用户名: 密码: 验证码:
超磁致伸缩致动器驱动系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料具有应变大、输出力大、功率密度高、响应速度快和可靠性高等优点,基于超磁致伸缩材料研制的致动器在精密加工、精密定位、主动振动控制、机器人以及微型机电系统等领域显示出良好的应用前景。但是,超磁致伸缩材料本身所固有的磁滞回特性使得致动器存在强烈的非线性特性,这使得致动器难以精确控制,限制了超磁致伸缩致动器的发展和应用。如何解决超磁致伸缩致动器系统的非线性问题,进一步提高致动器系统的输出精度,已成为当前研究的热点。
     超磁致伸缩致动器驱动系统既是驱动超磁致伸缩材料完成伸缩动作的功率源,又是实时控制伸缩量大小的控制器,是超磁致伸缩致动器系统的核心,驱动系统的性能对致动器的系统输出具有重要影响。基于此,本文深入分析了超磁致伸缩致动器驱动系统的研究现状,指出了驱动系统在功率驱动、系统建模和控制策略等方面存在的不足,在深入研究超磁致伸缩致动器功率驱动、系统建模及非线性控制的基础上,将功率驱动技术、非线性动态模型的建立及其线性化、高阶模型的降阶以及系统辨识应用于超磁致伸缩致动器驱动装置,研制了一套超磁致伸缩致动器驱动系统。并采用广义预测控制策略实现了对系统输出的精确跟踪,提高了致动器宽范围输入下的控制精度。主要研究内容如下:
     1、分析了超磁致伸缩致动器的工作原理,在考虑超磁致伸缩致动器电-磁-机耦合特性的基础上基于分层建模原理建立了超磁致伸缩致动器非线性动态模型:
     采用多项式拟合超磁致伸缩材料的磁化强度与电流的非线性关系,建立了磁滞模型,该模型区别于以往Preisach模型、Jile-AthetOn模型或自由能迟滞模型,使非线性曲线更加平滑、减少噪声影响、减小运算时间,以达到快速、实时控制的目的;对含有非线性弹性材料一—超磁致伸缩材料的致动器机构采用带耗散力的拉格朗日方程对该机构的Terfenol-D棒和广义负载进行动力学特性分析,建立超磁致伸缩致动器的结构动力学模型。
     2、分析了磁致伸缩致动器非线性动态模型,获得了各个子模块间的关系,在此基础上对该非线性模型进行了线性化并采用平衡实现理论对该高阶线性模型进行降阶:
     根据分层建模原理依据各子模块的特性将模块重新排序,采用纯时滞环节代替磁化滞回模块的非线性环节,结合功率驱动模块、线圈磁场模块、磁场驱动模块和结构动力学模块组成线性环节,实现磁致伸缩致动器非线性模型到线性模型的转换;利用平衡实现理论对磁致伸缩致动器系统线性模型进行降阶研究,提出了磁致伸缩致动器系统线性模型平衡实现算法,分析了平衡截断和平衡残差两种降阶方法的各降阶系统的误差,说明了磁致伸缩致动器系统模型降为二阶模型的合理性。
     3、根据超磁致伸缩致动器驱动系统广义预测控制的需求,对超磁致伸缩致动器驱动系统模型的参数进行在线辨识研究:
     确定了超磁致伸缩致动器驱动系统中功率驱动器、致动器机械结构以及致动器磁滞非线性等影响因素的参数作为辨识对象,提出了基于遗忘因子递推最小二乘法的超磁致伸缩致动器系统参数的在线辨识策略,建立了超磁致伸缩致动器系统的离散辨识参数模型,并依据遗忘因子递推最小二乘法理论对超磁致伸缩致动器系统进行在线参数辨识。
     4、针对超磁致伸缩致动器驱动系统的精确控制问题,采用了广义预测控制策略对超磁致伸缩致动器系统进行跟踪控制:
     研究了广义预测控制理论中多步预测、滚动优化和反馈校正的控制策略,应用Diophantine方程推导了广义预测控制的最优输出预测,通过求解其目标函数得到了广义预测控制的控制律,并分析了广义预测控制算法参数的选择策略;仿真分析了不同设定信号下,设定值与输出值的仿真曲线、误差曲线及控制电压曲线,验证了基于广义预测控制算法的超磁致伸缩致动器控制器设计的合理性。
     5、研制了超磁致伸缩致动器驱动系统原型机,详细介绍超磁致伸缩致动器驱动系统的设计开发和性能测试过程,验证了本文提出的超磁致伸缩致动器驱动系统的可行性和有效性:
     (1)利用傅里叶级数理论分析了半桥斩波逆变电路输出电压谐波的频谱分布,比较了LC滤波器和LCCR滤波器的特性,指出LC滤波器存在的不足,提出采用LCCR滤波器的方案,推导了带感性负载条件下的LCCR滤波器参数设计公式;
     (2)基于半桥斩波逆变电路设计了超磁致伸缩致动器功率驱动器,采用I2控制方法,提高了系统的稳定性和响应速度;设计了超磁致伸缩致动器驱动系统的硬件平台,开发了超磁致伸缩致动器非线性系统广义预测控制算法库,并设计了控制器端图形化用户应用程序用于超磁致伸缩致动器驱动系统的控制和调试。实验验证了所设计的超磁致伸缩致动器驱动系统装置的可行性和有效性。
     本研究的成功实施为超磁致伸缩致动器非线性控制提供了一条新的有效的途径,为解决超磁致伸缩致动器精密控制中存在的关键技术问题提供了一个解决方案。
Giant magnetostrictive material has unique characteristics of large strains, great output force, high power density, fast response and high reliability. Actuator based on giant magnetostrictive material show a good prospect in the areas of precision machining, precision positioning, active vibration control, robotics, and micro-electromechanical systems. However, there is a strong nonlinearity in actuator due to the inherent hysteresis characteristics of the giant magnetostrictive material, which makes it difficult to precisely control the actuator and thus hinders the development and applications of such actuator. How to solve the nonlinear problems in the giant magnetostrictive actuator system and to further improve the output accuracy of the actuator system has become a research of popularity.
