用户名: 密码: 验证码:
好氧颗粒污泥处理硝基苯/苯胺废水的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯/苯胺类化合物是一类具有稳定化学性质、高毒性和易在生物体内积累的优先控制污染物,硝基苯和苯胺是其中最为简单的化合物,是重要的基础化工原料之一。随着化工工业的发展,对硝基苯和苯胺的需求呈明显上升趋势,因此进入环境的量也会增多。微生物降解在硝基苯/苯胺废水和污染环境修复等方面具有明显优势,自然界中原来并不存在利用硝基苯/苯胺的微生物资源,经过长期演化,微生物通过产生诱导酶来利用硝基苯/苯胺作为碳源、氮源或能源,进行生长和繁殖,从而使硝基苯/苯胺得以降解或转化。
     由于苯环的存在,在环境中苯环难以开环矿化,硝基苯、苯胺在环境中表现出结构稳定,对外界氧的作用有较强的抵抗力,芳环不容易被氧化,即在通常情况下,利用氧不容易使苯环裂解矿化;另一方面,苯环结构的对称性和稳定性使其不易发生生化反应,生物降解性差,且具有较大的生物毒性。
     本文从降解菌的驯化筛选、降解途径、降解机理、共代谢、分子遗传学角度,阐述了硝基苯/微生物降解研究的最新进展,明确了应进一步加强工程菌的构建及其应用开发研究,综述了在硝基苯类化合物污染环境的微生物修复方面,共代谢和混合菌株的协同作用具有重要的应用前景,并介绍了颗粒污泥法在城市污水处理中的应用,借此阐述了本研究的目的。
     本研究采用三角瓶在摇床上好氧振荡的方法,用硝基苯废水处理厂的好氧污泥驯化。首先培养能够降解硝基苯/苯胺的混合菌群,然后从此混合菌群中筛选纯化高效降解硝基苯/苯胺的优势菌种。在驯化过程中,发现混合菌群形成颗粒化,即为颗粒污泥,采用此颗粒污泥(混合菌群)进行降解硝基苯/苯胺的研究;然后分别从降解硝基苯的混合菌中筛选、纯化出三株菌——细菌NB1、杆菌NB2和丝状菌NB3,从降解苯胺的混合菌中也筛选纯化出三株菌——酵母菌AN1、杆菌AN2和丝状菌AN3,分别研究了NB1-NB3对硝基苯的降解效果和AN1-AN3对苯胺的降解效果;并分别在NB1、NB2、NB3之间、在AN1、AN2、AN3之间相互复配成几种复合菌,研究了复合菌对硝基苯和苯胺的降解效果。
     结果表明,混合菌群在以NB为唯一碳源和氮源的情况下降解NB的效果最好,该混合菌群降解NB时最适宜的温度为28℃,能够适宜于pH9.0以下的弱碱性环境,且最佳的pH值为7.0,当NB的起始浓度为600mg·L-1时,混合菌群适应期较短,在6h以下,混合菌群在24h内能够完全降解NB,降解速率最大,达到28.8mg·(L·h)-同样地,以苯胺为污染物培养出来的混合菌群在以苯胺为唯一源碳和氮源的情况下,具有较强的降解苯胺的能力,最适宜的温度为28℃,适于pH6.0-8.0的弱酸弱碱环境,且最佳的pH值为7.0,摇床的转速宜为180rpm,盐度宜为0.4%-0.6%,且当苯胺的起始浓度为600mg/L时,在18h内被完全降解,混合菌群降解苯胺的速度达到33.6mg/(L. h)。相比而言,苯胺较硝基苯容易被生物降解掉。
     采用纯菌进行的实验结果还表明,在降解硝基苯的三株纯菌株NB1-NB3中,细菌NB1对硝基苯的降解能力较强,经过36h对硝基苯的转化率达到56%,矿化率达到41%,是降解硝基苯混合菌中的优势菌种,经鉴定,NB1属于解鸟氨酸克雷伯氏菌;而在AN1-AN3中,酵母菌AN1则对苯胺的降解能力较高,经过36h,对苯胺的转化率达到68%,矿化率达到59%,是降解苯胺的混合菌中的优势菌种,经鉴定,AN1属于假丝酵母菌。与混合菌相比,纯菌的降解效果稍差些。
     纯菌的复合实验结果表明,硝基苯降解菌NB1-NB3之间、苯胺降解菌AN1-AN3之间都存在明显的协同效应;在降解硝基苯的过程中,细菌NB1与酵母菌AN1之间存在相互协同效应;而在苯胺的降解过程中,没有表现出明显的协同或拮抗效应。
     来自降解硝基苯的三类菌(NB1、NB2、NB3)中,细菌NB1为优势菌,且这几种菌复配后,尚没有发现颗粒化的形成,而来自降解苯胺的三类菌(AN1、AN2、AN3)中,以酵母菌AN1为主体,且复配成的A13和A123复合菌形成了颗粒污泥,且A123复合菌在36h的OD600值达到了0.94,苯胺的转化率达到了89%。细菌、杆菌、丝状菌复配成的N123复合菌,36h的OD600值达到0.43,硝基苯的转化率达到了84%。
     由此说明苯胺生物处理过程中污泥颗粒化的主要原因在于丝状菌的大量繁殖,而降解硝基苯的优势菌为细菌,降解苯胺的优势菌为酵母菌,且苯胺生物处理过程中较硝基苯更易形成颗粒污泥,且与酵母菌分泌的胞外多聚物EPS可能存在密切的关系,有待今后深入探讨。好氧颗粒污泥法用于含硝基苯类化工废水的处理是一种新的尝试,具有很大的实际应用价值。
Nitrobenzene and aniline, widely used industrial chemicals, are two important nitroaromatic compounds that have been listed as priority pollutants for their nature of chemical stability, high toxicity, resistant to degradation and potential of accumulation in organism.
