用户名: 密码: 验证码:
图像稀疏表示理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像表示是图像处理领域的基本问题。图像内容的有效表示是图像处理应用开展的基础。表示的有效性是指用很少的数据捕获感兴趣目标的重要信息的能力,即稀疏表示的能力。图像稀疏表示研究已成为近年来图像表示研究的热点,尤其是探讨基于人眼视觉的基函数理论模型及构造方法,研究快速、有效的图像稀疏表示算法,将有利于推动图像处理领域研究的开展,为图像表示提供新的理论与方法,具有重要的理论意义。
     本文在国家自然科学基金项目“联合基图像稀疏表示理论研究及其应用”的资助下,针对图像稀疏表示理论、方法以及基于稀疏表示的图像处理应用问题,重点围绕多尺度几何分析在图像处理中的应用、基于冗余字典的超完备图像稀疏表示理论及应用、组合变换图像稀疏表示理论及应用等内容进行了探索性的研究。
     论文阐述了信号表示的定义、稀疏性度量以及图像稀疏表示的基本理论方法,分析与比较了脊波变换、曲线波变换、Contourlet变换、Bandelet变换各自的非线性逼近性能。
     脊波变换作为多尺度几何分析中的一种,能够稀疏地表示图像中的直线状奇异特征。利用脊波变换对直线状奇异特征的稀疏表示特性,提出了一种盲数字图像水印算法。算法能够确定出视觉上重要的图像脊波系数,并将水印自适应地嵌入其中,既保证了水印视觉上的不可见性,又提高了水印的鲁棒性。
     针对脊波变换域阈值收缩法图像去噪存在的问题,提出了一种脊波收缩和全变差最小模型相结合的图像去噪算法。算法先对脊波系数进行收缩处理,再采用全变差扩散方式对收缩的脊波系数进行滤波处理。算法保留了两种去噪方法的优点,在计算复杂度与滤波效果上取得了更好的综合性能。
     论文分析了自然图像曲线波系数的边缘统计分布,提出了曲线波系数边缘分布的正态反高斯分布建模方法和基于曲线波系数边缘统计模型和最大后验概率估计的图像去噪算法。算法能够减少图像中的噪声,更好地保留图像的边缘、纹理等几何特征,去噪后的图像具有更好的视觉质量。
     基于曲线波变换的多方向和各向异性特性,提出了一种曲线波变换域图像融合算法。算法采用局部方向能量比来度量特征的显著程度,采用局部方向能量比的熵来自适应地抑制噪声的干扰。算法充分保留了图像的特征,同时抑制了噪声的干扰,更适用于实际的图像融合系统。
     超完备稀疏表示能够获得最可能稀疏的图像表示,能获取比传统的非自适应方法更高分辨率的信息。论文研究了基于冗余字典的超完备图像稀疏表示理论及其应用。(1)对超完备图像稀疏分解算法进行了研究,提出了一种基于冗余字典非相干分解的多原子匹配追踪图像稀疏分解算法。算法通过每次迭代选取若干最匹配原子的方式,实现图像的快速稀疏分解。该算法在保证稀疏分解性能的同时,极大地提高了稀疏分解的速度,为基于超完备图像稀疏表示的实际应用奠定了基础。(2)对超完备图像稀疏表示中冗余字典的构造问题进行研究,提出了冗余多尺度脊波字典的构造方法。新构造出的字典满足人眼视觉的基本特性,具有多分辨率、多尺度、各向异性和多方向选择性等性质,能更稀疏地表示图像。(3)基于多原子匹配追踪算法和冗余多尺度脊波字典,提出了一种静态图像压缩编码方案。该方案通过对稀疏分解系数的自适应量化与编码,实现图像的压缩编码。在低比特率下,该方案获得比JPEG-2000更好的编码性能,非常适用于低比特或甚低比特率下的图像与视频编码。
     组合变换图像稀疏表示通过几种变换(或正交基)的级联来构造超完备字典,实现图像的稀疏表示。论文对组合变换图像稀疏表示理论及应用进行了研究,首先,提出了迭代收缩法组合变换图像稀疏表示。该方法利用变换的快速算法,通过迭代收缩的方式实现图像的组合变换稀疏表示,具有运算简单、收敛速度快等优点,适合于大数据环境下的工程应用。其次,提出了组合傅里叶变换与曲线波变换的混合图像复原算法,利用傅里叶变换域收缩法进行去卷积和去除色噪声,并利用曲线波变换域收缩法进行去噪,较好地恢复了降质的图像。最后,提出了组合小波变换与曲线波变换的图像插值算法。利用小波变换与曲线波变换对图像不同内容的稀疏表示特性,将图像插值问题转化为稀疏约束的图像重建问题,采用迭代收缩投影法对问题进行求解,实现了图像分辨率的增强。实验结果表明,该算法显著提高了插值图像的视觉质量。
Image representation is the basic problem in image processing. Efficient representation of image contents lies at the foundation of image processing tasks. Efficiency of a representation refers to the ability to capture significant information of an object of interest in a small description. That is the ability of sparse representation. Recently, image sparse representation has been the hot topic of image representation. The researches of theory models and construction methods of basis based on human visual system, rapid and efficient image sparse representation algorithm will be help to promote the development of image processing. Those researches will provide new theory and method for image representation. It is of great importance in both theory and application.