     The giant Magnetostrictive actuator drive system is both the power source to drive the giant magnetostrictive material to complete the retractable action and the controller to achieve the real-time control of the expansion volume. Therefore, the giant Magnetostrictive actuator drive system is the core of the giant magnetostrictive actuator system and the performance of such drive system exerts an important impact on the output of the actuator system. This paper analyzes in depth the research status quo of the giant magnetostrictive actuator drive system, points out the shortcomings of such drive system in the areas of power drive, system modeling and control strategies, and applies the power drive technology, nonlinear dynamic model and its linearization, order reduction of the high-order model, and the system identification to the giant magnetostrictive actuator driver based on the in-depth study of the giant magnetostrictive actuator power driver technology, system modeling and nonlinear control. At the same time, a magnetostrictive actuator drive system is also developed, which achieves the accurate tracking of the system output using the generalized predictive control strategy, thus improving the control accuracy under the condition of a wide input range. The main contents of this paper are as follows:
     1. Analyzing the operating principle of the giant magnetostrictive actuator, establishing the non-linear dynamic model for the giant magnetostrictive actuator based on the hierarchical modeling principle considering the electric-magnetic-mechanical coupling characteristics of the giant magnetostrictive actuator:
     using polynomial fitting method of handling the relationship between the giant magnetostrictive material magnetization and current non-linear characteristic which is different from the past modeling theories of Preisach model, Jile-Atheton model or free-energy hysteresis model, thus smoothing the non-linear curve, reducing the noise impact, and reducing the operation time to achieve the purposes of fast, real-time control; analyzing the dynamic mechanism of Terfenol-D rods and generalized loads of the giant magnetostrictive actuator consisting of non-linear elastic materials using Lagrange equation with dissipative forces and establishing the dynamic model for the giant magnetostrictive actuator.
     2. Analyzing the non-linear dynamic model for the giant magnetostrictive actuator, getting the relationship between sub-models, then linearizing such non-linear model and reducing the order of the high-order linear model using the balance-realizing theory:
     Reordering the modules according to the characteristics of each sub-model based on the hierarchical modeling theory; using pure time delay unit instead of the nonlinear unit of the magnetization hysteresis module combining the power drive module, coil magnetic module, magnetic drive module and structural dynamics module to get the linear unit and thus achieving the transformation from the non-linear model to the linear model for the magnetostrictive actuator; carrying out order-reduction research on the linear model of the magnetostrictive actuator system using the balance-realizing theory, proposing the balance-realizing algorithm for the linear model of the magnetostrictive actuator system, analyzing the error of each order-reduction system using order-reduction methods of balance truncation and balance residual, indicating the reasonability of the magnetostrictive actuator system model reducing to second-order model.
     3. Researching online identification of parameters of the giant magnetostrictive actuator drive system model according to the needs for the generalized predictive control of the giant magnetostrictive actuator system:
     Identifying the influencing factors of the power drivers, mechanical structures of the actuator and hysteresis nonlinearity as the identification objects, proposing the controlled-object online parameter identification strategy of the giant magnetostrictive actuator system based on the forgetting-factor recursive least squares method and establishing the discrete parameter identification model of the giant magnetostrictive actuator system with online identification of the giant magnetostrictive actuator system based on the forgetting-factor recursive least squares method.
     4. As for the precise control of the giant magnetostrictive actuator drive system, using a generalized predictive control strategy for tracking control of the giant magnetostrictive actuator system:
     Studying multi-step prediction, rolling optimization and feedback correction strategies of the generalized predictive control theory, deriving the optimum output prediction of the generalized predictive control by application of the Diophantine equations and acquiring the control law of the generalized predictive control by solving its objective function, analyzing the parameter selection strategy of the generalized predictive control algorithm; Analyzing by simulation the setting values and output simulation curve, the error curve and the control voltage curve under different setting signals, verifying the reasonability of giant magnetostrictive actuator controller design based on the generalized predictive control algorithm.
     5. Having developed the giant magnetostrictive actuator drive system prototype, detailing the process of design and development and performance testing for the giant magnetostrictive actuator drive system, verifying the feasibility and effectiveness of the giant magnetostrictive actuator drive system proposed in this paper:
     Analyzing theoretically the spectral distribution of the output voltage harmonics of the half-bridge chopper inverter circuit using the Fourier series, comparing the LC filter and the LCCR filter characteristics, and pointing out the shortcomings of the LC filter, thus proposing using the LCCR filter instead of the LC filter with the derivation of parameters design formulas for the LCCR filter with inductive load conditions.Designing the power driver of the giant magnetostrictive actuator based on the half-bridge chopper inverter circuit, improving the stability and response speed of the system by using the12control method; designing the hardware platform for the giant magnetostrictive actuator drive system, developing the algorithm library for the generalized predictive control of the giant magnetostrictive actuator non-linear system, designing a graphical user application at the controller for controlling and debugging the giant magnetostrictive actuator driving system. Verifying experimentally the feasibility and effectiveness of the giant magnetostrictive actuator drive system designed in this paper.