     With the development of chemical industry, China's demand for nitrobenzene and aniline will continuously increase, and their wrongly handled and disposed of endanger both human and environmental health. Thus, the degradation of nitrobenzene and aniline is of great concern. Microbial degradation has obvious advantages in treatment of wastewater, gases and soil that containing nitrobenzene and aniline. These microorganism can utilize nitrobenzene or aniline as carbon source, nitrogen source or energe source for their growth and reproduce.
     Due to the chemical stability, however, benzene ring is hard to be opened by oxidation of oxygen. Thus, nitrobenzene and aniline are difficult to be mineralized. On the other hand, symmetry and stability of benzene ring also makes them hard to be degraded by biochemical reactions. Besides, nitrobenzene and aniline have great biological toxicity.
     This paper presents the latest research reports about the biodegradation of nitrobenzene and aniline, which include the screening and domestication of degrading microbes, the degradation pathways and degradation mechanism. Furthurmore, this paper emphasizes the importance of the development and application of engineering strains, and introduce the mineralization of nitrobenzene and aniline by mixed microbes and the application of granular sludge in the treatment of municipal wastewater.
     The highly efficient nitrobenzene/anline-degrading aerobic microbes were screened and domesticated from activated sludge and sediments from a nitrobenzene wastewater treatment plant. During the domestication processes, the mixed microbes formed granular sludge. Based on these mixed microbes, we studied the aerobic biodegradation of benzene and aniline.
     Bacteria(NB1), bacillus(NB2) and filamentous Bacteria(NB3) as well as yeast(AN1), bacillus(AN2) and filamentous Bacteria(AN3) are screened and purified from the mixed nitrobenzene-degrading bacteria and aniline-degrading bacteria, respectively. Besides the degradation effect of nitrobenzene or anline by each microorganism, their combined degradation effect in the treatment of corresponding nitroaromatic compounds has also been studied.
     The result show that the mixed nitrobenzene-degrading microbes degraded nitrobenzene most efficiently in the conditions with nitrobenzene as sole carbon and nitrogen source. The optimum condition for growth of the mixed microbes and degradation of nitrobenzene was 28℃and pH 7.0, and weak alkaline environment with pH below 9.0 is suitable for their growth.
     When nitrobenzene concentration was 600 mg/L, the mixed microbes can quickly adapt the environment in 6h, and they can completely degraded nitrobenzene in 24h, the maximum degradation rate could reach as high as 28.8 mg·(L·h)-1
     Similarly, the mixed anline-degrading microbes that cultivated in the environment with aniline can degraded aniline more efficiently in the conditions with aniline as sole carbon and nitrogen source than in the conditions with other carbon source and nitrogen source. The optimum condition for growth of the mixed microbes and degradation of aniline was 28℃and pH 7.0, and the environment with pH between 6.0 and 9.0 is suitable for their growth. When aniline concentration was 600 mg/L, the degradation rate could reach 33.6 mg (L·h)-1, and aniline can be completely degraded within 18 h.
     The results obtained from the experiments undergoing with pure microbes show that Bacteria(NB1) is the dominant bacteria among the nitrobenzene-degrading microbes. The conversion rate and mineralization rate of nitrobenzene by NB1 within 36 h can reach 56% and 41%, respectively.
     Among the aniline-degrading microbes, yeast(AN1) was the dominant bacteria. The conversion rate and mineralization rate of aniline by ANl within 36 h can reach 68% and 59%, respectively.
     The biodegradation results show that the mixed microbes degraded corresponding nitroaromatic compounds more efficiently than pure bacteria. It was suggested that there was an obvious synergistic effect among nitrobenzene-degrading bacteria as well as aniline-degrading bacteria, but no obvious synergistic effect or antagonism exists between nitrobenzene-degrading bacteria and aniline-degrading bacteria.
     No granular sludge formed in the mixed nitrobenzene-degrading microbes, which, however, appeared in the mixed aniline-degrading microbes in which the dominant bacteria was yeast(AN1). The OD600 of the mixed nitrobenzene-degrading microbes(N123) that consisted of Bacteria(NB1), bacillus(NB2) and filamentous Bacteria(NB3) was 0.43 within 36 h, and the degradation rate of nitrobenzene then was 84%.
     Similarly, The mixed aniline-degrading microbes(A123) that consisted of yeast(AN1), bacillus(AN2) and filamentous Bacteria(AN3) shows high aniline degradation rate. The OD600 of them within 36 h was 0.94, and the degradation rate of aniline reached 89%.