     Supported by the National Science Foundation of China, this thesis concentrates on the image sparse representation theories, methods and the image processing applications based on sparse representation. We make deeply study for the applications based on multiscale geometry analysis, theories of overcomplete sparse image representation and its applications, theories of sparse image representation via combined transforms and its applications.
     Firstly, the definition of image representation, measure of sparsity, and the basic methods of sparse representation are reviewed. And then, we analyze the performance of nonlinear approximation of Ridgelet, Curvelet, Contourlet and Bandelet transform.
     Ridgelet transform as one of the multiscale geometry analysis methods can sparsely represent the line singularities. Based on the property of Ridgelet sparse representation to line singularities, a blind digital image watermarking algorithm is proposed. The algorithm can exactly determine the important coefficients of image in vision and adaptively embed watermarks into the original image. Experimental results show the proposed watermarking algorithm ensures the invisibility of watermarks and improves the robustness.
     Aiming at the problem of image denoising based on shrinkage in Ridgelet domain, a new hybrid denoising algorithm via combined Ridgelet shrinkage and total variation minimization model is proposed. Ridgelet coefficients are firstly thresholded, and then the thresholded coefficients are filtered by total variation diffusion. The hybrid denoising algorithm preserves the advantages of these two image denoising methods and has better general performance.
     The marginal statistical model of Curvelet coefficients is studied. And a new image denoising algorithm based on marginal statistical model of Curvelet coefficients and maximum a posteriori (MAP) estimator is proposed, where the normal inverse Gaussian (NIG) distribution is used as the prior model of curvelet coefficients of images. Under this prior, a Bayesian Curvelet estimator is derived by using the MAP rule. The proposed denoising algorithm can reduce the noise efficiently and keep the details meanwhile.
     Based on the multidirection and anisotropy of Curvelet transform, a new image fusion algorithm in Curvelet domain is proposed. The algorithm uses local direction energy ratio to measure the significance of features and uses local direction energy entropy to adaptively restrain noise disturb. The new fusion algorithm can sufficiently preserve image features and restrain noise disturb. It is more suited to real image fusion system.
     Overcomplete sparse representation can obtain the sparsest possible representation of the object and a resolution of sparse objects that is much higher-resolution than that possible with traditional non-adaptive approaches. We study the theories of overcomplete sparse image representation based on redundant dictionary and its application. (1) The spare decomposition method of overcomplete image sparse representation is studied. And a multi-atom matching pursuit method based on incoherent decomposition of redundant dictionary is proposed. In this method, the image is decomposed by several the best matching atoms selected at each iteration. The performances of the proposed method are comparable with those of the matching pursuit. And the speed for image sparse decomposition is greatly improved. It will be help to the research of applications based on overcomplete sparse representation. (2) The problems of redundant dictionary construction in overcomplete sparse representation are studied. A method of multiscale Ridgelet dictionary construction is proposed. The new constructed dictionary satisfies the human visual system characteristics. It is multiresolution, multiscale, anisotropic and multidirectional. It can provide sparser representation for images. (3) A still image coding scheme based on multi-atom matching pursuit and redundant multiscale Ridgelet dictionary is proposed. In this scheme, the image is firstly sparsely decomposed, and then the decomposed coefficients are adaptively quantized and encoded. The performances of the new coding scheme are shown to compare favorably against those of the state of the art JPEG-2000 scheme at low bit rate. The new coding scheme is more suitable to the image and video coding at low or very low bit rate.
     Image sparse representation via combined transforms means that an image is sparsely represented by overcomplete dictionary combined by several transforms. In this dissertation, we study the theories of sparse representation via combined transforms and its applications. Firstly, we study the methods of sparse representation via combined transforms and propose an iterative shrinkage algorithm. The iterative shrinkage can use the rapid algorithm of each transform. It is simple and rapidly convergent. It is more suited to use in large data. And then, a hybrid image restoration algorithm via combined Fourier and Curvelet transform is proposed. The Fourier shrinkage and Curvelet shrinkage are used to reduce the colored noise and the remaining noise separately. The hybrid restoration algorithm can restore the degraded images very well. In the end, an image interpolation algorithm via combined wavelet and Curvelet transform is proposed. The new interpolation algorithm exploits wavelet and Curvelet transforms’sparse representation of different kind of image contents. The image interpolation problem is turned to be image restoration problem enforced a sparsity constraint on the coefficients. We use an iterative shrinkage projection process to drive the solution towards an improved high-resolution image. Experimental results show the new interpolation algorithm substantially improves the subjective quality of interpolated images.