     This successful study in this paper provides a new and effective way of implementing the giant magnetostrictive actuator nonlinear control and presents a solution to solving the key technological problems in the precise control in the giant magnetostrictive actuators.
引文
[1]翟鹏,张承瑞,兰红波.车用高负荷活塞异形销孔结构发展趋势及加工技术研究术[J].汽车技术,2006(3):39-43.
    [2]马淑梅,陈彬.超精密加工中的微位移技术[J].同济大学学报(自然科学版),2000(6):684-687.
    [3]Quandt E, Ludwig A. Magnetostrictive actuation in microsystems[J]. Sensors and Actuators A:Physical,2000,81(1-3):275-280.
    [4]Judy J W. Microelectromechanical systems (MEMS):fabrication, design and applications[J]. Smart Materials and Structures, 2001,10(6):1115.
    [5]Yang B, Yang D, Xu P, et al. Large stroke and nanometer-resolution giant magnetostrictive assembled actuator for driving segmented mirrors in very large astronomical telescopes[J]. Sensors and Actuators A: Physical,2012,179(0):193-203.
    [6]YAN R, YANG Q, YANG W, et al. Giant Magnetostrictive Acceleration Sensors[J]. Proceedings of the CSEE,2009,29(24):104-109.
    [7]ZHAI P, ZHANG C, WANG X, et al. Novel mechanism for boring non-cylinder piston pinhole based on giant magnetostrictive materials [J]. Journal of Shanghai University,2008,12(04):363-367.
    [8]李圣怡,黄长征,王贵林.微位移机构研究[J].航空精密制造技术,2000(4):5-9.
    [9]贾振元,王福吉,郭东明.功能材料驱动的微执行器及其关键技 术[J].机械工程学报,2003,39(11):61-67.
    [10]朱子健,陈仁文,徐晓弈,等.智能材料在微机械中的应用及发展[J].航空精密制造技术,2003,39(3):4-7,12.
    [11]Jenner A G, Smith R J E, Wilkinson A J, et al. Actuation and transduction by giant magnetostrictive alloys[J]. Mechatronics, 2000,10(4-5):457-466.
    [12]Kim J, Nam S. Development of a micro-depth control system for an ultra-precision lathe using a piezo-electric actuator[J]. International Journal of Machine Tools and Manufacture,1997,37(4):495-509.
    [13]Hatsuzawa T, Hayase M, Oguchi T. A linear actuator based on cilia vibration[J]. Sensors and Actuators A:Physical,2003,105(2):183-189.
    [14]吴博达,鄂世举,杨志刚,等.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10):79-85.
    [15]秦月霞,胡德金.压电陶瓷微位移驱动器在活塞仿形加工中的应用[J].上海交通大学学报,2004,38(8):1331-1333.
    [16]Zhu W, Jun M B, Altintas Y. A fast tool servo design for precision turning of shafts on conventional CNC lathes[J]. International Journal of Machine Tools and Manufacture,2001,41(7):953-965.
    [17]Peirs J, Reynaerts D, Van Brussel H. Design of a shape memory actuated endoscopic tip[J]. Sensors and Actuators A:Physical, 1998,70(1-2):135-140.
    [18]Qin C J, Ma P S, Yao Q. A prototype micro-wheeled-robot using SMA actuator[J]. Sensors and Actuators A:Physical,2004,113(1):94-99.
    [19]Clark A E, Belson H S. Giant Room-Temperature Magnetostrictions in TbFe2 and DyFe2[J]. Physical Review B,1972,5(9):3642.
    [20]Clark A E. Magnetic and Magnetoelastic Properties of Highly Magnetostrictive Rare Earth-Iron Laves Phase Compounds[J]. AIP Conference Proceedings,1974,18(1):1015-1029.
    [21]王静,顾大强,邬义杰.超磁致伸缩材料与自传感执行器[J].农业机械学报,2005(2):131-134.
    [22]Xu L, Jiang C, Zhou C, et al. Magnetostriction and corrosion resistance of Tb0.3Dy0.7(Fel-xSix)1.95 alloys[J]. Journal of Alloys and Compounds,2008,455(1-2):203-206.
    [23]Fahlander M. New material for the conversion of electric energy to mechanical motion:Proceeding of the 10^ th International Workshop on Rare Earth Magnets and Their Applications, Japan,1989[C].
    [24]Quandt E. Giant magnetostrictive thin film materials and applications[J]. Journal of Alloys and Compounds,1997,258(1-2):126-132.
    [25]Claeyssen F, Lhermet N, Le Letty R, et al. Actuators, transducers and motors based on giant magnetostrictive materials[J]. Journal of Alloys and Compounds,1997,258(1-2):61-73.