     The main reason for the formation of sluge granulation in biodegradation of nitrobenzene and aniline was the filamentous Bacteria multiply, and the secretion of extracellular polymer substances by yeast can explain why it is easier for the formation of sluge granulation in aniline degradation process than in nitrobenzene degradation process. Aerobic granular sludge is a new attempt to treat nitroaromatic compounds wastewater, and has very important practical value.
引文
1. Bell L S, Devlin J F, et al. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene [J]. Journal of Contaminant Hydrology,2003,66:201-217.
    2. Boopathy R, Kulpa C F. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp(B strain) [J]. Microbiol,1993,39(4):430-433.
    3. Cheng, F Q, Wu, S F, Cheng, J Z, et al. COD Removal Efficiencies of Some Aromatic Manufacture [J]. Appl. Environ. Microbiol.,2001,5(16):504-509.
    4. Dhananjay S B, Sanjay P K, Sudhir B S, et al. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light [J]. Chemical Engineering Journal,2004,102 (3): 283-290.
    5. Dhananjay S B,Vishwas G P,Anthony A C M Beenackers,et al.Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation:chemical effects and scaleup [J]. Water Research,2003,37(6):1223-1230.
    6. Dickel O, Haug W, Knackmuss H J. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process [J]. Biodegradation,2003,4:187-194.
    7. Erguder T H, Demirer G N. Investigation of granulation of amixture of suspended anaerobic and aerobic culturesunder alternating anaerobic/microaerobic/aerobic conditions [J]. Process Biochemical,2005,40(12):3732-3741.
    8. Gilcrease P C, Murphy V G. Bioconversion of 2,4-diamino-6-nitrotolene to a novel metabolite under anoxic and aerobic conditions [J]. Appl Environ Microbiol,1995,61(12):4209-4214.
    9. Gorontzy T, Kuver J, Blotevogel K H, et al. Microbial transformation of nitroaromatic compounds under anaerobic conditions [J]. Gen Microbiol,1993,139(6):1331-1336.
    10. Haigler B E, Spain J C. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways[J].Applied and Environmental Microbiology,1991,57(11):3156-3162.
    11. Hanne L F, Kirk L L, Appel S M, et al.Degradation and induction specificity in Actinomycetes that degrade p-nitropheno [J]. Applied and Environmental Microbiology,1993,59(10):3505-3508.
    12. Jiang H L, Tay J H, Liu Y. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnol. Lett.,2003,25:95-99.
    13. Lars T, Peter R, Britta M, et al. Laboratory shake flask batch tests can predict field biodegradation of aniline in the Rhine [J]. Chemosphere,2002,49:1257-1265.
    14. Lenke H,Pieper D H,Bruhn C, et al.Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains HI24-1 and HL24-2 [J]. Appl Environ Microbiol,1995,61(12):4209-4214.
    15. Li Z H, Kuba T, Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules [J]. Enzyme and Microbial Technology,2006,38(5):670-674.
    16. Liu L L, Wang Z P, Yao J, et al. Investigation on the properties and kinetics of glucose-fed aerobic granular sludge [J]. Enzyme and Microbial Technology,2005,36:307-313.
    17. Liu X Y,Wang B J. Jiang C Y, et al. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor [J]. Journal of Environmental Sciences.2007,19: 530-535.
    18. Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Research,2002,36:1653-1665.
    19. Liu Y, Yang S F, Liu Q S, et al. The role of cell hydrophobicity in the formation of aerobic granules [J]. Curr Microbiol.2003,46(4):270-274.
    20. Mantha R, Taylor K E, Biswas N, et al. A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater [J]. Environ Sci Technol,2001,35(15):3231-3236.
    21. Miguel L R, Vitaliy I T, Sandra C, et al. Rate equation for the degradation of nitrobenzene by 'Fenton-like' reagent [J]. Advances in Environmental Research,2003,7(2):583-595.
    22. Moy B Y, Tay J H, Toh S K, et al. High organic loading influence the physical characteristics of aerobic sludge granules [J]. Letters in Applied Microbiology,2002,34(6):407-412.
    23. Mu Y, Yu H Q, Zheng J C, et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron [J]. Chemosphere,2004,54:789-794.
    24. Nakai N T. Supercritical CO Extraction Treatment of Organic Compound in Aqueous Solution by Counter Current Extraction [J]. Journal of the Society on Water Environment.1999,22(10): 854-858.
    25. Nikov I, Nikolov V, Dimitrov D. Biodegradation of aniline using light carriers with optimised surface in TPIFB [J]. Bioprocess Engineering,1999,21:547-552.
    26. Nishino S F, Spain J C. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes [J]. Applied and Enviromental Microbiology,1993,49(8):2520-2525.
    27. Nishino S F, Spain J C. Oxidative pathway for the biodegradation nitrobenzene by Comamonas sp.Strain JS765 [J]. Applied and Enviromental Microbiology,1995,61(6):2308-2313.
    28. Okabe S, Hirata K, Watanabe Y. Dynamic changes in spatial microbial distribution in mixed-population biofilms:Experimental results and model simulation [J]. Water Sci Technol,1995, 32(8):67-74.
