用户名: 密码: 验证码:
黄土隧道施工地表裂缝形成机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对黄土隧道施工容易引发地表裂缝这一客观工程现象,本文通过大量文献资料查阅、数据收集和现场实地调查、测试,并结合室内试验、模型试验和有限元、离散元数值模拟等手段,对黄土隧道施工地表裂缝的产生机理、分布及发展规律进行了较为系统的研究与总结,获得了一些有价值的研究结论。
     (1)较为系统地研究了原状黄土物理力学性质指标的各向异性,掌握了黄土基本力学性质和宏观各向异性特点
     黄土比一般砂土的粘聚力和抗拉强度高,但随含水率的增大而迅速降低。黄土裂缝剪切强度基本接近黄土自身的残余强度;有裂缝黄土比均质黄土峰值强度低,其强度差值随围压增大而减小(34.2%-13.8%);黄土的单轴峰值抗压强度受密实度的影响大,随干密度的增大而迅速增大,随含水率的增大而显著减小。
     水平方向压缩模量大于竖直方向约17.4%;黄土的竖向湿陷性系数高于水平方向约36.8%;横向粘聚力均大于竖向的,内摩擦角变化不大;水平与竖向的卸荷破坏变形规律几乎相同,破坏位移在0.4-2.8mm之间,破坏应变在0.5%-3.5%左右,破坏形式几乎均为剪切破坏模式。
     (2)掌握了黄土隧道施工地表裂缝规律
     开展了在建过程中的郑西铁路客运专线、太中银铁路黄土隧道施工地表裂缝调查、勘测试验,调研了陇海、宝中、宝兰二线、侯月、神延铁路和多座公路黄土隧道地表裂缝和变形资料,结合黄土隧道施工过程模型试验、有限元与离散元计算分析,掌握了黄土隧道施工地表裂缝出现时的时间规律、隧道埋深规律、位置规律、裂缝深度规律、与隧道施工变形关系规律等。
     ①地表裂缝出现的时间规律
     在黄土隧道洞口浅埋段,隧道开挖半个月左右,洞口仰坡洞周范围外两侧喷混凝土面出现纵向裂缝;洞顶地表平坦没有偏压的,30-45天后地表中线两侧各出现1-2条与隧道中心线平行的纵向裂缝,而且随着开挖的推进,裂缝也向前发展,如果开挖暂停3天以上,则对应掌子面前方地表处会出现1条横向裂缝,与纵向裂缝连通,形成怀抱式横向裂缝。
     ②地表裂缝出现的隧道埋深规律
     黄土隧道洞口浅埋区段地表多可见裂缝,裂缝出现断面埋深一般小于2-3倍洞径,最大可达4倍洞径。在部分倾斜地形条件下,也有可能大于4倍洞径的埋深时,地表仍有可见裂缝。
     ③地表裂缝出现位置规律
     裂缝位置为隧道洞顶中线两侧形成纵向裂缝,裂缝方向均向内倾斜,两纵向裂缝中间伴随一些横向裂缝。开挖掌子面前方已有可见裂缝产生,随着隧道开挖裂缝不断向前延伸发展。裂缝由地表浅层垂直,逐渐以曲面倾向于隧道中心,实测裂缝面倾角57°-73°(裂缝与隧底的夹角)。
     ④地表裂缝深度规律
     地表处裂缝宽度最大,随深度增加裂缝宽度逐渐减小。测试可见裂缝深度有限,约为3-15m左右,当黄土隧道埋深小于1倍洞径时,地表裂缝与隧道呈贯通趋势。
     ⑤地表裂缝出现的变形规律
     出现施工地表裂缝时的地表沉降多数在100mm以上。
     ⑥地表裂缝与坍塌漏斗规律
     在支护不及时时,黄土隧道开挖中易发生围岩坍塌并可达地表,而坍塌面多为沿隧道最大开挖跨度的近乎直立面,少见由楔形滑动面的坍塌。
     (3)揭示了黄土隧道施工地表裂缝的形成机理
     ①隧道施工后隧道上方地层形成滑动趋势面并形成地表地层拉应力是外因.