    [26]Reyne G. Electromagnetic actuation for MOEMS, examples, advantages and drawbacks of MAGMAS[J]. Journal of Magnetism and Magnetic Materials,2002,242-245, Part 2(0):1119-1125.
    [27]李跃松,朱玉川,吴洪涛,等.超磁致伸缩执行器驱动的射流伺 服阀参数优化[J].航空学报,2011,32(7):1336-1344.
    [28]王社良,纪庆波,代建波,等.基于超磁致伸缩作动杆的结构振动主动控制研究[J].噪声与振动控制,2010(6):23-26.
    [29]翟鹏,张承瑞,王海涛,等.基于GMM的活塞异形销孔加工原理研究[J].压电与声光,2007,29(1):125-128.
    [30]王福吉,贾振元,刘巍,等.复合薄膜磁致伸缩系数求解及悬臂梁结构优化[J].光学精密工程,2011(8):1832-1837.
    [31]李海英.超磁致微位移驱动系统的研究[D].哈尔滨工业大学,2006.
    [32]孟爱华,李明范,潘玉良,等.超磁致伸缩致动器式脉冲喷射开关阀性能研究[J].农业机械学报,2010,41(8):211-215.
    [33]吕福在.用于柴油机电喷系统的GMM高速强力电磁阀和电控系统的研究[D].浙江大学机械制造,2000.
    [34]胡明哲,李强.磁致伸缩材料的特性及应用研究(Ⅰ)[J].稀有金属材料与工程,2000,29(6):366-369.
    [35]王传礼,丁凡,张凯军.基于超磁致伸缩转换器的流体控制阀及其技术[J].农业机械学报,2003,34(5):164-167.
    [36]肖俊东,王占林.新型超磁致伸缩电液高速开关阀及其驱动控制技术研究[J].机床与液压,2006(1):80-83.
    [37]Karunanidhi S, Singaperumal M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve[J]. Sensors and Actuators A:Physical,2010,157(2):185-197.
    [39]Nakano H. Angstrom positioning system using a giant magnetostriction actuator for high power applications:Power Conversion Conference, PCC Osaka,2002[C]. Proceedings of the IEEE.
    [40]邬义杰,项占琴.基于超磁致伸缩材料的活塞异形销孔加工原理研究[J].浙江大学学报:工学版,2004,38(9):1185-1189.
    [41]赵章荣.精密超磁致伸缩微位移驱动智能构件技术研究[D].浙江大学,2009.
    [42]李国平.面向精密仪器设备的主动隔振关键技术研究[D].浙江大学,2010.
    [43]史霄.多自由隔振平台微振动混合控制研究[D].哈尔滨工业大学,2010.
    [44]顾仲权,朱金才.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,11(4):381-388.
    [45]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程,2004,21(4):55-59.
    [46]Filipovic A. Magnetostrictive Actuations to Achieve Dry Deep Hole Drilling of Aluminum[D]. Michigan Technological University,2002.
    [47]Braghin F, Cinquemani S, Resta F. A low frequency magnetostrictive inertial actuator for vibration control[J]. Sensors and Actuators A: Physical,2012,180(0):67-74.
    [48]翟鹏.非圆曲面型活塞异形销孔及其精密加工关键技术研究[D].山东大学,2007.
    [49]贾振元,杨兴,郭东明.超磁致伸缩材料控制模型的研究[J].压电与声光,2001,23(2):164-166.
    [50]Smith R C.A nonlinear physics-based optimal control method for magnetostrictive actuators[M]. Virginia:Langley Research Center Hampton,1998.
    [51]Huiqun Y, Dong L, Huagang S. Hysteretic Property of Rare Earth Giant Magnetostrictive Actuator[J]. Journal of Rare Earths,2007,25, Supplement 2(0):236-239.
    [52]田民波.磁性材料[M].北京:清华大学出版社,2001.
    [53]Weisensel G N, Zrostlik R L, Carman G P. Advanced magnetostrictive finite element method (FEM) modeling development: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, California,1999[C]. Newport Beach.
    [54]Zheng X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods[J]. Journal of applied physics,2005,97(5):53901.
    [55]Clark A, Crowder D. High temperature magnetostriction of TbFe2 and Tb.27Dy.73Fe2[J]. IEEE Transactions on Magnetics,1985,21(5):1945-1947.
    [56]周凯锋.30A高精度交直流恒流源的研制[D].昆明理工大学,2002.
    [57]杨兴,贾振元,武丹,等.基于功率MOSFET的超磁致伸缩执行器驱动电源[J].压电与声光,2001,23(1):33-36.
    [58]傅龙珠,狄瑞坤,等.稀土超磁致微致动器驱动电源实验研究 [J].机电工程,2002,19(6):46-49.
    [59]葛荣杰,邬义杰,徐君,等.基于通用运放的GMA用大功率恒流驱动源设计[J].机床与液压,2008,36(2):5-7.
    [60]马志新.超磁致伸缩驱动器双向可控恒流驱动电源的研究[J].机械工程与自动化,2010(5):138-140.
    [61]胡承志.超磁致伸缩驱动器电流源的设计[D].哈尔滨工业大学,2010.
    [62]Li Y, Zhang C R, Ding X Z, et al. Study on Hi-Power Precision Driving Power of Giant Magnetostrictive Actuator Based on Power Amplifiers[J]. Applied Mechanics and Materials,2012,121-126:2293-2298.
