用户名: 密码: 验证码:
复杂地应力区隧道软弱围岩大变形控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道出现大变形现象的原因,一方面是膨胀性矿物成分的遇水膨胀作用,从而使隧道或洞室的周边产生大变形。另一方面是软弱围岩在高地应力作用下发生的挤压性变形,由于应力复杂,而岩石的强度较低,洞室在开挖后,周边将出现大范围的塑性破坏区,塑性区内的岩体发生剪切和挤压作用,迫使围岩中的质点向开挖空间进行移动,从而出现了大变形。
     因地质条件存在不确定性以及施工中开挖方法和支护措施不合理等各种原因,在挤压性软弱围岩中隧道施工易发生塌方,从而影响施工安全、工期和工程投入。故在挤压性软弱围岩隧道施工中,选择合理的支护措施和施工方案对控制围岩大变形是十分重要的,本文以宜万铁路堡镇隧道软弱围岩大变形段施工为依托工程,综合应用现场实测、理论分析、数值模拟和室内试验等手段,并引入人工智能技术,进行了如下研究:
     (1)现场测试试验方法的研究及结果分析,测试内容包括围岩变形监测和各项选测项目;
     (2)堡镇隧道施工期软弱围岩段大变形预测的智能方法;
     (3)堡镇隧道软弱围岩大变形的机理及结构参数优化;
     (4)堡镇隧道软弱围岩物理力学参数与初始地应力场的三维弹塑性反分析;
     (5)高地应力软弱围岩预留变形量的确定;
     (6)高地应力软弱围岩大变形分级标准及相应工程措施;
     (7)堡镇隧道高地应力大变形段位移控制基准;
     经对现场实测数据的统计分析,并结合理论分析和数值模拟,得出如下成果:
     (1)采用十进制遗传算法在BP网络训练过程中自动搜索训练效果最优的网络拓扑结构参数,形成进化神经元算法,并编制了相应的计算程序,将该算法和程序应用于堡镇隧道施工期软弱围岩大变形的多步滚动预测,应用结果表明该算法具有极高的预测精度。
     (2)采用进化神经元算法进行堡镇隧道施工大变形段的围岩物理力学参数和初始地应力场反演,将获得的反演结果用于隧道后续施工的围岩变形短期预测,使用结果表明,该方法有较高的短期围岩变形预测精度。
     (3)提出了不同地层结构的围岩预留变形量计算方法,以此确定了不同岩性、岩层组合发生大变形的预留变形量控制标准。
     (4)综合考虑围岩抗压强度、地应力、弹性模量及侧压力系数等因素,引入综合系数α提出了大变形等级划分的综合指标判定方法,并明确给出了不同大变形等级下的防治技术措施。
     (5)制定了堡镇隧道高地应力大变形段位移管理基准,并给出了不同管理等级和管理位移下的施工状态和工程措施。
     以上研究成果在堡镇隧道软弱围岩大变形段施工中得到应用,有效地保证了该段围岩隧道的施工安全和工程质量,并为类似工程设计和施工提供了一定的指导作用。
The cause for large-scale deformation in tunnel lies in that:on the one hand, expansion effect of expansive material ingredient leads to large deformation in tunnel; on the other hand, weak soft rock occurs extruded deformation under the effect of complicated stress. Due to complexity of stress and low strength of rock, once the tunnel is excavated, extensive plastic damage area will appear. The shearing and extruding effect occurs on rock in plastic area, and forces the mass to move toward excavation space, thus, large deformation is resulted in.
     In view of the various reasons, such as uncertainty of geological condition, unreasonable excavation method and supporting measures, collapse is easy to take place during tunnel construction in extruded weak and soft rock area, which affects construction safety, duration and investment. Therefore, selection of reasonable supporting measures and construction plan are critical for control over large deformation of extruded weak rockmass.In this article, combined with construction of Baozhen tunnel in soft, weak and large deformation rock area on Yiwan railway, many measures, such as site measurement, theoretical analysis, numerical simulation, indoor test and artificial intelligence, were integrated to execute the following studies:
     (1) Study on site measurement method, data analysis and testing content includes rock deformation monitoring and each optional test item.
     (2) Intelligent forecasting method of large deformation in soft and weak rock area during construction of Baozhen tunnel.
     (3) Large deformation mechanism and structural parameter optimization for soft and weak rock of Baozhen tunnel.
     (4) Elasto-plastic back analysis of physical & mechanical parameters and initial crustal stress field for soft and weak rock of Baozhen tunnel in three-dimension.
     (5) Determination of reserved deformation for soft and weak rock with high crustal stress.
     (6) Large deformation classification standard of soft and weak rock with high crustal stress and corresponding engineering measure.
     (7) Displacement control benchmark for large deformation section with high crustal stress in Baozhen tunnel.
     Through statistics and analysis on site measurement data, and in combination with theoretical analysis and numerical simulation, following results can be obtained:
     (1) The decimal genetic algorithm was used to search the optimal topological structure parameters of BP network during it's training process and corresponding calculation code was programmed. This algorithm and program were applied in large deformation prediction of Baozhen tunnel by multi-step rolling method. The application result indicates such algorithm has extremely high forecast accuracy, which provide reliable guarantee for predicting final deformation and determining best time of secondary lining.
     (2) Evolutionary neural algorithm was used to inverse the physical and mechanical parameters of rockmass and initial crustal stress in large deformation area, and the inversion results are used to forecast short-term rock deformation in subsequent excavation. From the applying result, it can be concluded that this method possess high forecasting accuracy.
     (3) Calculation formula for rock reserved deformation in different stratum structure is proposed to determine reserved deformation control standard for large deformation of rock stratum composition with different rock properties.
     (4) The factors, such as compressive strength, crustal stress, plastic modulus and side pressure coefficient are considered as a whole to determine the a classification standard of large deformation in Baozhen tunnel. The comprehensive index judgment method for deformation level classification was put forwarded, and the prevention and treatment measures for different-level large deformation were presented clearly.
     (5) Displacement control benchmark in large deformation area with high crustal stress is determined. The construction condition and engineering measures under different management level and managed displacement are proposed.
     Above mentioned study results had been applied in construction of Baozhen Tunnel in soft and weak rock area with large deformation, which ensures construction safety and project quality of the tunnel, and provides guidance for similar engineering design and construction effectively.