     浅埋黄土隧道施工中,随着地层应力状态的改变和调整,引起地层和地表位移与变形。这种施工变形可在较短时间、地表一定范围内形成不均匀的沉降凹槽。这就在隧道开挖的上方形成具有滑动趋势的楔形体,施工中隧道中心两侧地表存在水平位移,且水平位移方向均指向隧道中心线;在隧道中心线两侧存在一个水平位移最大点位置。
     滑动趋势楔形体有向开挖临空面滑动趋势,当滑动趋势面拉应力或剪应力大于土体强度时形成实际破坏面。滑动楔形体向下滑动的同时,滑动体自重力对两侧土体产生推挤作用,深部实际破坏面不会张开。
     ②黄土隧道围岩的构造特征和各向异性是形成地表裂缝的内因
     黄土构造中的层面、垂直节理等软弱结构面,在隧道开挖后,在洞室周边形成不稳定结构体,导致塌方和片帮。在浅埋黄土隧道施工后隧道上方地层形成滑动趋势面的地表部分,因拉应力超过土体抗拉强度而破坏。同时,由于黄土在水平和竖直方向力学指标的各向异性,尤其是裂缝、节理的存在,导致水平方向拉应力在这些位置几乎为零,导致其裂缝易发生;由于无裂缝黄土体强度较高,故裂缝壁的直立性较好而形成可见裂缝,开裂后应力释放和施工过程应力累积在已形成裂缝施工前方再次形成裂缝。
     (4)提出了有限元法滑动楔形体和地表裂缝产生的判定条件
     ①地表裂缝:对于近地表附近区域最小水平应力点与最大水平位移点重合,以此作为拉裂破坏的判定条件。
     ②楔形体滑动面:地层最大剪应力与最大水平位移区域接近重合,因此以剪应力最大值和最大水平位移重合区作为剪切破坏判别依据。
     (5)提出了防止黄土隧道施工地表裂缝的地表沉降变形控制标准
     当支护封闭距离小于1倍隧道跨度,施工地表沉降变形小于80mm,可有效防止出现施工地表裂缝;支护封闭距离小于2倍隧道跨度,施工地表沉降变形小于100mm,可防止出现宽大施工地表裂缝。
     (6)完善了已形成的施工地表裂缝处理方法
     裂缝处理可采用三七灰土换填法、水泥浆灌注法、或素土盖面回填法。从经济和环境保护角度出发,利用击实黄土的渗透系数小的特性,提出了素土盖面回填法的新思路。
     由于黄土自身的特殊性,本文对黄土隧道施工地表裂缝形成机理和规律的研究仍然存在一些问题,有待深入研究。
It is a inevitable phenomenon that cracks are often made at surface due to the construction of tunnel in loess. The formation mechanism, distribution and propagation law are systematically investigated and summarized by use of a lot of methods, such as, data collection, field investigation, In-situ tests, model tests and numerical simulations. The main achievements obtained in the thesis are as follows:
     (1)A series of tests were performed in lab to investigate the physical and mechanical properties of loess. The results and the further analysis revealed the macroscopic anisotropy characters of loess in mechanical property.
     The cohesion and tensile strength of loess are larger than sandy clay, however, collapse behavior can be observed when wetting. Experimental results revealed that shear strength of loess along the cracks is almost equal to its residual strength. It is also found that strength of loess with cracks is smaller than which of homogeneous loess, the difference of which increase with the decrease of confined pressure with range from34.2%to13.8%. The uniaxial compressive peak strength of loess is influenced by its compaction greatly, which increase with the density, while decrease with the water content.
     Horizontal compression modulus is17.4%larger than the vertical one, while the collapsibility coefficient of loess in vertical direction is36.8%larger than that in horizontal direction. It also can be found that horizontal cohesion force is larger than vertical one. However, the friction angle almost keeps content. Model tests show that the behavior for failure and deformation caused by unload at vertical and horizontal respectively are similar. Both of the failure forms are shear slippage damages with strain of0.5%-3.5%.
     (2)The manner of surface crack propagation during construction of loess tunnel is obtained.
     The manner of evolution of surface cracks are collected from several projects, such as, Zheng-xi passenger special line, the Longhai Railway,the Bao-Zhong Railway, Bao-Lan Second Line, Hou-Yue Railway, Taizhongyin Railway, and several highway tunnels. Several rules, including the time surface cracks initiation, the effects of buried depth of tunnel and location, depth of cracks, the relationship between deformation of tunnel and cracks are obtained by model tests, FEM and DEM.