    [63]胡滢滨,叶玉堂,吴云峰,等.基于单片机的半导体激光器恒流源设计[J].实验科学与技术,2008,6(1):13-14.
    [64]肖国春,裴云庆,等.大功率低纹波稳定电源用直流有源滤波器[J].电力电子技术,2001,35(4):1-4.
    [65]曹彦波,郇延富,于爱民,等.一种驱动高压浮地负载的数字式恒流源的设计[J].分析仪器,2003(2):20-22.
    [66]李婷婷,李洪波.数控大功率精密恒流源设计[J].通信电源技术,2006,23(5):35-37.
    [67]陈勇,吕恩建,陈泉.基于ADuC812的大功率半导体激光器恒流源设计[J].科技信息,2008(9):83-85.
    [68]孙飞月.基于IGBT变流技术的高精度直流电流源的设计[J].仪表技术,2006(6):65-66.
    [69]Cao S Y, Zheng J J, Wang B L, et al. A micro-position system of a giant magnetostrictive actuator:Proceedings of the Eighth International Conference on Electrical Machines and Systems, Nanjing,2005[C].
    [70]翁玲,王博文,孙英,等.超磁致伸缩致动器的输出位移与其控制研究[J].仪器仪表学报,2006,27(7):800-803.
    [71]李立毅,严柏平,张成明.驱动频率对超磁致伸缩致动器的损耗和温升特性的影响[J].中国电机工程学报,2011,31(18):124-129.
    [72]Faidley L E, Lund B J, Flatau A B, et al. Terfenol-D elasto-magnetic properties under varied operating conditions using hysteresis loop analysis:SPIE Conference on Smart Structures and Integrated Systems, San Diego, California,1998[C].1998.
    [73]Hunt F V, Blackstock D T. Electroacoustics:the analysis of transduction, and its historical background[M]. American Institute of Physics for the Acoustical Society of America,1982.
    [74]Wakiwaka H, Lio M, Nagumo M, et al. Impedance analysis of acoustic vibration element using giant magnetorestrictive material[J]. IEEE Transactions on Magnetics,1992,28(5):2208-2210.
    [75]Hall D L, Flatau A B. One-Dimensional Analytical Constant Parameter Linear Electromagnetic-Magnetomechanical Models of a Cylindrical Magnetostrictive (Terfenol-D) Transducer [J]. Journal of intelligent material systems and structures,1995,6(3):315-328.
    [76]Hall D L. Dynamics and vibrations of magnetostrictive transducers[D]. Iowa State University,1994.
    [77]吕福在,项占琴.稀土超磁致伸缩材料微位移机构综合实验研究[J].工程设计学报,2000(2):41-44.
    [78]Besbes M, Ren Z, Razek A. A generalized finite element model of magnetostriction phenomena[J]. IEEE Transactions on Magnetics, 2001,37(5):3324-3328.
    [79]Besbes M, Ren Z, Razek A. Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials[J]. IEEE Transactions on Magnetics,1996,32(3):1058-1061.
    [80]Gros L, Reyne G, Body C, et al. Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators [J]. IEEE Transactions on Magnetics,1998,34(5):3150-3153.
    [81]Delince F, Genon A, Gillard J M, et al. Numerical computation of the magnetostriction effect in ferromagnetic materials[J]. Journal of Applied Physics,1991,69(8):5794-5796.
    [82]Benbouzid M, Reyne G, Meunier G. Variational formulation for nonlinear FE modeling of Terfenol-D rods using surface splines for material in data[J], Elsevier Studies in Applied Electromagnetics in Materials,1993,4:185-191.
    [83]Kannan K S, Dasgupta A. A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures [J]. Smart materials and structures,1997,6(3):341-350.
    [84]Perez-Aparicio J L, Sosa H. A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials [J]. Smart materials and structures, 2004,13(3):493-502.
    [85]Benatar J G, Flatau A B. FEM implementation of a magnetostrictive transducer:Smart Structures and Materials,2005[C]. International Society for Optics and Photonics.
    [86]赵章荣,隋晓梅,邬义杰,等.超磁致伸缩执行器全耦合非线性动态有限元模型[J].农业机械学报,2008,39(3):123-126.
    [87]谭先涛,杨斌堂,孟光,等.超磁致伸缩驱动器二维轴对称非线性驱动位移模型及有限元分析[J].天文研究与技术:国家天文台台刊,2010,7(4):362-368.
    [88]Kvarnsjo L, Bergqvist A, Engdahl G. A method of measuring eddy current impedances in giant magnetostrictive materials[J]. IEEE Transactions on Magnetics,1990,26(5):2574-2576.
    [89]贺西平,李斌,孙进才.Terfenol棒的磁致伸缩等效电路[J].西北工业大学学报,1999(01):88-92.
    [90]莫喜平,姜广军.弯张换能器的等效电路支路阻抗分析方法[J].应用声学,2001,20(02):12-17.
    [91]孙英.超磁致伸缩致动器的神经网络控制与动态模型及实验研究[D].河北工业大学,2007.
    [92]贾振元,王晓煜,王福吉.超磁致伸缩微位移执行器的矢量阻抗分析模型[J].光学精密工程,2008,16(5):870-877.
    [93]邹波,邬义杰,张雷.基于超磁致伸缩执行器等效电路的自感知 方法研究[J].组合机床与自动化加工技术,2009(11):1-4.