引文
[1]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社, 1998.
    [2] R. A. DeVore. Nonlinear approximation [J]. Acta Numerica, 1998, 7: 51-150.
    [3] A. Cohen, I. Daubechies, O. G. Guleryuz, and M. T. Orchard. On the importance of combining wavelet-based nonlinear approximation with coding strategies [J]. IEEE Transaction on Information Theory, 2002, 48(7): 1895–1921.
    [4] G. K. Wallace. The JPEG still picture compression standards [J]. IEEE Transaction on Consumer Electronics, 1992, 38(1): 1985-2013.
    [5] D. S. Taubman, and M. W. Marcellin. JPEG 2000: Image compression fundamental, standards and practice. Kluwer Academic Publishers, Norwell, MA, USA, 2001.
    [6] S. Mallat. A wavelet tour of signal processing. Academic Press, 1998.
    [7]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(12):1975-1981.
    [8] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the cat’s striate cortex [J]. Journal of Physiology, 1959, 148: 574-591.
    [9] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and function architecture the cat’s visual cortex [J]. Journal of Physiology, 1962, 160: 106-154.
    [10] D. H. Hubel and T. N. Wiesel. Receptive fields and function architecture of monkey striate cortex [J]. Journal of Physiology, 1968, 195: 215-243.
    [11] M. S. Livingstone and D. H. Hubel. Anatomy and physiology of a color system in the primate visual cortex [J]. Journal of Physiology, 1984, 4: 309-356.
    [12] D. J. Field and D. J. Tolhurst. The structure and symmetry of simple-cell receptive field profiles in the cat’s visual cortex [J]. Porceedings of the Royal Society of London, Biol Sci, B213, 1986, 1253(288): 379-400.
    [13] D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells [J]. Journal Optical Society America A, 1987, 4: 2379-2394.
    [14] D. J. Field. What the statistics of natural images tell us about visual coding [J]. Porc. The International Society for Optical Engineering, 1989, 1077: 269-276.
    [15] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries [J]. IEEE Transaction on Signal Process, 1993, 41(12): 3397-3415
    [16] R. Neff and A. Zakhor. Very low bit-rate video coding based on matching pursuits [J]. IEEE Transaction on Circuits System I, 1997, 7(1): 158–171.
    [17] S. S. Chen, D. L. Donoho and M. A. Saunders. Atomic decomposition by basis pursuit [J]. SIAM Journal Scientific Computing, 1999, 20(1): 33-61.
    [18]汪胜前.图像的小波稀疏表示及收缩去噪算法[D].上海交通大学博士论文,2002.
    [19] J. A. Tropp. Topics in sparse approximation [D]. Ph.D dissertation, Stanford University, Stanford, CA, 1995.
    [20] A. Cohen, R. A. DeVore, P. Petrushev and H. Xu. Nonlinear approximation and the space BV (R2) [J]. American Journal of Mathematics, 1999, 121(3): 587-628.
    [21] A. Bruno, B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381: 607-609.
    [22] E. J. Candes. Ridgelets: theory and applications [D]. Ph.D dissertation, Stanford University, Stanford, CA, 1998.
    [23] E. J. Candes and D. L. Donoho. Curvelets– a surprisingly effective nonadaptive representation for objects with edges. 1999, Technical report, Stanford University.
    [24] E. L. Pennec and S. Mallat. Sparse geometric image representations with bandelets [J]. IEEE Transaction on Image Processing, 2005, 14(4): 423-438.
    [25] M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transaction on Image Processing, 2005, 14(12): 2091-2106.
    [26]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报, 2006, 51(6): 628-633.
    [27] R. Bracewell. The Fourier transform and its application. McGraw Hill, 1965.
    [28] N. Ahmed, T. Natarajan and K. R. Rao. Discrete cosine transform [J]. IEEE Transactions on Computers, 1974, 23(1): 90-93.
    [29] I. Daubechies. Ten lectures on wavelets. SIAM: Philadelphia, 1992.
    [30] D. Gabor. Theory of communication. J. Inst. Electr. Engrg, 1946.