引文
[1]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [2]王贤能,黄润秋.岩石卸载破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [3]徐则民,黄润秋,罗杏春等.静荷理论在岩爆研究中的局限性及岩爆岩石动力学机制的初步研究[J].岩石力学与工程学报,2003,22(8):1255-1262.
    [4]易长平,卢文波,许红涛等.岩体开挖过程初始应力的瞬态卸荷效应研究[J].岩石力学与工程学报,2005,24(增1):4750-4754.
    [5]卢文波,陈明,严鹏等.高地应力条件下隧洞开挖诱发围岩振动特征研究[J].岩石力学与工程学报,2007,26(增1):3293-3299.
    [6]徐则民,吴培关,王苏达等.岩爆过程释放的能量分析[J].自然灾害学报,2003,12(3):104-110.
    [7]陈顺,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,22(11):1093-1100
    [8]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [9]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [10]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [11]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报(自然科学版),1998,26(3):330-334.
    [12]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [13]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [14]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [15]杨小艳,王岳,黄达.大型硬岩地下洞室围岩二次应力场特征弹脆塑性分析[J].水文地质工程地质,2007,(5):6-11.
    [16]张顶立,王梦恕,高军.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.
    [17]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [18]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学 出版社,1996.
    [19]关宝树.隧道工程维修管理要点集[M].北京:人民交通出版社,2004.
    [20]孙钧.岩石力学的若干进展[A].见:中国岩石力学与工程学会第四次学术大会论文集[C].北京:中国科学技术出版社,1996.
    [21]刘高.高应力区结构性流变围岩稳定性研究(博士学位论文)[D].成都:成都理工大学,2001.
    [22]P.Lunardi. The influence of rigidity of the advance core on the safety of tunnel excavations[J]. Tunnel,1998(8):32-44.
    [23]POUYAA, GHOREYCHI M. Determination of rock mass strength properties by homogenization [J]. International journal for numerical and analytical methods in geomechanics,2001,25(13):1285-1303.
    [24]WITTKE W, PIERAU B.膨胀岩石中隧道的修建和设计原理[C].第四届国际岩石力学会议文集.北京:A. A. Balkema,1985:328-352.
    [25]KAISER P K, MALONEY S,MORGENSTERN N R. Time-dependent behavior of tunnels in highly stressed rock[C]//Proceedings of the 5th Congress of Intentional Society-Rock Mechanics. Rotterdam:A. A. Balkema,1983:329-335.
    [26]GROB H. Swelling and heave in Swiss tunnels [J]. Bulletin of IAEG Krefeld, 1976,13:55-60.
    [27]EINSTEIN H H. Design of tunnels in swelling rocks[C]. Proceedings of Design Methods in Rock Mechanics 16th Symposium on Minneapolis. Minneapolis, USA, 1979:51-61.
    [28]STEINER W. Swelling rock in tunnels:rock characterization, effect of horizontal stresses and construction procedures [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,30(4):361-380.
    [29]李明远,王连国等著.软岩巷道锚注支护理论与实践.煤炭工业出版社.2001,9.
    [30]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [31]安欧.构造应力场[M].北京:地震出版社,1992.
    [32]R. E. Googman.岩石力学原理及其应用[M].北京:水利电力出版社,1990.
    [33]陶振宇.岩石力学理论与实践[M].北京:水利出版社,1981.
    [34]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [35]张悼元,王兰生,王士天.工程地质分析原理[M].北京:地质出版社,1994.
    [36]谢俊峰,陈建平.火车岭隧道软弱围岩大变形特征及机理分析(自科版)[J]武汉科技大学学报,2007,30(6):647-651.
    [37]刘高,张帆宇,李新召等.木寨岭隧道大变形特征及机理分析[J]岩石力学 与工程学报,2005,24(增2):5521-5526
    [38]S. K. Sharan. Analytical solution for stress and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(1):78-85.
    [39]赵旭峰.挤压性围岩隧道施工时空效应及其大变形控制研究(博士学位论文)[D].上海:同济大学,2007.
    [40]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96-98.
    [41]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,26(2):391-396.
    [42]陈阮江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [43]范庆忠,李树才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报,2007,26(7):1381-1385.
    [44]Sun Jun A study on 3-D nonlinear rheological behaviour of soft rocks[A] In:He-Hua Zhu,Jin-Chun Chai,Mao-Song Huang,eds. Practices and advance in geotechnical engineering.Shanghai:2002,10.
    [45]徐卫亚,杨圣奇,谢守益.绿片岩三轴流变力学特性的研究(П):模型分析[J].岩土力学,2005,26(5):693-698.
    [46]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,28(9):1735-1744.
    [47]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1104.
    [48]吕爱钟,丁志坤,焦春茂等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(1):16-21.
    [49]朱明礼,朱珍德,李志敬等.深埋长大隧洞围岩非定常剪切流变模型初探[J].岩石力学与工程学报,2008,27(7):1436-1441.
    [50]张强勇,杨文东,张建国等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2009,28(4):732-738.
    [51]李志敬,朱珍德,周伟华.基于CPSO算法的岩石蠕变模型非定常参数反演分析[J]河海大学学报(自科版),2008,36(3):346-349.
    [52]朱珍德,李志敬,朱明礼等.岩体结构面剪切流变试验及模型参数反演分析[J].岩土力学,2009,30(1):99-104.
    [53]王建宇.隧道工程监测和信息化设计原理[M].北京:中国铁道出版社,1990.
    [54]王成,瞿光义.软岩隧道施工监测反馈计算方法[J].工程力学,1998(增):435-439.
    [55]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498.
    [56]杨志法,熊顺成,王存玉等.关于位移反分析的某些考虑[J].岩石力学与工程学报,1995,14(1):11-16.
    [57]孙钧,刘保国.岩石力学问题的若干进展[J].岩土力学,1997,18(增):1-5.
    [58]吕爱钟,蒋斌松.岩石力学反问题的几个基本问题[J].岩石力学与工程学报,2002,21(增):1921-1926.
    [59]A.HOJO, M.NAKAMURA, S.Sakurai. Back Analysis of Non-elastic strains Within a Discontinuous Rock Mass Around a Large Underground Power House Cavern [J]. Int. J. Rock Mech. Min. Sci. Vol.34, No.3/4:570,1997.