    29. Peng D C, Bernet N, Delgenes J P, et al. Aerobic granular sludge—A case report [J]. Water Research.1999,33(3):890-893.
    30. Peres C M, Naveau H, Agathos S N. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed [J]. Appl Microbiol Biotechnol.1998,49: 343-349.
    31. Peres C M,Naveau H, Agathos S N. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed [J]. Appl Microbiol Biotechnol,1998,49(3): 343-349.
    32. Shabbir H. Gheewala and Ajit P. Annachhatre. Biodegradation of aniline [J]. Wat. Sci. Tech.,1993, 36(10):53-63.
    33. Shin H S, Lim K H, Park H S. Effect for shear-stress on granulation in oxygen aerobic upflow sludge bed reactor [J]. Water Science and Technology,1992,26(3/4):601-605.
    34. Stabl J D, Aust S D. Metabolism and detoxification of TNT by Phanerochaete chrysosporium. [J]. Biochem Biophys Res Commun.,1993,192(2):477-482.
    35. Sunil S A, Lee D J, Show K Y, et al. Aerobic granular sludge:Recent advances [J]. Biotechnology Advances,2008,26:441-423.
    36. Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules [J]. Letters in Applied Microbiology,2002,34:254-257.
    37. Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Applied Microbiological and Biotechnology,2002,57(1):227-233.
    38. Tay J H, Tay S T L, Ivanov V, et al. Biomass and porosity profilein microbial granules used for aerobic wastewater treatment [J]. Lett Appl Microbiol,2003,36(5):297-301.
    39. Tay J H, Yang P, Zhuang W Q, et al. Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor [J]. Journal of Membrane Science,2007,304:24-32.
    40. Valli K, Brock B J, Joshi D K, et al. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium [J]. Appl Environ Microbiol,1992,58(1):221-228.
    41. Wang L, Barrington S, Kim J W. Biodegradation of pentyl amine and aniline from petrochemical wastewater [J]. Journal of Environmental Management,2007,83:191-197.
    42. Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Process Biochemistry,2004,39:557-563.
    43. Yu L, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing bath reactors [J]. Biotechnology Advances,2006,24:115-127.
    44. Zeyer J, Keamey P C. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. Agric Food Chem,1984,32(2):238-242.
    45. Zhang T, Zhang J L, Liu S J, et al. A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3 [J]. Journal of Environmental Sciences,2008,20:717-724.
    46. Zhou J, Yang F L, Meng F G, et al. Comparation of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge [J]. Journal of Environmental Sciences,2007,19: 1281-1286.
    47.暴瑞玲,于水利,王玉兰,等.温度对好氧颗粒污泥脱氮性能及颗粒稳定性的影响[J].中国环境科学,2009,29(7):697-701.
    48.蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    49.陈竹,陈元彩,蓝惠霞,等.降解五氯酚的微好氧颗粒污泥的培养及其微生物种群分析[J].应用与环境生物学报,2008,14(3):416-421.
    50.崔成武,纪树兰,任海燕,等.好氧颗粒污泥形成的影响因素及应用[J].中国给水排水,2005,20(10):31-34.
    51.方芳,朱润哗,张丽丽,等.好氧颗粒污泥共代谢降解MTBE及微生物群落研究[J].环境科学学报,2008,28(11):2206-2212.
    52.高廷耀,顾国维,周琪.水污染控制工程.[M].北京:高等教育出版社,2007.
    53.郝晓地,陈新华,戴吉,等.极具工程化潜力的好氧颗粒污泥技术[J].中国给水排水,2006,22(8):1-4.
    54.胡林林,王建龙,文湘华,等.SBR中厌氧颗粒污泥向好氧颗粒污泥的转化[J].环境科学,2004,25(4):74-77.
    55.胡翔.硝基苯厌氧生物降解特性及厌氧/好氧联合处理硝基苯废水研究[D].湖南大学,2007.
    56.蒋明,金奇庭.氧化吸附法处理硝基苯胺生产废水[J].西安建筑科技大学学报,1996,38(3):315-319.
    57.金仁村,郑平,胡宝兰,好氧污泥颗粒化机理及其影响因素[J].浙江大学学报(农业与生命科学版),2006,32(2):200-205.
    58.蓝惠霞,邱献欢,隋冰冰,等.降解五氯酚(PCP)的微氧颗粒污泥的形成机理[J].环境科学学报,2009,29(2):273-278.
    59.蓝慧霞,陈中豪,陈元彩,等.微好氧条件下好氧颗粒污泥的培养[J].华南理工大学学报,2005,33(7):37-41.
    60.蓝远东.硝基苯降解菌的筛选及其应用研究[D].哈尔滨工业大学,2006.
    61.李保石,佘宗莲,樊玉清,等.投加阳离子聚合物加速UASB反应器中颗粒污泥形成[J].环境工程学报,2009,3(7):1321-1324.
    62.李曼.微生物学中好氧颗粒污泥的形成机理[J].武汉科技学院学报,2008,21(7):9-11.
    63.李宁林,何文英.微电解-UASB-PACT工艺处理高浓度硝基苯类废水[J].环境工程.2002,20(3):23-24.
    64.李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及降解活性[J].环境科学,1999,20(5):20-24.