    [31] T. F. Chan and H. M. Zhou. Adaptive ENO-wavelet transforms for discontinuous functions. In T. Chan, T. Kako, H. Kawarada, O. Pironneau, 12th International Conference on Domain Decomposition Methods, 2001.
    [32] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by V1 [J]. Vision Research, 1997, 37(23): 3311-3325.
    [33] D. L. Donoho and A. G. Flesia. Can recent innovations in harmonic analysis‘explain’key findings in natural image statistics [J]. Network: Computation in Neural System, 2001, 12(3): 371-393.
    [34] X. M. Hou and J. H. Chen. JBEAM: Multiscale curve coding via beamlets [J]. IEEE Transactions on Image Processing, 2005, 14(11): 1665-1677.
    [35] F. G. Meyer and R. R. Coifman. Burshlets: A Tool for Directional Image Analysis and Image Compression [J].Applied and Computational Harmonic Analysis, 1997, 4(2): 147-187.
    [36] D. L. Donoho. Wedgelets: nearly-minimax estimation of edges [J]. Annals of Statistics, 1999, 27(3): 859-897.
    [37] D. L. Donoho. Fast edgelet transforms and applicatios. Manuscript, Sept. 1998.
    [38] V. Delisavljevic, B. Beferull-lozano, M. Vetterli and P. L. Dragotti. Directionlets: anisotropic multi-directional representation with separable filtering [J]. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933.
    [39] Y. M. Lu and M. N. Do. Multidimensional directional filter banks and surfacelets [J]. IEEE Transactions on Image Processing, 2007, 16(4): 918-931.
    [40] E. J. Candes. Harmonic analysis of neural networks [J]. Applied and Computation Harmonic Analysis, 1996, 6(2): 197-218.
    [41] D. L. Donoho and M. R. Duncan. Digital curvelet transform: strategy, implementation and experiments [J]. Proc. SPIE, 2000, 4056: 12-29.
    [42] M. N. Do and M. Vetterli. The finite ridgelet transform for image representation [J]. IEEE Transactions on Image Processing, 2003, 12(1): 16-28.
    [43] E. J. Candes. Monoscale ridgelet for the representation of images with edges [R]. Dept. Statist., Stanford University, Stanford, CA, Technology Reprot, 1999.
    [44] J. L. Starck, E. J. Candes and D. L. Donoho. The curvelet transform for image denoising [J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.
    [45] E. J. Candes and D. L. Donoho. New tight frames of curvelets and optimal representation of objects with C2 sigularities [J]. Communication on Pure and Applied Mathematic, 2004, 57(2): 219-266.
    [46] E. J. Candes, L. Demanet, D. L. Donoho, L. Ying. Fast discrete curvelet transforms [J]. Multiscale Modeling Simulation, 2006, 5(3): 861-899.
    [47] G. Peyre and S. Mallat. Discrete bandelets with geometric orthogonal filters [A]. IEEE International Conference on Image Processing Proceedings [C]. Genova, 2005, 1: 65-68.
    [48] G. Peyre and S. Mallat. Surface compression with geometric bandelets [J]. ACM Transactions on Graphics, 2005, 24(3): 601-608.
    [49] D. L. Donoho. Ridge functions and orthonormal ridgelets [J]. Journal of Approximation Theory, 2001, 11(2): 143-179.
    [50]焦李成,侯彪,刘芳.基函数网络逼迫:进展与展望[J].工程数学学报, 2002, 19(1): 21-36.
    [51] O. R. Terrades and E. Valveny. A new use of the ridgelets transform for describing linear singularities in images [J]. Pattern Recognition Letters, 2006, 27(6): 587-596.
    [52] X. Q. Jiang, W. H. Zeng, P. Scott, et al. Linear feature extraction based on complex ridgelet transform [J]. Wear, 2008, 264(5): 428-433.
    [53] S. Arivazhagan, L. Ganesan, T. G. Subash Kumar. Texture classification using ridgelet transform [J]. Pattern Recognition Letters, 2006, 27(16): 1875-1883.
    [54] L. Dettori, L. Semler. A comparison of wavelet, ridgelet, and curvelet-based texture classifaction algorithms in computed tomography [J]. Computers in Biology and Medicine, 2007, 37(4): 486-498.
    [55] W. Pan, T. D. Bui and C. Y. Suen. Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition [J]. Signal Processing, 2008, 88(1): 189-199.
    [56] G. R. Easley, C. A. Bernstein and D. M. Healy. Deconvolution in a ridgelet and curvelet domain [J]. Proceedings of SPIE, 2005, 5818: 59-69.
    [57]李立,彭玉华,杨明强,薛佩军. Ridgelet域中基于非参数自适应密度估计理论的图像去噪方法[J].电子与信息学报, 2006, 28(12): 2273-2276.