    [94]Clark A E. Magnetostrictive Rare Earth-Fe2 Compounds, in Ferromagnetic Materials[M]. Amsterdam:North-Holland Publishing Co, 1980.
    [95]Carman G P, Mitrovic M. Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. Journal of Intelligent Material Systems and Structures,1995,6(5):673-683.
    [96]Duenas T A, Hsu L, Cakman G P. Magnetostrictive composite material systems analytical/experimental:MRS Proceedings,1996[C]. Cambridge Univ Press.
    [97]万永平,方岱宁,黄克智.磁致伸缩材料的非线性本构关系[J].力学学报,2001(06):749-757.
    [98]Voccio J P, Joshi C H, Lindberg J F. Application of high-temperature superconducting wires to magnetostrictive transducers for underwater sonar[J]. IEEE Transactions on Magnetics,1994,30(4):1693-1698.
    [99]Sun L, Zheng X. Numerical simulation on coupling behavior of Terfenol-D rods[J]. International Journal of Solids and Structures, 2006,43(6):1613-1623.
    [100]Preisach F. Uber die magnetische Nachwirkung[J]. Zeitschrift fur physik,1935,94(5-6):277-302.
    [101]Krasnosel'Skii M A, Pokrovskii A V. Systems with hysteresis[M]. Springer Verlag,1989.
    [102]Restorff J B, Savage H T, Clark A E, et al. Preisach modeling of hysteresis in Terfenol[J]. Journal of Applied Physics,1990,67(9):5016-5018.
    [103]Bergqvist A, Engdahl G. A stress-dependent magnetic Preisach hysteresis model[J]. IEEE Transactions on Magnetics,1991,27(6):4796-4798.
    [104]Tan X, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators[J]. Automatica,2004,40(9):1469-1480.
    [105]赵章荣,邬义杰,顾新建,等.考虑附加涡流损失的超磁致伸缩执行器动态模型[J].中国电机工程学报,2008,28(24):136-140.
    [106]Mayergoyz I D. Mathematical models of hysteresis[J]. IEEE Transactions on Magnetics,1986,22(5):603-608.
    [107]龚大成,唐志峰,吕福在,等.非线性Preisach理论与超磁致伸缩执行器高阶迟滞建模[J].机械工程学报,2009,45(12):252-256.
    [108]Dapino M J, Smith R C, Flatau A B. A coupled structural-magnetic strain model for magnetostrictive transducers:Proceeding of SPIE-The International Society for Optical Engineering,1999[C]. DTIC Document.
    [109]Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magnetostrictive transducers[J]. IEEE Transactions on Magnetics, 2000,36(2):429-439.
    [110]Carpenter K H. A differential equation approach to minor loops in the Jiles-Atherton hysteresis model[J]. IEEE Transactions on Magnetics, 1991,27(6):4404-4406.
    [111]Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis [J]. IEEE Transactions on Magnetics, 1993,29(4):2113-2123.
    [112]Jiles D C. A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis[J]. IEEE Transactions on Magnetics,1992,28(5):2602-2604.
    [113]贾振元,王晓煜,王福吉.超磁致伸缩执行器的动力学参数及磁滞模型参数的辨识方法[J].机械工程学报,2007,43(10):9-13.
    [114]曹淑瑛,王博文,闫荣格,等.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149.
    [115]黄文美,王博文,曹淑瑛,等.计及涡流效应和应力变化的超磁致伸缩换能器的动态模型[J].中国电机工程学报,2005,25(16):132-136.
    [116]郑加驹,王洪礼,曹淑瑛.超磁致伸缩驱动器频率相关的动态磁滞模型[J].机械工程学报,2008,44(7):38-44.
    [117]Smith R C, Dapino M J, Seelecke S. Free energy model for hysteresis in magnetostrictive transducers[J]. Journal of Applied Physics, 2003,93(1):458-466.
    [118]田春.超磁致伸缩执行器的本征非线性研究及其补偿控制[D].上海交通大学,2007.
    [119]Makaveev D, Dupre L, De Wulf M, et al. Modeling of quasistatic magnetic hysteresis with feed-forward neural networks[J]. Journal of Applied Physics,2001,89(11):6737-6739.
    [120]Adly A A, Abd-El-Hafiz S K. Using neural networks in the identification of Preisach-type hysteresis models[J]. IEEE Transactions on Magnetics,1998,34(3):629-635.
    [121]Xu J. Neural network control of a piezo tool positioner:Proceedings of Canadian Conference on Electrical and Computer Engineering, Vancouver,1993[C]. IEEE.
    [122]王彬,屈稳太,邬义杰,等.超磁致伸缩材料磁滞建模方法国内外研究现状评述[J].功能材料,2013,44(16):2295-2300.
    [123]Dutta S M, Ghorbel F H. Differential hysteresis modeling of a shape memory alloy wire actuator [J]. IEEE/ASME Transactions on Mechatronics,2005,10(2):189-197.
    [124]Song G, Jinqiang Z, Xiaoqin Z, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model[J]. IEEE/ASME Transactions on Mechatronics, 2005,10(2):198-209.
    [125]Smith R C, Bouron C, Zrostlik R. Partial and full inverse compensation for hysteresis in smart material systems:Proceedings of the American Control Conference, Chieago, Illinois,2000[C]. IEEE.
