEEE, 2002, 90(8): 1396~1458
    [117] Kenneth C Chou, Alan S W illsky, Albert Benveniste. Muhiscale recursive estimation, data fusion, and regularization. IEEE Transactions on Automatic Control, 1994, 39(3): 464~478
    [118] Afshin David. Wavelet—kalman method for image compression. Proceedings of IEEE Intern ational Conference on Acoustics, Speech and Signal Processing, Hong Kong, China, 2003, VI: 101~l04
    [119] Chipman H, Kolaczyk W, Mcculloch R. Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association, 1997, 92: 1413~1421
    [120]苏涛,张登福,毕笃彦,基于小波域分类隐马尔可夫树模型的图像去噪,红外与激光工程,2005,34(2):232~235
    [121]曹学光,肖志云,汪雪林等,复小波域HMT模型图像复原,光电子·激光,2005,16(12):1487~1491
    [122]赵书斌,彭思龙,基于小波域HMT模型的图像超分辨率重构,计算机辅助设计与图形学学报,2003,15(11):1347~1352
    [123]肖志云,文伟,彭思龙,小波域HMT模型参数的快速估计及其在图像降噪中的应用,计算机应用,2004,24(12):7~10
    [124] H.Choi, R.G. Baraniuk. Image segmentation using wavelet-domain classification. Proc. SPIE Conf. Math. Modeling, Bayesian Estimation, Inverse Problems, Denver, Co, 1999, 3816: 306~320
    [125]熊毅,田铮,郭小卫,基于多尺度Markov模型的SAR图像上下文融合分割方法,计算机应用,2006,26(2):412~418
    [126]句彦伟,田铮,纪建,基于广义多分辨似然比的SAR图像无监督分割方法,西北工业大学学报,2005,23(5):666~670
    [127]侯玉华,杨晓艺,宋锦萍等,基于小波域多状态隐马尔科夫树模型多尺度文本图像分割,电子与信息学报,2002,24(12):1885~1891
    [128]孙文锋,孙强,焦李成,改进多尺度融合结合小波域HMT模型的遥感图像分割,红外与激光工程,2004,33(5):528~532
    [129]侯玉华,宋锦萍,周福娜等,基于小波域隐马尔科夫模型的文本图像子带分割方法,电子学报,2002,30(8):1180~1183
    [130] M. N. Do, M. Vetterli. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 2002, 11(2): 146~158
    [131] M. N. Do. Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models. IEEE Signal Processing Letters, 2003, 10(4): 115~118
    [132] A.P.Dempster, N.M.Laird, D,B.Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 1977, 39(1): 1~38
    [133] Bracewell, R. N. Two-Dimensional Imaging, Prentice Hall, Upper Saddle River, NJ. 1995
    [134] Libbery R L. Signal and image processing sourcebook. New York: Van Nostrand Reinhold, 1994
    [135] Chang S G, Yu Bin, Vetterili M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 2000, 9(9): 1522~1530
    [136] Weaver JB, Xu YS, Healy DM Jr, et al. Filtering noise from images with wavelet transforms. Magnetic Resonance in Medicine. 1991, 21(2): 288~295
    [137] Lu J., Weaver J.B., Healy D.M. et al. Noise reduction with a multiscale edge representation andperceptual criteria. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-scale Analysis, Victoria BC: Darthmouth Coll. Hanover NH, 1992, 555~558
    [138] Bruce A.G., D.L. Donoho, H.Y. Gao, et al. Denoising and robust nonlinear wavelet analysis. Proc. SPIE: Wavelet Applications, Harold H. Szu Ed, 1994, 2242: 325~336
    [139] Xu yansun, Wenner I B, Healy M J et al. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing, 1994, 3(6): 743~758
    [140] Nason G P, Silverman B W. The discrete wavelet transform in S. Journal of Computational and Graphical Statistics, 1994, 3: 163~191
    [141] Lang M, Guo H. Noise reduction using an undecimateed discrete wavelet transform. IEEE Signal Processing Letter, 1996, 3(1): 10~12.