    [58] G. Y. Chen and B. Kegl. Image denoising with complex ridgelets [J]. Pattern Recognition, 2007, 40(2): 578-585.
    [59] N. Nezamoddini-Kachouie, P. Fieguth and E. Jernigan. BayesShrink ridgelets for image denoising [C]. Proceeding of ICIAR, 2004, 1: 163-170.
    [60] P. Campisi, D. Kundur and A. Neri. Robust digital watermarking in the ridgelet domain [J]. IEEE Signal Processing Letters, 2004, 11(10): 826-830.
    [61]邓承志,曹汉强,汪胜前.脊波变换域盲数字水印方案[J].光电工程, 2007, 34(5): 131-135.
    [62] J. Cox,J. Killian,T. Leighton,et al. Secure spread spectrum watermarking for multimedia [J]. IEEE Transactions on ImageProcessing, 1997, 6(12): 1673-1687.
    [63] P. H. W. Wong, O. C. Au and Y. M. Yeung. A Novel Blind Multiple Watermarking Technique for Images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 813-830.
    [64] A. B. Lee,K. S. Pedesen and D. Mumford. The Nonlinear Statistics of High-Contrast Patches in Natural Images [J]. Int. J. Comput. Vis., 2001, 54(3): 83–103.
    [65] R. R. Coifman and A. Sowa. Combining the calculus of variations and wavelets for image enhancement [J]. Appl. Comput. Harmon. Anal., 2000, 9(1): 1–18.
    [66] E. J. Candès and F. Guo. New multiscale transforms minimum total variationsynthesis: Applications to edge-preserving image reconstruction [J]. Signal Processing, 2002, 82(11): 1519–1543.
    [67] S. Durand and J. Froment. Reconstruction of wavelet coefficients using total variation minimization [J]. SIAM J. Sci. Comput., 2003, 24(5): 1754–1767.
    [68]金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪[J].计算机学报, 2007, 30(3): 491-497.
    [69] W. Ni, B. L. Guo, L. Yang and P. Y. Fei. Speckle reduction algorithm for laser underwater image based on curvelet transform [J]. Chinese Optics Letters, 2006, 4(5): 279-281.
    [70] J. L. Starck, D. L. Donoho and E. J. Candes. Astronomical image representation by the curvelet transform [J]. Astronomy & Astrophysics, 2003, 398(2): 785-800.
    [71]冯鹏,米德伶,潘英俊,魏彪,金炜.改进的Curvelet变换图像降噪方法[J].光电工程, 2005, 32(9): 67-70.
    [72]王文波,羿旭明,费浦生.基于曲波系数相关性的去噪算法[J].光电子?激光, 2006, 17(12): 1519-1523.
    [73] J. W. Ma and G. Plonka. Combined curvelet shrinkage and nonlinear anisotropic diffusion [J]. IEEE Transactions on Image Processing, 2007, 16(9): 2198-2206.
    [74] S G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11(7): 674-693.
    [75] S. Chang, B. Yu and M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
    [76] A. Pizurica and W. Philips. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising [J]. IEEE Transactions on Image Processing, 2006, 15(3): 654-665.
    [77] A. Achim, A. Bezerianos and P. Tsakalides. Novel Bayesian multiscale method for speckle removal in medical ultrasound images [J]. IEEE Trans. Med. Image, 2001, 20(5): 772-783.
    [78] A. Achim and E. E. Kuruoglu. Image denoising using bivariate alpha-stable distributions in the complex wavelet domain [J]. IEEE Signal Processing Letters, 2005, 12(1): 17-20.
    [79] L. Boubchir and J. M.Fadili. A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximateα-stable prior [J]. Pattern Recognition Letter, 2006, 17(1): 1370-1382.
    [80] J. M. Fadili and L. Boubchir. Analytical form for a Bayesian wavelet estimator of images using the Bessel k forms densities [J]. IEEE Transactions on Image Processing, 2005, 14(2): 323-329.
    [81] J. Portilla, V. Strela, M. Wainwright and E. P. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Transactions on Image Processing, 2003, 12 (11): 1338–1351.
    [82] J. Portilla. Image restoration using Gaussian scale mixtures in overcomplete oriented pyramids [J]. Proc. of the SPIE, 2005, 5914: 468-482.
    [83] O. E. Barndorff-Nielsen. Normal inverse Gaussian distributions and stochastic volatility modeling [J]. Scand. J. Statist., 1997, 24(1): 1–13.
    [84] O. E. Barndorff-Nielsen and K. Prause. Apparent scaling [J]. Finance and Stochastics, 2001, 5(1): 103–113.