    65.李志华,张勇,王晓昌.不同有机负荷和含盐量下丝状菌颗粒污泥的特性[J].中国给水排水,2008,24(21):9-12.
    66.廖青,李小明,杨麒,等,好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J].工业用水与废水,2008,39(4):13-19.
    67.林勇山,濮文虹,杨昌柱,等.丝状菌对好氧颗粒污泥形成的影响[J].环境工程,2009,27(3):63-67.
    68.林中祥,鞠昭年,高光凤.萃取-汽提法处理硝基苯废水的研究[J].环境导报,1998,(1):14-16.
    69.刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学,2008,28(4):360-364.
    70.刘倩倩,李小明,杨麒,等.Mg2+对SBR中好氧颗粒污泥培养的影响研究[J].中国给水排水,2008,24(17):31-35.
    71.马军,石枫华.O3/H2O2氧化工艺去除水中硝基苯的研究[J].环境科学.2002,23(5):67-71.
    72.钱易,汤鸿霄,文湘华,等.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社,2000:64.
    73.秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,2007,38(1):14-16.
    74.任源,李湛江,吴超飞,等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析[J].应用与环境微生物学报,1999,5(Suppl):14-17.
    75.任源,吴超飞,韦朝海.苯胺分解菌的驯化筛选研究[J].环境科学研究,1998,11(4):3-5.
    76.沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究[J].精细化工,1996,13(5):57-58.
    77.沈祥信,李小明,杨麒,等.预加好氧颗粒对SBR中好氧颗粒污泥形成的影响[J].环境科学,2007,28(11):2467-2472.
    78.盛连喜,李明堂,徐镜波.硝基苯类化合物微生物降解研究进展[J].应用生态学报,2007,18(7):1654-1660.
    79.石先阳,孙庆业,张闺君,等.好氧颗粒污泥对不同底物组成的响应[J].生物学杂志,2009,26(4):47-49.
    80.孙旭辉,贾宇宇,马军,等.微电解—Fenton联合工艺处理硝基苯废水效能研究[J].水处理技术,2009,35(1):74-78.
    81.汪善全,孔云华,原媛.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(30):696-702.
    82.王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    83.王芳,杨凤林.不同有机负荷下好氧颗粒污泥的特性[J].中国给水排水,2004,20(11):46-48.
    84.王海磊,魏丽莉,李宗义.好氧颗粒污泥的形成过程、形成机理及相关研究[J].环境污染与防治,2005,27(7):485-488.
    85.王竞,周集体,张劲松,等.假单胞菌JX765及其完整细胞对硝基苯的好氧降解[J].中国环境科学,2001,21(2):144-147.
    86.王立东,李志华,王晓昌,等.盐量对好氧颗粒污泥结构及处理效能的影响[J].中国给水排水,2008,24(11):19-22.
    87.王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥的形成机理[J].中国给水排水,2004,20(3):8-11.
    88.王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社,2002:299.
    89.韦朝海,侯轶,任源,等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学,2000,20(3):241-244.
    90.吴锦华,韦朝海,李平.金属离子及盐度对硝基苯厌氧生物降解过程的影响[J].环境科学研究.2009,22(1):99-102.
    91.吴锦华,韦朝海,李平.金属离子及盐分对苯胺好氧生物降解过程的影响[J].安全与环境学报,2008,8(5):48-50.
    92.徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生[J].华南理工大学学报,2000,28(7):102-104.
    93.杨文忠,陈戈,王海峻.Fenton试剂和紫外光-Fenton试剂联合作用处理硝基苯废水[J].南京化工大学学报,1998,20(1):24-26.
    94.易诚,湛含辉,程胜高,等.好氧颗粒污泥颗粒化研究进展及发展趋势[J].环境科学,2007,26(5):1-6.
    95.余宗学.含硝基苯类废水预处理技术研究:[南京理工大学硕士论文].2002:25-34.
    96.曾苏,赵珏,傅大放.硝基苯降解菌在厌氧序批式反应器中处理硝基苯废水的应用[J].环境化学,2002,21(6):576-580.
    97.张晖,程江,杨卓如,等.03/UV法降解水中对硝基酚[J].环境化学.1996,15(4):313-319.
    98.张丽丽,陈效,陈建孟,等.胞外多聚物在好氧颗粒污泥形成中的作用机制[J].环境科学,2007,28(4):797-798.
    99.张全兴,王勇,李秀娟,等.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究[J].化工环保,1997,17(6):323-326.
    100.张蓉蓉,任洪强,张志,等.用厌氧、好氧污泥培养好氧颗粒污泥的比较[J].中国沼气,2006,24(3):11-15.
    101.张耀煌,郦长瑞.乳状液膜法处理硝基苯废水的研究[J].环境污染与防治,2002,24(2):95-97
    102.张云霞,季民,李超,等.好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J].环境科学,2008,29(11):3124-3127.
    103.赵朝成,赵东风.超临界水氧化技术处理硝基苯废水的研究[J].重庆环境科学,2001,23(3):45-48.
    104.赵珏,曾苏,傅大放,等.多株硝基苯降解菌的筛选[J].应用与环境生物学,2002,8(4):427-429.