    [142] Hsung T-C, Lun D P-K, Siu W-C. Denoising by singularity detection. Transactions on Signal Processing, 1999, 47(11): 3139-3144
    [143] Portilla J, Strela V, Wainwright M J. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12(11): 1338~1351
    [144] Donoho D L. Wavelet shrinkage and W.V.D. a ten minute tour. http://www.Standord.Edu/toulous.gs
    [145]潘泉,张磊,孟晋丽等,小波滤波方法及应用,北京:清华大学出版社,2006,132~141
    [146] R.Haralick, L. Shapiro. Image segmentation techniques: Journals of Computer Vision, Grahpics, and. Image processing, 1985, 29: 100~132
    [147] C. Therrien. An estimation-theoretic approach to terrain image segmentation. Comput. Vision Graphics and Image Process., 1983, 22: 313~326
    [148] H Derin, H Elliott. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. PAMI, 1987, 9(1): 39~55
    [149] C. Bouman, M. Shapiro. A multiscale random field modelfor Bayesian image segmentation. IEEE Transactions on Image Processing, 1994, 3(2): 162~177
    [150]郭小卫,田铮,林伟等,多尺度Markov模型的可适应图像分割方法,电子学报,2005,33(7):1279~1283
    [151] C Fosgate, H Krim, W.Irving et al. Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Transactions on Image Processing, 1997, 6: 7~20
    [152] J. Li, R.M. Gray, and R.A. Olshen. Multiresolution image classification by hierarchical modeling with two dimensional hidden Markov models. IEEE Transactions on Information Theory, 2000, 46(5): 1826~1841
    [153] The brodatz datebase. http://www.ux.his.no/_tranden/brodatz/.
    [154]王文,芮国胜,王晓东等,图像多尺度统计模型综述,中国图象图形学报,2007,12(6):962~968
    [155]汪西莉,刘芳,焦李成,一种小波域HMT模型参数初始化方法,计算机科学,2003,30(1):85~86
    [156] Mallat S. A wavelet tour of signal processing. San Diego: Academic Press, 1998
    [157] The usc-sipi image database. http://sipi.usc.edu/services.html
    [158] D J Heeger, J R Bergen. Pyramid-based texture analysis/synthesis. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles: 1995, 229~238
    [159] S.C.Zhu, X.W. Liu, Y.N. Wu. Exploring texture enesmbles by efficient Markov chain Monte Carlo - toward a "trichromacy" theory of texture. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(6): 554~569
    [160] J.Portilla, E.Simoncelli. A parametric texture model based on joint statistics of complex wavelet coecients. International Journal of Computer Vision, 2000, 40(1): 49~71
    [161] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of texture images. Proceedings of SIGGRAPH, 1997, 361~368
    [162] Efros A A, Leung TK. Texture synthesis by non-parametric sampling. Proceedings of the 7th International Conference on Computer Vision, Kerkyra Greece: 1999, 1033~1038
    [163] Li-Yi Wei, Marc Levoy. Fast texture synthesis using tree-structured vector quantization. Proceedings of SIGGRAPH 2000, 2000, 479~488
    [164] M Ashikhmin. Synthesizing natural textures.Proceedings of 2001 ACM Symposium on Interactive 3D Graphics. North Carolina: 2001, 217~226
    [165] A A Efros, W T Freeman. Image quilting for texture synthesis and transfer. Proc of ACM SIGGRAPH, Los Angeles: ACM Press, 2001, 341~347
    [166] Kwatra V, Essa I, Schodl A, et al. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics, 2003, 22(3): 277~286
    [167] Andrew Nealen, Marc Alexa. Hybrid Texture Synthesis. Eurographics Symposium on Rendering 2003, Leuven, Belgium: 2003, 97~105
    [168] De Bonet date base. http:// www.debonet.com/jsd.cgi/research

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700