    [85] F. Luisier, T. Blu and M. Unser. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding [J]. IEEE Transactions on Image Processing, 2007, 16(3): 593-606.
    [86] L.Wald. Some terms of reference in data fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1190–1193.
    [87] Z. J. Wang, D. Ziou, C. Armenakis, et, al. A comparative analysis of image fusion methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1391-1402.
    [88] J. Zhou, D. L. Civco, and J. A. Silander. A wavelet transform method to merge Landsat TM and SPOT panchromatic data [J]. Int. J. Remote Sens., 1998, 19(4):743–757.
    [89] T. M. Tu, S. C. Su, H. C. Shyu, and P. S. Huang. A new look at IHS-like image fusion methods [J]. Information Fusion, 2001, 2(3): 177–186.
    [90] G. Pajares and J. M. de la Cruz. A wavelet-based image fusion tutorial [J]. Pattern Recognition, 2004, 37(9): 1855-1872.
    [91]李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报, 2006, 26(5): 657-662.
    [92]王振飞,施保昌,王能超.基于曲线波变换的图像融合方法[J].小型微型计算机系统, 2007, 28(3): 533-536.
    [93] F. Nencini, A. Garzelli, S. Baronti and L. Alparone. Remote sensing image fusion using the curvelet transform [J]. Information Fusion, 2007, 8(2): 143-16.
    [94] A. Toet, L. V. Ruyven and J. Velaton. Merging thermal and visual images by a contrast pyramid [J]. Opt. Engineering, 1989, 28(7): 789-792.
    [95]杨志,毛士艺,陈炜.基于局部方向能量的鲁棒图像融合算法[J].电子与信息学报, 2006, 28(9): 1537-1541.
    [96] J. H. Friedman and W. Stuetzle. Projection pursuit regression [J]. Journal of the American Statistical Association, 1981, 76(376): 817-823.
    [97] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms [J]. Advances in Computational Mathematics, 1996, 5(2-3): 173-187.
    [98] L. K. Jones. On a conjecture of Huber concerning the convergence of projection pursuit regression [J]. The Annals of Statistics, 1987, 15(2): 880-882.
    [99] V. N. Temlyakov. Weak greedy algorithms [J]. Advances in Computational Mathematics, 2000, 12(2-3): 213-227.
    [100] V. N. Temlyakov. Greedy algorithms in Banach spaces [J]. Advances in Computational Mathematics, 2001, 14(3): 277-292.
    [101] V. N. Temlyakov. On greedy algorithms with restricted depth search [R]. Tech. Rep. 2004: 27, Industrial Mathematics Institute, University of South Carolina.
    [102] A. Lutoborski and V. N. Temlyakov. Vector greedy algorithms [J]. Journal ofComplexity, 2003, 19(4): 458-473.
    [103] G. M. Davis, S. G. Mallat and Z. Zhang. Adaptive time-frequency decompositions [J]. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191.
    [104] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]. In Conference Record of the 27th Annual Asilomar Conference on Signals, Systems and Computers, 1993, 1: 40-44, Pacific Grove, CA, USA.
    [105] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms [J]. Advances in Computational Mathematics, 1996, 5(2-3): 173-187.
    [106] V. N. Temlyakov. Weak greedy algorithms [J]. Advances in Computational Mathematics, 2000, 12(2-3): 213-227.
    [107] V. N. Temlyakov. A criterion for convergence of weak greedy algorithms [J]. Advances in Computational Mathematics, 2002, 17(2): 269-280.
    [108] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242.
    [109] J. F. Murray, K. Kreutz-Delgado. An improved FOCUSS-based learning algorithm for solving sparse linear inverse problems [C]. In IEEE Conference Record of the Thirty-Fifth Asilomar Conference on, 2001, 1: 347 - 351.
    [110] K. Krutz-Delgado, J. F. Murray, B. D. Rao, et, al. Dictionary learning algorithms for sparse representation [J]. Neural Computation, 2003, 15(2): 349-396.
    [111] D. P. Wipf and B. D. Rao. Bayesian learning for sparse signal reconstruction [C]. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 2003 (ICASSP '03), 2003, 6: 601- 604.
    [112] D. Shanno and R. J. Vanderbei. Interior-point methods for nonconvex nonlinear programming: Orderings and higher-order methods [J]. Mathematical Programming, 2000, 87(2): 303-316.
    [113] S. Sardy, A. G. Bruce and P. Tseng. Block coordinate relaxation methods for nonparametric wavelet denoising [J]. Journal of Computational and GraphicalStatistics, 2000, 9(2): 361-379.
    [114] I. Daubechies. Time-frequency localization operators: a geometric phase space approach [J]. IEEE Transactions on Information Theory, 1998, 34(4): 605-612.