     ①The time for surface crack initiation
     For the shallow-buried tunnel at loess, it is about half a month that the longitudinal cracks occurred on the entrance slope and both sides of tunnel. For the flat roof loess tunnel is without bias, one or two cracks appear which parallel to the midline of the tunnel30-45days after excavation. And cracks develop following excavation. If the excavation is suspended for more than3days, the corresponding front of tunnel face will appear one transverse crack connected longitudinal crack, forming embrace transverse crack.
     ②The Location of surface crack initiation
     The longitudinal cracks appear at both sides of midline of the tunnel roof inclined inwards. There is some transverse crack between two longitudinal cracks. The front of excavation work face has visible cracks, which continuously extends forward in tunnel excavation. Surface crack is vertical in the shallow ground, gradually, incline to the surface tunnel center forming curved surface, the inclination angle of fracture is57°~73°(angle between crack with the tunnel bottom).
     ③The Location of surface crack initiation
     The longitudinal cracks appear at both sides of midline of the tunnel roof inclined inwards. There is some transverse crack between two longitudinal cracks. The front of excavation work face has visible cracks, which continuously extends forward in tunnel excavation. Surface crack is vertical in the shallow ground, gradually, incline to the surface tunnel center forming curved surface, the inclination angle of fracture is57°~73°(angle between crack with the tunnel bottom).
     ④The depth of surface crack
     The maximum width of crack is at the surface, width of crack decreases gradually with the depth. The tested visible crack depth is limited, about3~15m. When the loess tunnel buried depth is less than1times the tunnel diameter, surface cracks trends to connect with tunnel.
     ⑤The surface deformation
     When the surface crack appears, surface settlement is mostly above100mm during construction.
     ⑥The relationship of collapsed funnel and surface crack
     If the support is not given in timely, the surrounding rock of loess tunnel occur to collapse easily, the most of collapse surfaces are nearly vertical, along the maximum excavation span of tunnel, collapse forming the wedge sliding surface rarely.
     (3)The formation mechanism of the surface cracks during loess tunnel construction is revealed.
     ①It is the external cause that the sliding trend of soil above tunnel after excavated which lead to the tensile stress in surface layer.
     During the construction in shallow loess tunnel, the displacement and deformation in the surface and soil layer are caused with the ground stress state change and adjustment. This deformation can lead to the non-uniform settlement groove within a certain range of the surface in a short time. The wedge with sliding trend appear above the tunnel excavation surface, the horizontal displacement come into being in the both sides of surface of tunnel midline during construction. The direction of horizontal displacement is to tunnel centerline, where exists the location of maximum horizontal displacement.
     The sliding wedge moves to the excavating surface, when tensile stress and shear stress was greater than the strength of soil in the sliding band, the actual failure is formed. With the sliding wedge sliding down, the gravity of sliding body generates pushing effect on the soil of both sides. As a result, there is no crack observed at deep place.
     ②It is the structural characteristics and anisotropy of loess that is internal cause for surface crack.There exists weak structural surface in loess, such as level, vertical joints etc, after tunnel excavation, the unstable structure is formed around the tunnel, which lead to collapse. After shallow loess tunnel excavation, the surface formation sliding trend due to failure of soil, because tensile stress exceeds the tensile strength of soil. At the same time, as a result of the anisotropic mechanical properties of loess in the horizontal and vertical direction, especially the existence of crack and joints, which lead to horizontal tensile stress in these locations are almost zero. As results, cracks are easily initiated at the surface. The no crack loess strength is higher, so the crack is upright well and forms visible crack. Because of the stress release and stress accumulation with construction after cracking, crack formed continually.
     (4)The criterion to determine the wedge sliding and forming of surface crack are proposed for FEM.
     ①Surface crack:for near-surface region, there is certain point where the minimum of horizontal stress coincidence with the maximum of horizontal displacement. In FEM, these are adopted as the criterion to determine the wedge sliding and surface crack initiation.
     ②The wedge sliding surface:it is found that the maximum of shear stress coincident the maximum of horizontal displacement coincidence, so the contact area between the shear stress maximum and the horizontal displacement maximum is used as the shear failure criterion.
     (5)The criteria for surface subsidence deformation to prevent surface crack during loess tunnel construction is proposed.
     When the support closed distance is less than1times of the tunnel span, ground surface settlement is less than80mm during construction, surface crack can be effectively prevented. When the supporting closed distance is less than2times of the tunnel span, ground surface settlement is less than100mm during construction, the surface crack will not generate.