    105.郑春莉,周集体,王竞,等.硝基苯高效降解菌群对硝基苯好氧降解[J].大连理工大学学报,2008,48(2):173-177.
    106.郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006:86-85.
    107.朱灵峰,何卫卫,张杰.好氧颗粒污泥的研究现状及应用前景[J].环境污染与防治,2008,30(5):78-82.
    108.竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,20(2):39-41.
    1. Bell L S, Devlin J F, Gillham R W, et al. A sequential zero valent iron and aerobic biodegradation biodegradation treatment system for nitrobenzene [J]. Contam Hydrol,2003,66(3-4)6:201-217.
    2. Haigler B E, Spain J C. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways [J]. Appl Environ Microb,1991,57(11):3156-3162.
    3. Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnol Adv,2006,24(1):115-127.
    4. Nishino S F, Spain J C. Oxidative pathway for the biodegradation of nitrobenzene by Comamonassp-Strain JS765 [J]. Appl Environ Microbiol,1995,61(6):2308-2313.
    5. Parales R E.Huang R,Yu C L, et al. Purification, Characterization, and Crystallization of the Components of the Nitrobenzene and 2-Nitrotoluene ioxygenase Enzyme Systems [J]. Appl Environ Microb,2005,71(7):3806-3814.
    6. Peres C M, Naveau H, Agathos S N. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed [J]. Appl Microbiol Biot,1998,49(3): 343-349.
    7. Ye J, Singh A, Ward O P. Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics [J]. World J Microb Biot,2004,20(2):117-135.
    8. 胡林林,王建龙,文湘华,等.SBR 中厌氧颗粒污泥向好氧颗粒污泥的转化[J].环境科学,2004,25(4):74-77.
    9. 李明堂,徐镜波,盛连喜.NB好氧降解细菌的筛选和降解活性研究[J].吉林农业大学学报,2006,28(5):552-555.
    10.李轶,胡洪营,吴乾元,等.低温硝基苯降解菌的筛选及降解特性研究[J].环境科学,2007,28(4):902-907.
    11.李湛江,韦朝海,任源,等.硝基苯降解菌的生长特性及其降解活性[J].环境科学,1999,20(5):20-24.
    12.刘敬东,王佳祥.高效液相色谱法测定水中硝基苯含量[J].化学工程师,2006,128(5):28-29.
    13.秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,2007,38(1):14-16.
    14.任源,李湛江,吴超飞,等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析[J].应用与环境生物学报,1999,5(Suppl):14-17.
    15.汪善全,孔云华,原媛,等.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(3): 696-702.
    16.王芳,杨凤林,张兴文,等.不同有机负荷下好氧颗粒污泥的特性[J].中国给水排水,2004,20(11):46-48.
    17.韦朝海,侯轶,任源,等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学,2000,20(3):241-244.
    18.谢珊,李小明,曾光明,等.SBR系统中好氧颗粒污泥脱氮特性研究[J].中国环境科学,2004,24(3):55-359.
    19.赵淑莉,魏复盛,邹汉法,等.高效液相色谱法测定废水中苯胺类化合物[J].色谱,1997,15(6):508-511.
    1. Alexander M Biodegradation of organic chemicals of environmental concern [J]. Science,1981, 211:132-138
    2. Hallas L E, Alexander M Microbial transformation of nitroaromatic compounds in sewage effluent [J].Appl. Environ. Microbial,1983,45:1234-1241.
    3. Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnology Advances,2006,24:115-127.
    4. Moy B Y, Tay J H, Toh S K, et al. High organic loading influencethe physical characteristics of aerobic sludge granules [J].Letters in Applied Microbiology,2002,34(6):407-412.
    5. Shabbir H, Gheewala and Ajit p. Annachhatre. Biodegradation of aniline [J]. Wat Sci Tech.,1993, 36(10):53-63.
    6. 暴瑞玲,于水利,王玉兰,等.温度对好氧颗粒污泥脱氮性能及颗粒稳定性的影响[J].中国环境科学,2009,29(7):697-701.
    7. 高廷耀,顾国维,周琪.水污染控制工程.[M].北京:高等教育出版社,2007.
    8. 胡林林,王建龙,文湘华,等.SBR中厌氧颗粒污泥向好氧颗粒污泥的转化[J].环境科学,2004,25(4):74-77.
    9. 马放,山丹,王晨,等.低温降解苯胺高效菌群的筛选及特性研究[J].环境工程学报,2007,5(1):7-]0.
    10.秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,2007,38(1):14-16.
    11.任源,吴超飞,韦朝海.苯胺分解菌的驯化筛选研究[J].环境科学研究,1998,11(4):3-5.
    12.汪善全,孔云华,原媛,等.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(3):696-702.
    13.王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    14.王芳,杨凤林,张兴文,等.不同有机负荷下好氧颗粒污泥的特性[J].中国给水排水,2004,20(11):46-48.
    15.韦朝海,侯轶,任源,等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学,2000,20(3):241-244.
    16.韦朝海,任源,吴超飞.Ochrobactrumanthtopi对苯胺的降解特性[J].环境科学,1998,19(5):22-24.