    [126]Schafer J, Janocha H. Compensation of hysteresis in solid-state actuators[J]. Sensors and Actuators A:Physical,1995,49(1-2):97-102.
    [127]Tao G, Kokotovic P V. Adaptive control of plants with unknown hysteresis[J]. IEEE Transactions on Automatic Control,1995,40(2):200-212.
    [128]Tao G, Kokotovic P V. Adaptive control of systems with unknown non-smooth non-Hnearities[J]. International journal of adaptive control and signal processing,1997,11(1):81-100.
    [129]Galinaitis W S. Two methods for modeling scalar hysteresis and their use in controlling actuators with hysteresis[D]. Virginia Polytechnic Institute and State University,1999.
    [130]Ge P, Jouaneh M. Modeling hysteresis in piezoceramic actuators[J]. Precision engineering,1995,17(3):211-221.
    [131]Ge P, Jouaneh M. Tracking control of a piezoceramic actuator[J]. IEEE Transactions on Control Systems Technology,1996,4(3):209-216.
    [132]Ge P, Jouaneh M. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators[J]. Precision Engineering, 1997,20(2):99-111.
    [133]Webb G, Kurdila A, Lagoudas D. Adaptive hysteresis model for model reference control with actuator hysteresis[J]. J. Guidance, Control, and Dynamics,2000,23(3):459-465.
    [134]Cruz-Hernandez J M, Hay ward V. Phase control approach to hysteresis reduction[J]. IEEE Transactions on Control Systems Technology,2001,9(1):17-26.
    [135]Park Y, Seok Y, Chung J. Application of sliding mode control to the magnetostrictive actuator:The 3rd International Symposium on Nanomanufacturing, the University of Cyprus,2005 [C].
    [136]Jianqin M, Qingzhong B. Low order H∞ Robust Controller design for active vibration control:4th International Conference on Control and Automation, ICCA'03., Montreal,Canada,2003[C]. IEEE.
    [137]Wang X, Su C, Hong H. Adaptive sliding inverse control of a class of non-linear systems preceded by unknown non-symmetrical dead-zone[J]. International journal of systems science,2006,37(10):699-708.
    [138]Serpico C, Visone C. Magnetic hysteresis modeling via feed-forward neural networks[J]. IEEE Transactions on Magnetics,1998,34(3):623-628.
    [139]Saliah H H, Lowther D A, Forghani B. Modeling magnetic materials using artificial neural networks[J]. IEEE Transactions on Magnetics, 1998,34(5):3056-3059.
    [140]Kuczmann M, Ivanyi A. A new neural-network-based scalar hysteresis model[J]. IEEE Transactions on Magnetics,2002,38(2):857-860.
    [141]王湘江,王兴松.超磁致驱动器迟滞系统逆模补偿控制[J].中国机械工程,2007,18(10):1151-1156.
    [142]赵章荣,邬义杰,顾新建,等.用神经网络结构实现超磁致伸缩智能构件滑模控制[J].光学精密工程,2009,17(4):778-786.
    [143]余佩琼,梅德庆,陈子辰.基于稀土超磁致伸缩材料的微致动器设计[J].农业机械学报,2003,34(3):105-108.
    [144]Cavallo A, Natale C, Pirozzi S, et al. Effects of hysteresis compensation in feedback control systems[J]. IEEE Transactions on Magnetics,2003,39(3):1389-1392.
    [145]Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magneto strictive transducers [J]. Magnetics, IEEE Transactions on, 2000,36(2):429-439.
    [146]王雷,谭久彬,刘玉涛.超磁致伸缩体内涡流效应有限元分析[J].光学精密工程,2006,14(3):445-449.
    [147]李永,张承瑞,翟鹏,等.半桥斩波逆变器输出滤波器设计[J].电机与控制学报,2012,16(10):13-20.
    [148]Li Y, Zhang C R, Lin M X, et al. Design of Hi-Power Continuously Adjustable Constant Current Source Based on UC3846[J]. Advanced Materials Research,2012,430-432:1519-1523.
    [149]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.
    [150]蔡旭红,李邵辉.有限长通电螺线管内部空间磁场的模拟[J].汕头大学学报:自然科学版,2004,19(2):28-31.
    [151]刘慧芳,贾振元,王福吉,等.超磁致伸缩执行器位移模型的参数辨识[J].机械工程学报,2011,47(15):115-120.
    [152]Clark A E. Chapter 7 Magnetostrictive rare earth-Fe2 compounds[M]//WOHLFARTH E P. "". Elsevier,1980:531-589.
    [153]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化[J].机械工程学报,2006,42(5):203-207.
    [154]倪敬,彭丽辉,项占琴.扩轧管电液伺服系统非线性建模与控制[J].机械工程学报,2009,45(5):250-255.
    [155]Sirouspour M R, Salcudean S E. On the nonlinear control of hydraulic servo-systems:Robotics and Automation,2000. Proceedings. ICRA'00. IEEE International Conference on,2000 [C].
    [156]Karunanidhi S, Singaperumal M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve[J]. Sensors and Actuators A:Physical,2010,157(2):185-197.
    [157]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005.
    [158]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005.
    [159]Isidori A. Nonlinear Control Systems[M]. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,1997.