     (6)The treatment method is perfected to the surface cracks during construction.
     The3:7lime-soil replacement method, slurry perfusion, or plain soil cover face backfill method may be used as main treatment method. From the viewpoint of economic and environmental protection, and using the permeation properties of compacted loess, a new idea named the plain soil cover face backfill method is proposed.
     Due to the particularity of loess, there are questions in research for the surface crack formation mechanism and law in this dissertation, need to be further studied.
引文
[1]郑晏武.中国黄土的湿陷性[M].北京:地质出版社,1982.
    [2]钱鸿缙,王继堂,罗宇生等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.
    [3]乔平定,李增钧.黄土地区工程地质[M].北京:科学出版社,1990.
    [4]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [5]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1996.
    [6]王兰民.黄土动力学[M].北京:地震出版社,2003.
    [7]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13
    [8]陈福江.黄土隧道围岩含水率变化对隧道形态影响的研究[M].成都:西南交通大学硕士论文.2008.6
    [9]庞奖励,黄春长.黄土--古土壤序列的典型微结构与1万年来的环境演化[J].吉林大学学报(地球科学版),2002,32(3):268-272.
    [10]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质工程地质,1991(4):22-25.
    [11]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003(7):1-6.
    [12]胡再强,沈珠江,谢定义.结构性黄土的变形特性[J].岩石力学与工程学报,2004,23(24):4142-4146.
    [13]W u Z H. Xie D Y. Dynamic characteristics of intact loess[J]. Geotechnical Special Publication, ASCE,1987(1):148-167.
    [14]罗汀,姚仰平,蔡东艳.黄土蠕变的试验研究[J].西安建筑科技大学学报,1995,27(3):304-308.
    [15]郭增玉,冯同新.高湿度Q2黄土的试验流变特性[J].地下水,2004,26(1):70-73.
    [16]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891-1896
    [17]邓国华,邵生俊.黄土隧道围岩的结构性变化特征分析[J].岩土工程学报,2008,30(2):219-224
    [18]李宁军,夏永旭.基质吸力对非饱和黄土隧道力学特性影响研究[J].西安公路交通大学学报,2000,20(2):49-51
    [19]陈宇.非饱和黄土状土基质吸力试验研究[J].人民黄河,2010,32(7):139-141
    [20]闫亚景,文宝萍.非饱和重塑黄土基质吸力变化特征与物理性质的关系[J].水文地质工程地质,2011,38(6):49-56
    [21]王菁莪,项伟,毕仁能.基质吸力对非饱和重塑黄土崩解性影响试验研究[J].岩土力学,2011,32(11):3258-3262
    [22]Tschebatorioff,F.P., Ward, E.R.and De PhilliPe,A.A..The tensile strength of disturded and recompacted soil[J].Proc.3rd Int.Conf.on SMFE,1953(1):207-210
    [23]Hiroshi Hasegawa and Masayuki Ikeuti.On the tensile strength test of disturbed soil[J].Rheology and Soil Mechanics,IUTAM Symposium,Grenoble,1964
    [24]Bishop,A.W.and Garga,V.K..Drained tension test on London clays[J].Geotechoique,1969,16(2)
    [25]Ajaz,A.and Parry,R.H.G..Analysis of bending stresses in soil beams[J].Geoteclnique,1975,25(3): 586-591