    [115] R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection [J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718.
    [116] P. S. Huggins and S. W. Zucker. Greedy Basis Pursuit [J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3760-3772.
    [117] R. Gribonval and P. Vandergheynst. On the exponential convergence of matching pursuits in quasi-incoherent dictionaries [J]. IEEE Transactions on Information Theory, 2006, 52(1): 255-261.
    [118] L. Daudet. Sparse and structured decompositions of signals with the molecular matching pursuit [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(5): 1808-1816.
    [119] L. Peotta and P. Vandergheynst. Matching pursuit with block incoherent dictionaries [J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4549-4557.
    [120] J. M. Greenberg, Z. S. Wang and J. Li. New approaches for chirplet approximation [J]. IEEE Transactions on Signal Processing, 2007, 55(2): 734-741.
    [121] R. M. F. I Ventura, P. Vandergheynst and P. Frossard. Low-Rate and flexible image coding with redundant representation [J]. IEEE Transactions on Image Precessing, 2006, 15(3): 726-739.
    [122] R. Neff and A. Zakhor. Matching pursuit video– part I: dictionary approximation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(1): 13-26.
    [123] K. P. Cheung and Y. H. Chan. A fast two-stage algorithm for realizing matching pursuit [C]. Proc. of IEEE International Conference on Image Processing, 2001: 431-434.
    [124] D. Redmill, D. Bull, and D. Czerepinki. Video coding using a fast non-separable matching pursuits algorithm [C]. Proc. of IEEE International Conference on ImageProcessing, 1998: 769-773.
    [125] R. Gribonval. Fast matching pursuit with a multiscale dictionary of gaussian chirps [J]. IEEE Transactions Signal Processing, 2001, 49(5): 994-1001.
    [126] C. D. Vleeschwouwer and B. Macq. Subband dictionaries for low-cost matching pursuit of video residues [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(7): 984-993.
    [127] M. Goodwin and M. Vetterli. Matching pursuit and atomic signal models based on recursive filter banks [J]. IEEE Transactions on Signal Processing, 1999, 47(7): 1890-1902.
    [128] P. Schmid-Saugeon and A. Zakhor. Dictionary design for matching pursuit and application to motion-compensated video coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(6): 880-886.
    [129] Y. T. Chou, W. L. Hwang and C. L. Huang. Gain-shape optimized dictionary for matching pursuit video coding [J]. Signal Processing, 2003, 83(9): 1937-1943.
    [130] P. Jost, P. Vandergheynst and P. Frossard. Tree-Based pursuit: algorithm and properties [J]. IEEE Transactions on Signal Processing. 2006, 54(12): 4685-4697.
    [131] J. L. Starck, M. J. Fadili and F. Murtagh. The undecimated wavelet decomposition and its application [J]. IEEE Transactions on Image Processing, 2007, 16(2): 297-309.
    [132] F. G. Meyer, A. Averbuch and J. O. Stromberg. Fast adaptive wavelet packet image compression [J]. IEEE Transactions on Image Processing, 2000, 9(5): 792-800.
    [133] M. S. Lewicki and B. A. Olshausen. A probabilistic framework for the adaptation and comparison of image codes [J]. Journal of the Optical Society of America A Optics, Image Science and Vision, 1999, 16(7):1587-1601.
    [134] B. A. Olshausen and D. J. Field. Natural image statistics and efficient coding [J]. Network: Computation in Neural Systems, 1996, 7(2): 333-339.
    [135] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations [J]. Neural Computation, 2000, 12: 337-365.
    [136] K. Engan, S. O. Aase and J.H. Hakon-Husoy. Method of optimal directions for frame design [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, 5: 2443-2446.
    [137] K. Engan, S. O. Aase and J. H. Husoy. Multi-frame compression: Theory and design [J]. EURASIP Signal Processing, 2000, 80(10): 2121-2140.
    [138] J. F. Murray and K. Kreutz-Delgado. An improved focuss-based learning algorithm for solving sparse linear inverse problems [C]. In IEEE Intl Conf. on Signals, Systems and Computers, 2001, 41: 19-53.
    [139] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
    [140] P. Frossard, P. Vandergheynst, R. M. F. I. Ventura, etc. al. A posteriori quantization of progressive matching pursuit streams [J]. IEEE Transactions on Signal Processing, 2004, 52(2): 525-535.
    [141] X. M. Huo. Sparse image representation via combined transforms [D]. Ph.D dissertation, Stanford University, Stanford, CA, 1999.
    [142] J. L. Starck, D. L. Donoho and E. J. Candes. Very high quality image restoration by combining wavelets and curvelets [C]. Proceedings of SPIE, 2001, 4478: 9-19.