    [160]张雷,邬义杰,刘孝亮,等.用于异形孔精密加工的超磁致伸缩构件的线性化迟滞建模[J].光学精密工程,2012,20(2):287-295.
    [161]舒亮,陈定方,卢全国,等.超磁致伸缩致动器中的时滞建模与Smith控制策略[J].系统仿真学报,2009(10):3017-3021.
    [162]Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control,1981,26(1):17-32.
    [163]Wortelboer P, Odstveen H V. Model reduction guided by Hankel singular value intervals [J]. Identification, Model and Control, 1990,1(5):17-26.
    [164]刘辉.交流伺服系统及参数辨识算法研究[D].南京航空航天大学,2005.
    [165]侯媛彬,汪梅,等.系统辨识及其MATLAB仿真[M].2004.
    [166]Jerri A J. The Shannon sampling theorem-Its various extensions and applications:A tutorial review[J]. Proceedings of the IEEE, 1977,65(11):1565-1596.
    [167]郭健,陈庆伟,朱瑞军,等.一类非线性系统的自适应预测控制[J].控制理论与应用,2002(01):68-72.
    [168]Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-Part Ⅰ. The basic algorithm[J]. Automatica,1987,23(2):137-148.
    [169]Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-Part Ⅱ. Extensions and interpretations[J]. Automatica,1987,23(2):149-160.
    [170]王伟.广义预测控制理论及应用[M].北京:科学出版社,1998.
    [171]曾敏,魏良红,马成,等.基于DSP的高频逆变电阻点焊电源的研究[J].机械工程学报,2011(6):80-85.
    [172]李华峰,王红占,黄卫清.控制量独立可调的超声电机新型驱动器[J].电机与控制学报,2010,14(9):88-92.
    [173]潘松,李华峰,黄卫清.微型超声电机驱动及其优化研究[J].电机与控制学报,2011,15(3):65-68.
    [174]Feng H, Xu D, Lee Y S. Comparison of interleaving methods of two-transistor forward converters:Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, PEDS '99., Hong Kong,1999[C].27 Jul 1999-29 Jul 1999.
    [175]Zargari N R, Ziogas P D, Joos G. A two-switch high-performance current regulated DC/AC converter module[J]. Industry Applications, IEEE Transactions on,1995,31(3):583-589.
    [176]Stanley G R, Bradshaw K M. Precision DC-to-AC power conversion by optimization of the output current waveform-the half bridge revisited[J]. Power Electronics, IEEE Transactions on,1999,14(2):372-380.
    [177]马海啸,龚春英,严仰光.电流滞环控制半桥双降压式逆变器输出滤波器设计[J].中国电机工程学报,2007,27(13):98-103.
    [178]解大,乔歆慧,张延迟.Z源AC/AC变换器的谐波消除PWM技术[J].电机与控制学报,2011,15(4):1-6.
    [179]王毅,李和明,石新春,等.多电平PWM逆变电路谐波分析与输出滤波器设计[J].中国电机工程学报,2003,23(10):78-82.
    [180]von Jouanne A, Enjeti P N. Design considerations for an inverter output filter to mitigate the effects of long motor leads in ASD applications[J]. IEEE Transactions on Industry Applications, 1997,33(5):1138-1145.
    [181]姜艳妹,于晓洋.PWM驱动系统中的共模电压及抑制[J].电机与控制学报,2010,14(4):72-79.
    [182]Steinke J K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Transactions on Energy Conversion,1999,14(3):649-654.
    [183]Habetler T G, Naik R, Nondahl T A. Design and implementation of an inverter output LC filter used for dv/dt reduction[J]. IEEE Transactions on Advanced Packaging,2002,17(3):327-331.
    [184]宋强,刘文华,等.大容量PWM电压源逆变器的LC滤波器设计[J].清华大学学报:自然科学版,2003,43(3):345-348.
    [185]王要强,吴凤江,孙力,等.阻尼损耗最小化的LCL滤波器参数优化设计[J].中国电机工程学报,2010,30(27):90-95.
    [186]阚加荣,谢少军,刘爱忠.逆变器单元用LCL滤波器的并联系统性能分析[J].电机与控制学报,2010,14(2):90-98.
    [187]陈坚.电力电子学[M].北京:高等教育出版社,2002.
    [188]刘春喜,马伟明,孙驰,等.大容量400Hz逆变器输出LC滤波器设计和低次谐波抑制[J].电工技术学报,2011,26(6):129-136.
    [189]Dahono P A, Purwadi A, Qamaruzzaman. An LC filter design method for single-phase PWM inverters:Proceedings of 1995 International Conference on Power Electronics and Drive Systems,1995. 1995[C].21-24 Feb 1995.
    [190]宋鹏,孔令刚.基于UC3846的开关电源电压反馈的优化设计[J].重庆工学院学报(自然科学版),2008(8):129-131.
    [191]颜斌,陈希有.变频器输出RLC正弦波滤波器的工程设计[J].电机与控制学报,2002,6(3):256-260.
    [192]Wang T C Y, Ye Z, Sinha G, et al. Output filter design for a grid-interconnected three-phase inverter:Power Electronics Specialist Conference,2003. PESC '03.2003 IEEE 34th Annual, Acapulco,Mexico, 2003[C].15-19 June 2003.
    [193]周志敏,周纪海,纪爱华编著.IGBT和IPM及其应用电路[M].北京:人民邮电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700