    [26]Ajaz,A.and Parry,R.H.G.S..Stress-strain behavior of two compacted clays intension and compression[J].Geotechnique,1975,25(3):495-512
    [27]Ajaz,A-and Parry,R.H.G.S..Bending test for compacted clays[J].Proc.ASCE,JGED,1976,Vol.102, No.GT9
    [28]段福贵.三轴拉伸破坏的破坏形式[A].山东省水利科学研究所,1981.2
    [29]钮泽明,陆士强.粘性填土单轴抗拉强度的几个影响因素[J].岩土工程学报,1983(2):35-43
    [30]周鸿逮.三轴拉伸试验中试样的断裂机理[J].岩土工程学报,1984(3):11-23
    [31]李德琴.土的直立式单轴抗拉仪的研制及试验[J].大坝与土工测试,1988(5)::9-12
    [32]Fang,H.Y.and Fernandez,J..Determintion of tensiles strength of soils by unconfined-penetration test[J].Larratory Shear Strength of Soil,ASTM STP740,1981,130-144
    [33]Mosaid,A..Tensile Properties of compacted soils[J].Labratory Shear Strength of Soil,ASTM STP740,1981,207-225
    [34]Tang,G.X.and Graham,J..A method for testing tensiles strength in unsaturated soils[J].Geotechnical Testing joural,GTIODJ,2000,23(3),377-382
    [35]S.Y.Ibarra,E.McKyes,andR.S.Broughton.Measurement of tensile strength of unsaturated sandy loam soil[J].Soil & Tillage Research,2005,(81):15-23
    [36]沈忠言,彭万妞等.冻结黄土抗拉强度的试验研究[J].冰川冻土,1995,17(4):315-321
    [37]彭万巍.冻结黄土抗拉强度与应变率和温度的关系[J].岩土工程学报,1998,20(3):31-33
    [38]马芹永.人工冻土单轴抗拉、抗压强度的试验研究[J].岩土力学,1996,17(3):76-81
    [39]刘苑茹,何昌荣等.轴压法测定粘性土抗拉强度的若干问题探讨[J].水电站设计,2005,21(2):69-71
    [40]党进谦,张伯平等.单轴土工拉伸仪的研制[J].水利水电科技进展,2001,21(5):31-32
    [41]张少宏,郭敏霞等.三轴拉伸试验技术研究[J],西北水资源与水工程,2001,(6):24-27
    [42]胡海军等.制样方法对重塑黄土单轴抗拉强度影响的初探[J].岩土力学,2009,30(S2):196-199
    [43]孙明星,党进谦,康顺祥.重塑黄土抗拉特性研究[J].西安文理学院学报(自然科学版),2006,9(3):59-61
    [44]党进谦,郝月清等.非饱和黄土抗拉强度的研究[J].河海大学学报,2001,29(6):106-108
    [45]党进谦,李靖等.黄土单轴拉裂特性的研究[J].水利发电学报,2001(4):4448
    [46]孙明星,党进谦等.原状黄土单轴抗拉特性研究[J].水利与建筑工程学报,2006,4(3):43-48
    [47]骆亚生等.黄土的抗拉强度[J].陕西水力发电,1998,(4):6-10
    [48]李守存.黄土抗拉特性研究[D].硕士研究生学位论文,杨陵:西北农林科技大学,2005
    [49]孙萍等.黄土拉张破裂特性试验研究[J].岩土工程学报,2009,31(6):980-984
    [50]孙茉.基于土一水特征曲线的非饱和黄土强度研究[D].硕士研究生学位论文,西安:长安大学,2011
    [51]江丽华.重塑黄土动态力学与基本力学性能测定研究[D].硕士研究生学位论文,西安:西安科技大学,2011
    [52]Fookes P.G. Orientation of fissures in stiff overconsolidated clay of the Siwalik system[J]. Geotechnique,1965,15(2):195-205.
    [53]Fookes P.G.,Panfish D.G.Observational studies on fissures patterm in Cretaceous sediments of south-east England[J].Geotechnique,1969,19(4):453-477
    [54]Skempton A.w.,et al.Joints and fissures in the London Clay at Wraysbury and Edgeware[J]. G eotechnique,1969,19(2):205-217
    [55]Skempton A.W.,et al.Laboratory testing of fissured and laminated soil[A].Proc,Int.Conf.Soil Mech.Found[C].England,1977,155-168
    [56]Lo K.Y.The operational strength of fissured clays[J].Geotechnique,1970,20(l):57-64