    [60]S.Sakurai. Lessons Learned from Field Measurements in Tunneling [J]. Tunneling and Underground Space Technology, Vol.12,No.4:453~460,1997.
    [61]S.Sakurai.1983. Displacement measurements associated with the design of underground openings. Proc.Int.Symp. Field Measurements in Geomechanics, Zurich, Switzerland,2:1163~1178.Rotterdam:A.A.Balkema.
    [62]S.Sakurai.1981. Direct strain evaluation technique in construction of underground openings. Proc.22nd US Symp.rock Mech., Cambridge, Massachusetts, M.I.T., 278~282.
    [63]Sakurai, S.; Akutagawa, S. Some aspects of back analysis in geotechnical engineering [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume:32, Issue:8, December,1995, pp.387A.
    [64]Shunsuke Sakurai, Shinichi Akutagawa, Kunifumi Takeuchi, Masato Shinji, Norikazu Shimizu. Back analysis for tunnel engineering as a modern observational method [J]_Tunneling and Underground Space Technology 18 (2003) 185-196.
    [65]Shunsuke Sakurai, Shinichi Akutagawa, Kunifumi Takeuchi, Masato Shinji, Norikazu Shimizu. Back analysis for tunnel engineering as a modern observational method [J]. Tunnelling and Underground Space Technology,18 (2003):185-196.
    [66]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994,15(2):27-36.
    [67]薛琳,方保金.模式识别与参数反演解析方法在隧道工程中的应用[J].水利学报,1997(5):49-53.
    [68]张路青,贾正雪.弹性位移反分析对地应力、弹模的反演唯一性[J].岩土工程 学报,2001,23(2):172-177.
    [69]刘杰,王媛,刘宁.地下巷道弹性位移反分析中改进的Gauss-Newton-Marquit方法[J].岩石力学与工程学报,2002,21(4):599-603.
    [70]朱浮声,薛琳,李宏等.粘弹性围岩力学参数反分析的一种数值法[J].岩石力学与工程学报,1997,16(5):478-482.
    [71]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学,1999,16(1):18-25.
    [73]李素华,朱维申.优化方法在弹性、横观各向同性以及弹塑性围岩变形观测反分析中的应用[J].岩石力学与工程学报,1993,12(2):105-114
    [74]杨喜中,马才学,陈永奇.边界荷载位移反分析确定法[J].地壳形变与地震,1997,17(3):10-15.
    [75]杨志法,王芝银,刘英等.五强溪水电站船闸边坡的粘弹性位移反分析及变形预测[J].岩土工程学报,2000,22(1):66-71.
    [76]徐卫亚,刘世君.岩石力学参数的非线性随机反分析[J].岩土力学,2001,22(4):432-435.
    [77]贾超,刘宁,肖树芳.洞室岩体参数的位移正演反分析[J].岩土力学,2003,24(3):450-454.
    [78]周宜红,孙岩等.基于监测资料与反分析技术的施工期围岩稳定分析及计算机实现[J].武汉水利电力大学学报,2000,33(6):40-43.
    [79]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [80]刘世君,徐卫亚,邵建富.岩石粘弹性模型辨识及参数反演[J].水利学报,2002,(6):101-105.
    [81]刘世君,徐卫亚,王红春等.岩石力学参数的区间参数摄动反分析法[J].岩土工程学报,2002,24(6):760-763.
    [81]Z.F.Yang, Y.J.Shang, S.J.Wang, C.M.Wang, T.H.Ke. Engineering geomechanical analysis and monitoring-control in design and construction of the Wuqiangxi ship lock slope, China [J]. Engineering Geology 59 (2001) 59~72.
    [82]Giancarlo Gioda and Giorgio Borgonovo. Finite Element Modeling of the Time-Dependent Deformation of a Slope Bounding a Hydroelectric Reservoir [J]. International Journal of Geomechanics, Vol.4, No.4,2004:229~239.
    [83]Robert B.Gilbert, Stephen G.Wright, and Eric Liedtke. Uncertainty in back analysis of slopes:Kettleman Hills Case History [J]. Journal of Geotechnical and Geoenvironmental Engineering,124(12),1998:1167~1176.
    [84]Roberto F. Azevedo, Alexandre B. Parreira; and Jorge G. Zornberg. Numerical Analysis of a Tunnel in Residual Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,128 (3),2002:227~236.
    [85]Francesco Castelli and Michele Maugeri. Simplified Nonlinear Analysis for Settlement Prediction of Pile Groups [J]. Journal of Geotechnical and Geoenvironmental Engineering,128 (1),2002:6-84.
    [86]Jakob Likar and Vladimir Vukadin. Time-Dependent Back Analysis of a Multianchored Pile Retaining Wall [J]. Journal of Geotechnical and Geoenvironmental Engineering,129 (1),2003:91~95.
    [87]A. Fakhimi, D. Salehi, N.Mojtabai. Numerical back analysis for estimation of soil parameters in the Resalat Tunnel project [J]. Tunnelling and Underground Space Technology 19(1),2004:57~67.
    [88]H. Akg.un, M.K. Kockar. Design of anchorage and assessment of the stability of openings in silty, sandy limestone:a case study in Turkey[J]. International Journal of Rock Mechanics & Mining Sciences 41 (2004):37~49.
    [89]J.S. Lee, C.S. Bang, Y.J. Mok, S.H. Joh. Numerical and experimental analysis of penetration grouting in jointed rock masses [J]. International Journal of Rock Mechanics & Mining Sciences 37 (2000):1027~1037.
    [90]Seong-Seung Kang, Bo-An Jang, Choo-Won Kang, Yuzo Obara, Jun-Mo Kim. Rock stress measurements and the state of stress at an open-pit limestone mine in Japan [J]. Engineering Geology,67 (2002):201~217.
    [91]Bizjak, Karmen Fifer; Petkovsek, Borut. Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec[J]. Engineering Geology, Volume:75, Issue:1,2004:89~106.
    [92]刘艳青,卢汝绥.软岩隧道围岩压力的位移直接反演方法的研究[J].土木工程学报,2001,34(1):84-87.