    17.吴锦华,韦朝海,李平.苯胺对间歇及连续运行硝化过程的毒性抑制实验[J].环境科学,2008,29(1):109-113.
    18.吴锦华,韦朝海,李平.金属离子及盐分对苯胺好氧生物降解过程的影响[J].安全与环境学报,2008,8(5):48-50.
    19.谢珊,李小明,曾光明,等.SBR系统中好氧颗粒污泥脱氮特性研究[J].中国环境科学,2004,24(3):355-359.
    20.许章程,王初升,郑文庆.苯胺对锯缘青蟹的毒性效应[J].中国环境科学,2000,20(1):54-56.
    21.赵淑莉,魏复盛,邹汉法,等.高效液相色谱法测定废水中苯胺类化合物[J].色谱,1997,15(6):508-511.
    1. Dickel O, Haug W, Knackmuss H J. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process [J]. Biodegradation,2003,4:187-194.
    2. Erguder T H, Demirer G N. Investigation of granulation of amixture of suspended anaerobic and aerobic culturesunder alternating anaerobic/microaerobic/aerobic conditions [J]. Process Biochemical,2005,40(12):3732-3741.
    3. Fell J W, boekhout T, Fonseca A. Biodiversity and systematics of basidiomycetous yeast s as etermined by large-subunit rDNA D1/D2 domain sequence analysis [J]. Int J Syst Evol Microbiol. 2000,50:1351-1371.
    4. Li Z H, Kuba T, Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules [J]. Enzyme and Microbial Technology.2006,38(5):670-674.
    5. Okabe S, Hirata K, Watanabe Y. Dynamic changes in spatial microbial distribution in mixed-population biofilms:Experimental results and model simulation [J]. Water Sci Technol,1995, 32(8):67-74.
    6. Zhang T, Zhang J L, Liu S J, et al. A novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3 [J]. Journal of Environmental Sciences,2008,20:717-724.
    7. 金仁村,郑平,胡宝兰.好氧污泥颗粒化机理及其影响因素[J].浙江大学学报(农业与生命科学版),2006,32(2):200-20.
    8. 蓝远东.硝基苯降解菌的筛选及其应用研究[D].哈尔滨工业大学,2006.
    9. 李曼.微生物学中好氧颗粒污泥的形成机理[J].武汉科技学院学报,2008,21(7):9-11.
    10.李明堂,徐镜波,盛连喜.硝基苯好氧降解细菌的筛选和降解活性研究[J].吉林农业大学学报,2006,28(5):552-555.
    11.李轶,胡洪营,吴乾元,等.低温硝基苯降解菌的筛选及降解特性研究[J].环境科学,2007,28(4):902-907.
    12.李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及降解活性[J].环境科学,1999,20(5):20-24.
    13.李志华,张勇,王晓昌.不同有机负荷和含盐量下丝状菌颗粒污泥的特性[J].中国给水排水.2008,24(21):9-12.
    14.林勇山,濮文虹,杨昌柱,等.丝状菌对好氧颗粒污泥形成的影响[J].环境工程,2009,27(3):63-67..
    15.刘敬东,王佳祥.高效液相色谱法测定水中硝基苯含量[J].化学工程师,2006,128(5):28-29.
    16.刘鹏,张兰英,焦雁林,等.高效液相色谱法测定水中硝基苯和苯胺含量[J].分析化学研究简 报,2009.37(5):741-744.
    17.秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,2007,38(1):14-16.
    18.任源,吴超飞,韦朝海.苯胺分解菌的驯化筛选研究[J].环境科学研究,1998,1 1(4):3-5.
    19.萨姆布鲁克J,拉塞尔DW,著.黄培堂,译.分子克隆实验指南(下册)[M].第3版.北京:科学出版社,2002.8.
    20.盛连喜,李明堂,徐镜波.硝基苯类化合物微生物降解研究进展[J].应用生态学报,2007,18(7):1654-1660..
    21.汪善全,孔云华,原媛.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(30):696-702.
    22.王海磊,魏丽莉,李宗义.好氧颗粒污泥的形成过程、形成机理及相关研究[J].环境污染与防治,2005,27(7):485-488.
    23.王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥的形成机理[J].中国给水排水,2004,(3):8-11.
    24.韦朝海,侯轶,任源,等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学,2000,20(3):241-244.
    25.韦朝海,任源,吴超飞.Ochrobactrumanthtopi对苯胺的降解特性[J].环境科学,1998,19(5):22-24.
    26.俞毓馨.环境工程微生物检验手册.北京:中国环境科学出版社,.1990,.161-162.
    27.赵淑莉,魏复盛,邹汉法,等.高效液相色谱法测定废水中苯胺类化合物[J].色谱,1997,15(6):508-511.
    28.郑春莉,周集体,王竞,等.硝基苯高效降解菌群对硝基苯好氧降解[J].大连理工大学学报,2008,48(2):173-177.
    29.周延年,李军,何梅,等.一种好氧颗粒污泥的内部构造分析[J].浙江工业大学学报,2009,37(1):49-52.
    30. DeKreuk M K, Loosdrecht M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability [J]. Water Sci Technol,2004,49(11-12):9-17.