    [57]Wiiliams A.Jennings J E.The in-situ shear behavior of fissured soil[A].In:Proc.9th ICSMFE[C]. Tokyo:[S.n.].1977,169-176
    [58]Marsland,A.The shear strength of stiff fissured clays[A].in:Proc.of the roscoe memorial symposium, stress-strain behaviour of soils[C].London:Cambridge University,1972
    [59]孔德坊等.裂缝性粘土[M].北京:地质出版社,1994
    [60]邓京萍,张惠英.成都粘土的裂缝性对力学性能的控制作用[J].水文地质工程地质,1988(2):42-46
    [61]赵泽三,李群丰.成都粘土的力学特性[A].全国第三状工程地质大会论文集(上册)[C].成都:成 都科技大学出版社,1988:102-108
    [62]胡卸文,赵泽三.应用激光散斑干涉法对成都粘土变形特征的研究[J].成都地质学院学报,1989,16(4): 81-88
    [63]胡卸文,李群丰,赵泽三等.裂缝性粘土的力学特性[J]].岩七工程学报,1994,16(4):81-88
    [64]赵中秀,王小军.超固结状态下裂缝粘土的强度特性[J].中国铁道科学,1995,16(4):56-62
    [65]韩贝传,曲永新,张永双.裂缝型硬粘土的力学模型及其在边坡工程中的应用[J].工程地质学报.2001,9(2):204-208
    [66]黄质宏,朱立军,廖义玲等.裂缝发育红粘土力学特征研究[J].工程勘察,2004,(4):9-12
    [67]高晓辉.裂缝带黄土的力学特性和二元介质模型的建立.长安大学硕士学位论文,西安:长安大学,2006
    [68]卢全中,葛修润,彭建兵等.三轴压缩条件下裂缝性黄土的破坏特征[J].岩土力学,2009,30(12):3689-3694
    [69]李红.黄土三轴拉伸破裂特性试验研究.长安大学硕士学位论文,西安:长安大学,2010
    [70]钟世航.黄土中的构造斜节理及其对黄土隧道稳定性的影响[J].岩土工程学报.1983.11,Vol.5 No.4:68-77
    [71]卢全中,彭建兵,陈志新等.黄土高原地区黄土裂缝的发育特征及其规律研究[J].水土保持学报,2005,19(5):191-194.
    [72]王景明等.黄土构造节理研究及其应用[J].工程地质学报.1994.12 VOL.2 No.4:31-42
    [73]蒋建平等.基于土体中结构面的岩土工程问题探讨崇[J].工程地质学报,2002,10(2):160-165
    [74]许志仁,刘昌用,蒋中庸等.军都山隧道黄土段施工方法探讨[J].铁道建筑,1986(11):6-9
    [75]蒋中庸.双线铁路随道不良地质段施工(上)—军都山隧道施工纪实[J].铁道建筑,1987(3):8-11
    [76]吴成三.大秦线黄土隧道采用新奥法施工的探讨[J].铁道标准设计通讯,1985(4):1-6
    [77]朱家桥,朱维申.军都山隧道黄土试验段垂直位移观测及分析[J].岩土力学,1988年3月
    [78]铁道第一勘察设计院.黄土隧道设计施工难点[R],西安,2006
    [79]沈卫平.浅埋黄土隧道施工方法及支护受力研究[J].岩土工程界,2000,3(4):29-32
    [80]朱泽兵,张东明.浅埋、富水、软弱黄土地段隧道施工技术[J].地下空间,2001,21(2):134-137
    [81]张金柱,郝文广.黄土隧道塌方情况及病害原因分析[J].隧道建设,2007(s):321-324
    [82]关宝树.宝中线大寨岭土质隧道变形特性及原因分析[J].铁道建设,1993(4):7-17
    [83]罗传义.宝中线大寨岭单线土质长隧道施工方案选定[J].铁道建设,1992(2):1-8
    [84]沈卫平.黄土隧道施工方案比选及优化[J].铁道建筑,2000(6):7-8
    [85]欧阳院平.高速铁路大断面黄土隧道施工数值模拟[D].西南交通大学硕士毕业论文,2006
    [86]倪玉山,张华兵.黄土隧道施工方案的数值分析[J].岩土力学,2006,27(S):22-26
    [87]霍玉华,王晓州,孟飞彪等.大断面黄土隧道快速掘进施工方法研究[J].铁道标准设计,2007(S1):122-126
    [88]刘赦.郑西客运专线大断面黄土隧道施工方法研究[J].现代隧道技术,2007,44(6):10-18
    [89]李国良.大跨黄土隧道设计与安全施工对策[J].现代隧道技术,2008,45(1):53-62
    [90]郭军.客运专线大断面黄土随道施工力学及支护设计理论研究[D].西南交通大学博士毕业论文,2008
    [91]初厚永.短台阶弧形导坑法在浅埋大断面黄土隧道V级围岩段中的应用[J].铁道标准设计,2008(11):69-73
    [92]许文锋,张峰,陈建平.大跨度黄土隧道CRD法优化研究[J].防灾减灾工程学报,2009,29(5):572-576
    [93]李宁.大断面黄土隧道双侧壁导坑法的力学行为研究[J].铁道标准设计,2009(S):122-124
    [94]李雷.大断面黄土隧道弧形导洞法施工关键技术研究[J].现代隧道技术,2009,46(2):50-56
    [95]倪鲁肃.浅埋黄土隧道下穿高速公路沉降控制研究[D].北京交通大学硕士毕业论文,2010
    [96]辛振省.砂质黄土大断面隧道施工方法优化研究[J].铁道工程学报,2011(1):58-61