    [143] J. L. Starck, M. K. Nguyen and F. Murtagh. Wavelets and curvelets for image deconvolution: a combined approach [J]. Signal Processing, 2003, 83(10): 2279-2283.
    [144] J. L. Starck, M. Elad and D. L. Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on Image Processng, 2005, 14(10): 1570-1582.
    [145] J. Bobin, J. L. Starck, J. Fadili, etc, al. Morphological diversity and source separation [J]. IEEE Signal Processing Letters, 2006, 13(7): 409-412.
    [146] G. Aubert and P. Kornprobst. Mathematical Problems in Image processing: Partial Differential Equations and the Calculus of Variations [M]. New York: Springer, 2001,59-127.
    [147] Y. L. You and M. Kaveh. Blind image restoration by anisotropic regularization [J]. IEEE Transactions on Image Processing, 1999, 8(3): 396-407.
    [148] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization [J]. IEEE Transactions on Image Processing, 1995, 4(7): 932-946.
    [149] K. Seongjai. PDE-based image restoration: a hybrid model and color image denoising [J]. IEEE Transactions on Image Processing, 2006, 15(5): 1163-1170.
    [150] D. L. Donoho. Nonlinear solution of inverse problems by wavelet-vaguelette decomposition [J]. Applied and Computational Harmonic Analysis, 1995, 2: 101-126.
    [151] R. Neelamani, H. Choi and Baraniuk. FowWard: fourier-wavelet regularized deconvolution for ill-conditioned system [J]. IEEE Transactions on Signal Processing, 2004, 52(2): 418-433.
    [152] L. M. Qu, P. S. Routh and K. Kyungduk. Wavelet deconvolution in a periodic setting using cross-validation [J]. IEEE Signal Processing Letters, 2006, 13(4): 232-235.
    [153] J. M. Bioucas-Dias. Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors [J]. IEEE Transactions on Image Processing, 2006, 15(4): 937-951.
    [154] J. M. Bioucas-Dias, M. A. T. Figueiredo. A new TwIST: two step iterative shrinkage/thresholding algorithms for image restoration [J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
    [155] I. Daubechies, M. Defrise and C. D. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Comm. Pure Appl. Math., 2004, 57(11): 1413-1457.
    [156] M. Elad. Why simple shrinkage is still relevant for redundant represents? [J]. IEEE Transactions on Information Theory, 2006, 52(2): 5559-5569.
    [157] O. G. Guleryuz. Nonlinear approximation based image recovery using adaptivesparse reconstructions and iterated denoising-part I: theory [J]. IEEE Transactions on Image Processing, 2006, 15(3): 539-554.
    [158] J. Bobin, J. L. Starck, J. M. Fadili, etc, al. Morphological component analysis: an adaptive thresholding strategy [J]. IEEE Transactions on Image Processing, 2007, 16(1): 2675-2681.
    [159] R. R. Coifman and D. L. Donoho. Translation-invariant denoising [C]. In: Antoniadis A, Oppenheim G, Eds. Wavelets and Statistics. Berlin: Springer-Verlag, 1995.
    [160] D. L. Donoho. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [161] F. Rooms, W. Philips and J. Portilla. Parametric PSF estimation via sparseness maximization in the wavelet domain [C]. Proc. of SPIE, 2004, 5607: 26-33.
    [162] S. W. Lee and J. K. Paik. Image interpolation using adaptive fast B-spline filtering [C]. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 19993, pp. 177-180.
    [163] S. Carrato, G. Ramponi and and S. Marsi. A simple edge-sensitive image interpolation filter [C]. Proc. IEEE Int. Conf. Image Processing, 1996, pp. 711-714.
    [164] K. Jensen and D. Anastassiou. Subpixel edge localization and the interpolation of still image [J]. IEEE Transactions on Image Processing, 1995, 4(3): 285-295.
    [165] S. Battiato, G. Gallo and F. Stanco. A locally adaptive zooming algorithm for digital image [J]. Image Vision and Computing, 2002, 20(11): 805-812.
    [166] X. Li and T. O. Michael. New edge-directed interpolation [J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527.
    [167] H. Jiang and C. Moloney. A new direction adaptive scheme for image interpolation [C]. Proc. IEEE Int. Conf. on Image Proc., 2002, pp. 369–372.
    [168] W. K. Carey, D. B. Chang and S. S. Hermami. Regularity-preserving image interpolation [J]. IEEE Transactions onImage Proceesing, 1999, 8(9): 1293–1297.
    [169] A. Temizel and T. Vlachos. Wavelet domain image resolution enhancement [J]. IEE Proceeding of Visual Image signal Processing, 2006, 153(1): 25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700