    31. Erguder T H, Demirer G N. Investigation of granulationof amixture of suspended anaerobic and aerobic culturesunder alternating anaerobic/microaerobic/aerobic conditions [J]. Process Biochemical,2005,40 (12):3732-3741.
    32. Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Research,2002,36:1653-1665.
    33. Morgenroth E.Sherden T, van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor [J].Wat Res,1997,31(12):3191-3194.
    34. Okabe S, Hirata K, Watanabe Y. Dynamic changes in spatial microbial distribution in mixed-population biofilms:Experimental results and model simulation [J]. Water Sci Technol,1995, 32(8):67-74.
    35. Peng D C, Bernet N, Delgenes J P, etal. Aerobic granular sludge—A case report [J]. Water Research, 1999,33(3):890-893.
    36. Shin H S, Lim K H, Park H S. Effect for shear-stress on granulation in oxygen aerobic upflow sludge bed reactor [J].Water Science and Technology,1992,26(3/4):601-605.
    37. Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Applied Microbiological and Biotechnology,2002,57(1):227-233.
    38. Tay J H, Yang P, Zhuang W Q, et al. Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor [J]. Journal of Membrane Science.2007,304:24-32.
    39. Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Process Biochemistry.2004,39:557-563.
    40. Zhou J, Yang F L, Meng F G, et al. Comparation of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge [J]. Journal of Environmental Sciences,2007,19: 1281-1286.
    41.蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    42.崔成武,纪树兰,任海燕,等.好氧颗粒污泥形成的影响因素及应用[J].中国给水排水,2005,20(10):31-34.
    43.郝晓地,陈新华,戴吉,等.极具工程化潜力的好氧颗粒污泥技术[J].中国给水排水,2006,22(8):1-4.
    44.胡林林,王建龙,文湘华,等.SBR中厌氧颗粒污泥向好氧颗粒污泥的转化[J].环境科学,2004,25(4):74-77.
    45.金仁村,郑平,胡宝兰.好氧污泥颗粒化机理及其影响因素[J].浙江大学学报(农业与生命科学版),2006,32(2):200-20.
    46.蓝慧霞,陈中豪,陈元彩,等.微好氧条件下好氧颗粒污泥的培养[J].华南理工大学学报,2005,33(7):37-41.
    47.李曼.微生物学中好氧颗粒污泥的形成机理[J].武汉科技学院学报,2008,21(7):9-11.
    48.李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及降解活性[J].环境科学,1999,20(5):20-24.
    49.李志华,张勇,王晓昌.不同有机负荷和含盐量下丝状菌颗粒污泥的特性[J].中国给水排水,2008,24(21):9-12.
    50.廖青,李小明,杨麒,等.好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J].工业用水与废水,2008,39(4):13-19.
    51.林勇山,濮文虹,杨昌柱,等.丝状菌对好氧颗粒污泥形成的影响[J].环境工程,2009,27(3):63-67.
    52.刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学,2008,28(4):360-364.
    53.刘敬东,王佳祥.高效液相色谱法测定水中硝基苯含量[J].化学工程师,2006,128(5):28-29.
    54.刘鹏,张兰英,焦雁林,等.高效液相色谱法测定水中硝基苯和苯胺含量[J].分析化学研究简报,2009,37(5):741-744.
    55.秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,2007,38(1):14-16.
    56.石先阳,孙庆业,张闺君,等.好氧颗粒污泥对不同底物组成的响应[J].生物学杂志,2009,26(4):47-49.
    57.唐德友,刘和,李光伟,等.好氧颗粒污泥和絮状污泥脱氮性能及细菌种群分析[J].中国环境科学, 2006,26(6):732-736.
    58.汪善全,孔云华,原媛.好氧颗粒污泥中丝状微生物生长研究[J].环境科学,2008,29(30):696-702.
    59.王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J].环境科学,2008,29(8):2235-2241.
    60.王芳,杨凤林.不同有机负荷下好氧颗粒污泥的特性[J].中国给水排水,2004,20(11):46-48.
    61.王海磊,魏丽莉,李宗义.好氧颗粒污泥的形成过程、形成机理及相关研究[J].环境污染与防治,2005,27(7):485-488.
    62.王立东,李志华,王晓昌,等.盐量对好氧颗粒污泥结构及处理效能的影响[J].中国给水排水,2008,24(11):19-22.
    63.王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥的形成机理[J].中国给水排水,2004,(3):8-11.
    64.张丽丽,陈效,陈建孟,等.胞外多聚物在好氧颗粒污泥形成中的作用机制[J].环境科学,2007,28(4):797-798.
    65.张蓉蓉,任洪强,张志,等.用厌氧、好氧污泥培养好氧颗粒污泥的比较[J].中国沼气,2006,24(3):11-15.
    66.张云霞,季民,李超,等.好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J].环境科学,2008,29(11):3124-3127.
    67.赵淑莉,魏复盛,邹汉法,等.高效液相色谱法测定废水中苯胺类化合物[J].色谱,1997,15(6):508-511.
    68.郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006:86-85.
    69.周延年,李军,何梅,等.一种好氧颗粒污泥的内部构造分析[J].浙江工业大学学报,2009,37(1):49-52.
    70.竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,20(2):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700