    [97]扈世民,张顶立,李鹏飞等.大断面黄土隧道初期支护适应性研究[J].岩土力学,2011,32(S2):660-665
    [98]赵占厂,谢永利,杨晓华等.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,16(1):66-69
    [99]欧阳院平,王明年.某大断面黄土隧道施工方法的三维数值模拟[J].四川建筑,2006,26(6):64-71
    [100]康军,来弘鹏,杨晓华.黄土公路隧道施工方法研究[J].公路交通科技,2006(5):33-36
    [101]郭伟.高速公路湿陷性黄土隧道施工技术[J].甘肃科技纵横,2007,36(5):145-146
    [102]柴江.黄土公路隧道施工方法对比分析.兰州理工大学硕士学位论文,2011
    [103]李正安,柴江.黄土公路隧道预支护施工技术研究[J].甘肃科学学报,2011,23(4):45-49
    [104]Breth,H.,and Chambosse,G. Settlement behavior of buildings above subway tunnels in Frankfurt clay.Proc,Confon Settlement of Structures, Pentech Press, London, England,1974.329-336.
    [105]Frischmann, W W,Hellings,J. E., Gittoes, G. and Snowden, C. Prediction of the Mansion House against damage causing by ground movements due to the Docklands Light Railway Extension. Proc. Inst. Civil Engineering,1994,Vol,107,pp:65-76
    [106]Hergarden, H.J.A.M, Van der Poel,T.J.and van der Schier,J.S. Ground movements due to tunnelling:influence on pile foundations. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London, Mair R.J.. Taylor R.N. (eds). Balkema: 1996; pp:519-524
    [107]余学义.采动地表裂缝控制方法[J].西安矿业学院学报,1996.(1):1-4
    [108]Forth R A, Thorley CBB. Hong Kong Island Line Predictions and performance, In Proceedings Geotechnical Aspect of Underground Construction in soil Ground, Mair R.J.. Taylor R.N. (eds). Balkema:Rotterdam.1996:677-682.
    [109]凌荣华韩贝传. 大跨度深埋黄土隧洞的开挖效应研究[J].工程地质学报.1996.9 Vol.4No.3:65-70
    [110]王明年等.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学,2002,23(6):821-824
    [111]L.T.Chen, H.G Poulos, and N. Loganathan. Pile response caused bu tunneling. Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.3, March,1999.207-215.
    [112]H. Mroueh and I. Shahrour. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations, Int. J. Numer. Anal. Meth. Geomech.,2002; 26:217-230
    [113]李强,王明年.浅埋隧道近接施工地表沉降有限元分析[J].四川建筑,2004,24(5):98-101
    [114]赵洪波.大断面黄土隧道施工及工后沉降数值分析[J].西部探矿工程,2005(114):101-103
    [115]卿伟宸等.地下隧道施工对相邻建筑物及地表沉降的影响[J].地下空间与工程学报.2005,1(6):960-963,978
    [116]来弘鹏.黄土公路隧道病害分析与处治措施建议[J].公路,2006(6):197-202
    [117]欧阳院平.高速铁路大断面黄土隧道施工数值模拟[M].西南交通大学硕士论文.2006.5
    [118]张伟.浅埋大断面黄土隧道地表裂缝成因及其防治措施.现代城市轨道交通,2007.3
    [119]张鹏等.郑西客运专线高桥隧道施工过程数值模拟.中国科技信息,2007.9
    [120]陈建勋,姜久纯,王梦恕.黄土隧道网喷支护结构中锚杆的作用.中国公路学报,2007.5
    [121]浅埋大断面黄土隧道下穿高速公路的地表沉降控制研究[M].北京交通大学硕士论文.2007.12
    [122]朱永全,高新强,曹勇.郑西铁路黄土隧道施工地表裂缝规律研究[C].第七届全国岩石力学与工程学术大会论文集,2008
    [123]曹勇,朱永全.黄土隧道台阶法施工地表裂缝规律模拟分析.石家庄铁道学院学报[J],2008.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700