    [93]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报[J].2003,22(2):197-202.
    [94]龚玉峰,周创兵,梁轶等.参数反演在岩质高边坡变形与稳定分析中的应用[J].岩土力学,2002,23(5):570-574.
    [95]李守巨,刘迎曦,王登刚.基于遗传算法的岩体初始应力场反演[J].煤炭学报,2001,26(1):13-17.
    [96]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122.
    [97]易达,陈胜宏,葛修润.岩体初始应力场的遗传算法与有限元联合反演法[J]. 岩土力学,2004,25(7):1077-1080.
    [98]Surajit Pal, Wije Wathugala, Sukhamay Kundu. Calibration of a constitutive model using genetic algorithm [J]. Computer and Geotechnics,1999,5(1):325~348.
    [99]Deng J H, Lee C F. Displacement back analysis for a steep slope at the three gorges project site[J]. Int.J.Rock Mech & Min Sci,2001,38(2):259~268.
    [100]陈建锋,石振明,陈竹昌.遗传算法在参数反演中的运用[J].土工基础,2001,15(1):1-4.
    [101]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,20(2):171-174.
    [102]陈益峰,周创兵.隔河岩坝基岩体在运行期的弹塑性力学参数反演[J].岩石力学与工程学报,2002,21(7):968-975.
    [103]高玮,郑颖人,冯夏庭.岩土本构模型识别的仿生算法研究[J].岩土力学,2004,25(1):31-36.
    [104]高玮,郑颖人.一种新的岩土工程进化反分析算法[J].岩石力学与工程学报,2003,22(2):192-196.
    [105]刘杰,王媛.改进的遗传算法及其在渗流参数反演中的应用[J].岩土力学,2003,24(2):237-241.
    [1]陈育书,秦之福.隧道群监控量测技术方案设计[J].公路交通技术,2005(2):109-113.
    [2]伍毅敏,吕康成.隧道大变形灾害施工监控技术研究[J].中国地质灾害与防治学报,2007,18(1):133-137.
    [3]赖金星,谢永利,李华 软弱破碎围岩双连拱隧道安全施工与监测[J].工程地质学报,2006,14(4):513-517.
    [4]雷军,张金柱,林传年.乌鞘岭特长隧道复杂地质条件下断层带应力及变形现场监测分析[J].岩土力学,2008,29(5):1367-1371.
    [5]易小明,张顶立,陈铁林.厦门海底隧道地层变形监测与机制分析[J].岩石力学与工程学报,2007,26(11):2302-2307.
    [6]刘志春,李文江,孙明磊.乌鞘岭隧道F4断层区段监控量测综合分析[J].岩石力学与工程学报,2006,25(7):1502-1510.
    [7]刘新荣,钟祖良,黄林伟,杜国平.桃树垭隧道初期支护大变形分析与工程处理[J].水文地质工程地质,2008(4):84-87.
    [8]张顶立,黄俊.深圳地铁浅埋暗挖隧道地层变形分析[J].中国矿业大学学报,2004,33(5):578-583.
    [9]赵广占,谢永利,杨晓华.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,17(1):66-69.
    [10]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [11]安蕊梅,刘维华,刘志春.挤压性围岩隧道变形特征分析[J].石家庄铁道学院学报,2007,20(1):14-18.
    [12]刘泉声,白山云,肖春喜.基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J].岩石力学与工程学报,2007,26(10):1982-1990.
    [13]官伟.软岩隧道围岩压力及关键部位支护研究(硕士学位论文)[M].南昌:华东交通大学,2006.
    [14]郭放良,伍法权,钱卫平.乌鞘岭长大深埋隧道围岩变形与地应力关系的研究[J].岩石力学与工程学报,2006,25(11):2194-2199.
    [15]陈仲先,汤雷.高地应力大型地下洞室的位移和锚杆应力特性[J1.岩土工程学报,2000,(5):294-298.
    [16]张继奎,方俊波.高地应力千枚岩大变形隧道支护参数试验研究[J].铁道工程学报,2005,89(5):66-70.
    [17]何满潮、景海河、孙晓明.软岩工程力学[M].北京:科学出版社,2002,11
    [18]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2002,8(1):46-62.
    [19]张广泽.乌鞘岭隧道F7断层围岩工程特性及工程措施研究[J].铁道标准设计,2005(9):24-28.
    [20]赵运臣,刘强.高地应力区挤压破碎围岩隧道施工技术探讨[J].隧道建设,2005,25(6):20-24.
    [21]念培红.共和隧道Ⅲ级特殊围岩施工设计[J].铁道标准设计,2008(10):81-86.
    [22]王志坚.乌鞘岭隧道深埋志留系地层大变形控制技术[J].铁道标准设计,2005(1):10-14.
    [23]靳晓光,李晓红,王兰生.高地应力区公路隧道不同围岩类别的变形特征及应用实践[J].岩石力学与工程学报,2001,20(增1):932-935.
    [24]赵长海,周小兵,贺建国 极软岩隧洞的设计与施工[J] 岩石力学与工程学报,2006,25(增1):3034-3039.
    [25]EGGER E Design and construction aspects of deep tunnels(with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology,2000,15(4):403~408.
    [26]AYDAN O, AKAGIT, KAWAMOTOT. The Squeezing potential of rocks around tunnels, theory and prediction[J]. Rock mechanics rock engineering,1993,26(2): 137~163.
    [27]刘泮兴,任秋儒,朱永全.锚杆支护在整治高地应力软岩隧道大变形的效应分析[J].石家庄铁道学院学报,2006,19(1):27-29.
    [28]刘高,张帆宇,李新召.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(增2):5521-5526.
    [29]M adsen F T, Fluckider A, Hauber L, et al. New investigation on swelling rocks in the Belchen Tunnel, Switzerland[A]. int Proc. The 8th ISRM Cong-[C]. [s.1.]: A.A.Balkema,1995.263~267.
    [30]Steiner W Swelling rock in tunnels:rock characterization. effect of horizontal sl1 "esses and construction procedures[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstract,1986,30(4):361~380.
    [1]梁时楷.高应力软岩巷道支护压力及变形破坏机理的研究[J].江西煤炭科技,2009(3):142-144.
    [2]陶波、伍法权、郭启良.高地应力环境下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究[J].岩石力学与工程学报,2006,25(9):1828-1834.
    [3]张志强、关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,22(6):696-700.
    [4]谢俊峰,陈建平.火车岭隧道软弱围岩大变形特征及机理分析[J].武汉科技大学学报(自然科学版),2007,30(6):647-651.
    [5]姜云,李永林,李天斌,等. 隧道工程围岩大变形类型与机制研究EJ].地质灾害与环境保护,2004(4):46-51.
    [6]刘高,张帆宇,李新召.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(增2):5521-5526.
    [7]杨建平,陈卫忠,郑希红.含软弱夹层深部软岩巷道稳定性研究[J].岩土力学,2008,29(10):2864-2870.
    [8]王明华,白云,张电吉.含软弱夹层岩体质量评价研究[J].岩土力学,2007,28(1):185-187.
    [9]王祥秋,杨林德,高文华.含软弱夹层层状围岩地下洞室平面非线性有限元分析[J].岩土工程学报,2002,24(6):729-732.
    [10]张治强,李宁,SWOBODAG.软弱夹层分布部位对洞室稳定性影响研究[J].岩石力学与工程学报,2005,24(18):3252-3257.
    [11]刘文芳,隋艳春,周菊芳.含软弱夹层岩体边坡的突变模式分析[J].岩石力学与工程学报,2006,25(增1):2663-2669.
    [12]李晓红、李登新、靳晓光.初期支护对软岩隧道围岩稳定性和位移影响分析[J].岩土力学,2005,26(8):1207-1210.
    [13]吕明,GRφVE, DAHLEH,乔怀玉等 高地应力岩体特殊照明峒室围岩支护设计[J]岩石力学与工程学报,2008,27(1):35-41.
    [14]范秋雁,朱维申.软岩最优支护计算方法[J].岩土工程学报,1997,19(2):77-83.
    [15]肖明,俞裕泰,匡会健.软岩隧道衬砌结构数值模拟计算[J].岩土力学,1997,18(增):187-192.
    [16]程桦,孙钧.软弱岩复合式隧道衬砌力学机制非线性大变形数值分析[J].岩石力学与工程学报,1997,16(4):327-336.
    [17]朱永全,景诗庭,赵玉成.大变形隧道极限位移的计算模拟[J].石家庄铁道学院学报,2000,13(3):75-78.
    [18]靳晓光,李晓红,王兰生.高地应力区公路隧道不同围岩类别的变形特征及应用实践[J].岩石力学与工程学报,2001,20(增1):932-935.
    [19]万援朝.二次支护原理在深井软岩硐室支护中的实践[J].煤炭科学技术,2006,34(9):5-7.
    [20]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [21]何满潮、景海河、孙晓明.软岩工程力学[M].北京:科学出版社,2002,11.
    [22]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J]工程地质学报,2002,8(1):46-62.
    [23]刘泉声,白山云,肖春喜 基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J] 岩石力学与工程学报,2007,26(10):1982-1990.
    [24]赵长海,周小兵,贺建国 极软岩隧洞的设计与施工[J] 岩石力学与工程学报,2006,25(增1):3034-3039.
    [25]Kaiser P K, Maloney S. Morgenstem N R. The Time Dependent Properties of Tunnel in Highly Stressed Rocks[A]. In:Proc. the 5th Cong. ISRM(D)[C]. [S.1.]: A. A. Balkema 1983.329~335.
    [26]刘志春,李文江,朱永全 软岩大变形隧道二次衬砌施作时机探讨[J] 岩石力学与工程学报,2008,27(3):580-587.
    [27]朱永全 隧道稳定性位移判别准则[J].中国铁道科学,2001,22(6):80-83.
    [28]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [29]王小平.软岩巷道合理支护时间模拟研究[J].采矿与安全工程学报,2006,23(1):103-106.
    [30]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩土力学与工程学报,2004,23(21):3732-3737.
    [31]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学EM].北京:科学出版社,1996.
    [32]EGGER E Design and construction aspects of deep tunnels(with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology,2000,15(4):403~408.
    [33]AYDAN O, AKAGIT, KAWAMOTOT. The Squeezing potential of rocks around tunnels, theory and prediction[J]. Rock mechanics rock engineering,1993,26(2): 137~163.
    [34]刘高.高应力区结构性流变围岩稳定性研究(博士学位论文)[D].成都:成都 理工大学,2001.
    [35]赵长海,周小兵,贺建国,等.极软岩隧洞的设计与施工[J].岩石力学与工程学报,2006,25(增1):3034-3039.
    [36]M adsen F T, Fluckider A, Hauber L, et al. New investigation on swelling rocks in the Belchen Tunnel, Switzerland[A]. int Proc. The 8th ISRM Cong-[C]. [s.1.]: A.A.Balkema,1995.263~267.
    [37]Steiner W Swelling rock in tunnels:rock characterization. effect of horizontal sl1 "esses and construction procedures[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstract,1986,30(4):361~380.
    [38]Anagnostou G·Kovari K. Quantitative interpretation of floor heaves in a tunnel through Marl[A]. In:Proc.8th ISRM Cong. [C]. [S.1.]: A.A.Balkema,1995.509~512.
    [39]TRUESDELLC, NOLLW. Nonlinear field theories of mechanics [M]. [S.1.]:[s.n.], 1965.
    [40]张广泽.乌鞘岭隧道F7断层围岩工程特性及工程措施研究[J].铁道标准设计,2005(9):24-28.
    [1]李世辉.隧道支护设计新论—典型类比分析法应用理论[M].北京:科学出版社.1999.
    [2]王建宇.隧道工程监测和信息化设计原理[M].北京:中国铁道出版社,1990.
    [3]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2002.
    [4]刘志春,李文江,孙明磊等.乌鞘岭隧道F4断层区段监控量测综合分析[J]岩石力学与工程学报,2006,25(7):1502-1510.
    [5]张玉祥.岩土工程时间序列预报问题初探[J].岩石力学与工程学报,1998,17(5):552-558.
    [6]尹光志,岳顺,钟焘.基于ARMA模型的隧道位移时间序列分析[J].岩土力学,2009,30(9):2727-2732.
    [7]娄峰.时间序列分析在隧道位移监测中的应用[硕士论文D].辽宁:大连理工大学,2002.
    [8]朱永全,景诗庭,张清.时间序列分析在隧道施工监测中的应用[J].岩石力学与工程学报,1996,12:353-359.
    [9]霍玉华.隧道围岩变形量预测的灰色模型应用比较研究[J].北京交通大学学报,2006,30(4):42-45.
    [10]周林,傅鹤林,郭建峰等.引入修正因子的非等时距时变参数灰色预测模型及应用[J].岩土工程学报,2006,28(6):756-760.
    [11]Qing Zhang.et al. The Application of Neural Network Model to rock Mechanics and Rock Engineering[J] Int.J.Rock Mech.& Min. Sci, Vol 128,No.6, pp 535~540,1991.
    [12]潘国荣.地铁隧道变形的神经网络法预测[J].大地测量与地球动力学,2007,27(1):80-84.
    [13]陈秋南,张永兴,陈建功.基于BP网络动态预测预报轻轨隧道围岩位移[J].公路交通科技,2004,21(2):65-69.
    [14]刘晓,曾祥虎,刘春宇.边坡非线性位移的神经网络一时间序列分析[J].岩石力学与工程学报,2005,24(19):3499-3504.
    [15]袁金荣,赵福勇.基坑变形预测的时间序列分析[J].土木工程学报,2001,34(6):55-59.
    [16]黄修云,曹国安,张清.人工神经网络在地下工程预测中的应用[J].北方交通大学学报,1998,22(1):39-43.
    [17]刘泉声,白山云,肖春喜.基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J].岩石力学与工程学报,2007,26(10):1982-1990.
    [18]伍毅敏,吕康成.隧道大变形灾害施工监控技术研究[J].中国地质灾害与防治学报,2007,18(1):133-137.
    [19]Qing Zhang, et al. An Expert System for Prediction of Karst in Excavation of a Tunnel or Underground Structures Through A Carbonate rock Area [J]. Tunneling & Underground Space Technology, pp 373~378,1993.
    [20]Qing Zhang, et al. A Case-Based Reasoning for Tunnel Support[R]. Proc.8th Intern. Congress on Rock Mechanics. Tokyo, pp 907~909,1995.
    [21]Yang and Zhang. The Application of Neural networks to RES[J]. Int.J.Rock Mech.& Min. Sci, Vol 128,No.6, pp 727~745,1998.
    [22]Y.Yang and Q.Zhang. A Hierarchical Analysis for Rock Engineering Using Artifical Neural Networks [J].Rock Mechanics and Rock Engineering,(1997)30 (4):207~222.
    [23]V.K.Singh, D.Singh. T.N.Singh. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks[J]. Int.J.Rock Mech.& Min. Sci,38(2001), pp 269~284.
    [24]黄修云,曹国安,张清.人工神经元网络在地下工程预测中的应用[J].北方交通大学学报,1998,22(1):39-43.
    [25]魏莉萍,黄修云,张清等.岩石工程稳定性评判的一种新方法[J].北方交通大学学报,1999,23(1):6-10.
    [26]魏莉萍,张清.隧道工程喷锚支护的自动化设计方法[J].铁道学报,2000,22(1):83-86.
    [27]魏莉萍.隧道工程喷锚支护的案例设计研究及其与专家系统、神经元网络综合的研究(博士学位论文)[D].北方交通大学,1999.
    [28]乔春生,张清,黄修云.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2000,19(1):64-67.
    [29]J.Ghaboussi & D.E.Sidarta. New Nested Adaptive Neural Networks(NANN) for Constitutive Modeling[J] Computers and Geotechnics,Vol.22,No.1,pp.29-52,1998.
    [30]阎平凡,张长水.《人工神经网络与模拟进化计算》[M].北京:清华大学出版社,2000.
    [31]李文秀,杨少冲,陈二忠等.高陡山区开采自然坡失稳分析的神经网络方法[J].岩土力学,2006,27(9):1563-1566.
    [32]邢文训,谢金星.现代优化计算方法[M].清华大学出版社,1999.
    [33]玄光南,程润伟.遗传算法与工程设计[J].科学出版社,2000.
    [34]夏江,严平,庄一舟.基于遗传算法的软土地基沉降预测[J].岩土力学,2004,25(7):1131-1134.
    [35]冯夏庭.《智能岩石力学导论》[M].北京:科学出版社,2000.
    [36]王树栋、刘开云 长大隧道软弱围岩施工大变形智能预测方法[J].中国铁道科学,2008,29(2):82-87.
    [37]刘开云.隧道工程信息化设计与智能分析方法研究(博士学位论文)[D].北京交通大学,2005.
    [1]王建宇.隧道工程监测和信息化设计原理[M].北京:中国铁道出版社,1990.
    [2]王成,瞿光义.软岩隧道施工监测反馈计算方法[J].工程力学,1998(增):435-439.
    [3]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498.
    [4]杨志法,熊顺成,王存玉等.关于位移反分析的某些考虑[J].岩石力学与工程学报,1995,14(1):11-16.
    [5]孙钧,刘保国.岩石力学问题的若干进展[J].岩土力学,1997,18(增):1-5.
    [6]杨更社,孙钧.中国岩石力学的研究现状及其展望分析[J].西安公路交通大学学报,2001,21(3):5-9.
    [7]蒋树屏.岩体工程反分析研究的进展[J].地下空间,1995,15(1):25-33.
    [8]吕爱钟,蒋斌松.岩石力学反问题的几个基本问题[J].岩石力学与工程学报,2002,21(增):1921-1926.
    [9]A.HOJO, M.NAKAMURA, S.Sakurai. Back Analysis of Non-elastic strains Within a Discontinuous Rock Mass Around a Large Underground Power House Cavern [J]. Int. J. Rock Mech. Min. Sci. Vol.34, No.3/4:570,1997
    [10]S.Sakurai. Lessons Learned from Field Measurements in Tunneling [J]. Tunneling and Underground Space Technology,Vol.12,No.4:453-460,1997
    [11]S.Sakurai.1983. Displacement measurements associated with the design of underground openings. Proc.Int.Symp. Field Measurements in Geomechanics, Zurich, Switzerland,2:1163~1178.Rotterdam:A.A.Balkema.
    [12]S.Sakurai.1981. Direct strain evaluation technique in construction of underground openings. Proc.22nd US Symp.rock Mech., Cambridge, Massachusetts, M.I.T., 278-282.
    [13]Sakurai, S.; Akutagawa, S. Some aspects of back analysis in geotechnical engineering [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume:32, Issue:8, December,1995, pp.387A.
    [14]Shunsuke Sakurai, Shinichi Akutagawa, Kunifumi Takeuchi, Masato Shinji, Norikazu Shimizu. Back analysis for tunnel engineering as a modern observational method [J]_Tunneling and Underground Space Technology 18 (2003) 185-196.
    [15]Shunsuke Sakurai, Shinichi Akutagawa, Kunifumi Takeuchi, Masato Shinji, Norikazu Shimizu. Back analysis for tunnel engineering as a modern observational method [J]. Tunnelling and Underground Space Technology,18 (2003):185-196.
    [16]周宜红,孙岩等.基于监测资料与反分析技术的施工期围岩稳定分析及计算机实现[J].武汉水利电力大学学报,2000,33(6):40-43.
    [17]J.S. Lee, C.S. Bang, Y.J. Mok, S.H. Joh. Numerical and experimental analysis of penetration grouting in jointed rock masses [J]. International Journal of Rock Mechanics & Mining Sciences 37 (2000):1027-1037.
    [18]龚玉峰,周创兵,梁轶等.参数反演在岩质高边坡变形与稳定分析中的应用[J].岩土力学,2002,23(5):570-574.
    [19]陈益峰,周创兵.隔河岩坝基岩体在运行期的弹塑性力学参数反演[J].岩石力学与工程学报,2002,21(7):968-975.
    [20]冯夏庭.《智能岩石力学导论》[M].北京:科学出版社,2000.
    [21]刘开云.隧道工程信息化设计与智能分析方法研究(博士学位论文)[D].北京交通大学,2005.
    [22]冯夏庭,杨成祥.智能岩石力学(2)—参数与模型的智能辨识[J].岩石力学与工程学报,1999,18(3):350-353.
    [23]刁心宏,王泳嘉,冯夏庭,陈廷伟.用人工神经网络方法辨识岩体力学参数[J].东北大学学报(自然科学版),2002,23(1):60-63.
    [24]周瑞忠、邱高翔.基于BP网络的深基坑支护位移反分析[J].土木工程学报,2001,34(6):60-62.
    [25]邓子胜.基于径向基神经网络的深基坑非线性位移反分析[J].岩土工程学报,2005,27(5):554-557.
    [26]戴荣,李仲奎.三维地应力场BP反分析的改进[J].岩石力学与工程学报,2005,24(1):83-88.
    [27]李端有,李迪,马水山.三峡永久船闸开挖边坡岩体力学参数反分析[J].长江科学院院报,1998,15(2):10-13.
    [28]Xia-Ting Feng, Zhiqiang Zhang, Qian Sheng. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method [J]. Int. J. Rock Mech & Min Sci, (37)2000:1039~1054.
    [29]冯建龙,张孟喜.BP网络在双连拱隧道围岩参数反分析中的应用[J].上海大学学报(自科版),2005,11(3):293-297.
    [30]周建春,魏琴,刘光栋.采用BP神经网络反演隧道围岩力学参数[J].岩石力学与工程学报,2004,23(6):941-945.
    [31]郝哲,万明富,刘斌等.韩家岭隧道围岩物理力学参数反分析[J].东北大学学报(自科版),2005,26(3):300-303.
    [32]张孟喜,李刚,冯建龙等.双连拱隧道围岩变形有限元与BP神经网络耦合分析[J].岩土力学,2008,29(5):1243-1248.
    [33]FLAC-3D (Fast Lagrangian Analysis of Continua in 3Dimensions), Version2.0, User's Manual[S].USA:ItascaConsulitingGroup,Inc.,1997.
    [34]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [35]玄光南,程润伟.遗传算法与工程设计[J].科学出版社,2000.
    [36]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [37]易达,徐明毅,陈胜宏等.人工神经网络在岩体初始应力场反演中的应用[J].岩土力学,2004,25(6):943-946.
    [38]王小杰,张世飙,陈勇等.云岭隧道围岩物理力学参数正演反分析[J].华中科技大学学报(城市科学版),2007,24(2):78-80.
    [39]樊琨,刘宇敏等.基于人工神经网络的岩土工程力学参数反分析[J].河海大学学报,1998,26(4):98-102.
    [40]薛亚东,高德利.深部地层压力智能辨识方法[J].岩石力学与工程学报,2003,22(2):208-211.
    [41]李立新,王建党,李造鼎.神经网络模型在非线性位移反分析中的应用[J].岩土力学,1997,18(2):62-66.
    [42]孙豁然,王述红,宫永军等.大型地下洞室开挖过程位移变形智能预测[J].煤炭学报,2001,26(1):45-48.
    [43]Y.J. Shang, J.G. Cai, W.D. Hao, X.Y. Wu, S.H. Li. Intelligent back analysis of displacements using precedent type analysis for tunneling [J]. Tunnelling and Underground Space Technology 17 (2002) 381-389.
    [44]王靖涛.建立岩土本构模型的反问题理论及神经网络方法.第6次全国岩石力学与工程学术大会论文集,2000:260-263.
    [45]V.K.Singh, D.Singh, T.N.Singh. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks[J]. International Journal of Rock Mechanics & Mining Science 38(2001) 269-284.
    [46]X.F.Yu, S.GGe, J.Yu, Y.J.Shang. Rock memory and intelligent computing of the excavation process in rock[J]. International Journal of Rock Mechanics & Mining Science 37(2000):549-554.
    [47]J.Deng, J. Denga, Z.Q. Yue, L.G. Thamb, H.H. Zhu Pillar design by combining finite element methods, neural networks and reliability:a case study of the Feng Huangshan copper mine, China[J] International Journal of Rock Mechanics & Mining Sciences 40 (2003) 585-599
    [48]贺怀建,白世伟,陈健.神经网络在岩土工程观测数据优化中的应用[J].岩土力学,2001,22(2):229-232
    [49]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报,2002,30(3):52-56.
    [1]李大伟,侯朝炯.低强度软岩巷道大变形围岩稳定控制实验研究[J].煤炭科学技术,2006,34(3):36-39.
    [2]郭福利,张顶立,苏洁.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报,2007,26(11):2324-2332.
    [3]陶波,伍法权,郭启良.高地应力环境下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究[J].岩石力学与工程学报,2006,25(9):1828-1834.
    [4]张志强,关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,22(6):696-700.
    [5]邓林,邓荣贵,付小敏.泥巴山隧道流纹岩加卸围压力学特性研究[J].岩石力学与工程学报,2009,29(增1):3150-3155.
    [6]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [7]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [8]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002,11.
    [9]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2002,8(1):46-62.
    [10]范秋雁,朱维申.软岩最优支护计算方法[J].岩土工程学报,1997,1(2):77-83.
    [11]黄鸿健.堡镇隧道高地应力软弱围岩段施工大变形数值模拟预测研究[J].铁道标准设计,2009(3):93-95.
    [12]张浚厚.堡镇隧道高地应力软岩地层施工力学行为分析[J].路基工程,2008(4):78-796.
    [13]何满潮,王树仁.大变形数值方法在软岩工程中的应用[J].岩土力学,2004,25(2):185-188.
    [14]李树才,朱维申,陈伟忠.弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J].岩石力学与工程学报,2002,21(4):466-470.
    [15]焦苍,祝江林,范鹏.浅埋软岩隧道开挖围岩变形非线性模拟分析[J].地下空间与工程学报,2005,1(5):703-706.
    [16]汪小敏,黄宏伟,谢雄耀.软弱围岩隧道施工三维有限元分析[J].地下空间与工程学报,2007,3(6):1114-1118.
    [17]QIN Z, CHEN Z D. Large deformation analysis of shells with finite element method based on the S-R decomposition theorem[J]. Computer and Structures, 1988,30(4):957~961.
    [18]程桦,孙钧.软弱岩复合式隧道衬砌力学机制非线性大变形数值分析[J].岩石力学与工程学报,1997,16(4):327-336.
    [19]孙钧,朱合华.软弱围岩隧道施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-33.
    [20]杜继,职洪涛,翁慧俐等.高速公路软岩隧道复合支护机制的FLAC解析[J].中国公路学报,2003,16(2):70-73.
    [21]肖明,俞裕泰,匡会健.软岩隧道衬砌结构数值模拟计算[J].岩土力学,1997,18(增):187-192.
    [22]于维刚,李苍松.对拉塞梅尔隧道PK26某段围岩大变形的认识[J].地下空间与工程学报,2007,3(7):1228-1231.
    [23]刘志春,朱永全,李文江.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报,2008,30(5):690-697.
    [24]朱永全.隧道稳定性位移判别准则[J].中国铁道科学,2001,22(6):80-83.
    [25]朱永全,景诗庭,赵玉成.大变形隧道极限位移的计算模拟[J].石家庄铁道学院学报,2000,13(3):75-78.
    [26]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [27]靳晓光,李晓红,王兰生.高地应力区公路隧道不同围岩类别的变形特征及应用实践[J].岩石力学与工程学报,2001,20(增1):932-935.
    [28]赵长海,周小兵,贺建国.极软岩隧洞的设计与施工[J].岩石力学与工程学报,2006,25(增1):3034-3039.
    [29]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学EM].北京:科学出版社,1996.
    [30]王小平.软岩巷道合理支护时间模拟研究[J].采矿与安全工程学报,2006,23(1):103-106.
    [31]刘志春,李文江,朱永全.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,27(3):580-587.
    [32]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [33]何满潮,陈新,梁国平.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报,2007,26(5):934-943.
    [34]赵长海,周小兵,贺建国等.极软岩隧洞的设计与施工[J].岩石力学与工程学报,2006,25(增1):3034-3039.
    [35]Anagnostou G·Kovari K. Quantitative interpretation of floor heaves in a tunnel through Marl[A]. In:Proc.8th ISRM Cong. [C]. [S.1.]:A.A.Balkema,1995.509~512.
    [36]晏启祥,何川,姚勇.软岩隧道施工特性及其动态力学行为研究[J].岩石力学与工程学报,2006,25(3):572-577.
    [37]缪协兴.软岩巷道围岩流变大变形有限元计算方法[J].岩土力学,1995,16(2):24-34.
    [38]庞建勇,刘松玉,郭兰波.软岩巷道新型网壳锚喷支架静力分析及其应用[J].岩土工程学报,2003,25(5):602-605.
    [39]张顶立,黄俊.深圳地铁浅埋暗挖隧道地层变形分析[J].中国矿业大学学报,2004,33(5):578-583.
    [40]张广泽.乌鞘岭隧道F7断层围岩工程特性及工程措施研究[J].铁道标准设计,2005(9):24-28.
    [41]孙伟亮.堡镇隧道高地应力顺层偏压软岩大变形段的快速施工技术[J].隧道建设,2009,29(1):76-81.
    [42]王水善.堡镇隧道软岩高地应力地层大变形控制关键技术[J].隧道建设,2009,29(2):227-231.
    [43]李树军.高地应力大变形隧道变形特性及工程应对措施分析[J].水利与建筑工程学报,2009,7(3):33-36.
    [44]吕明,GRφVE, DAHLEH,乔怀玉等.高地应力岩体特殊照明峒室围岩支护设计[J],岩石力学与工程学报,2008,27(1):35-41.
    [45]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩土力学与工程学报,2004,23(21):3732-3737.
    [46]EGGER E Design and construction aspects of deep tunnels(with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology,2000,15(4):403~408.
    [47]AYDAN O, AKAGIT, KAWAMOTOT. The Squeezing potential of rocks around tunnels, theory and prediction[J]. Rock mechanics rock engineering,1993,26(2): 137~163.
    [48]刘高.高应力区结构性流变围岩稳定性研究(博士学位论文)[D].成都:成都理工大学,2001.
    [49]万援朝.二次支护原理在深井软岩硐室支护中的实践[J].煤炭科学技术,2006,34(9):5-7.
    [50]赵运臣,刘强.高地应力区挤压破碎围岩隧道施工技术探讨[J].隧道建设,2005,25(6):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700