用户名: 密码: 验证码:
不同介质环境中生物表面活性剂强化降解生物质的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中大量存在的废生物质是一类难降解的有机物质,同时也是一种宝贵的可再生资源。强化废生物质的降解是加速废物资源化利用过程的重要环节,也是有效减缓环境中废生物质累积和污染的必要手段。自然界中生物质的降解大多依靠微生物作用来完成,表面活性剂的介入,可以促进微生物对有效降解酶的分泌,并改善降解体系的微环境,促进微生物的生长繁殖和代谢,从而使降解过程得到强化。生物表面活性剂作为表面活性剂的一种,与一般化学表面活性剂具有类似的结构,能够降低空气-水、油-水和固体-水的表(界)面张力。同时,由于生物表面活性剂具备低毒性、可降解性和生态相容性等诸多优势,被视为一种清洁而高效的“绿色试剂”,具有良好的应用前景。
     本文对几种不同介质环境中生物表面活性剂强化降解生物质的作用进行研究,以堆肥体系难降解的木质纤维素生物质及污水污泥的堆肥化处理过程为例,在酶法降解、微生物降解及堆肥化处置过程中,通过引入生物表面活性剂,考察在典型的水介质环境、逆胶束介质环境、固态微生物发酵环境和复杂堆肥环境中,生物质降解过程的不同特征,并探讨生物表面活性剂对强化底物降解的作用。研究结果有助于深入了解生物表面活性剂在不同介质环境中的行为及界面效应原理,为生物表面活性剂在不同环境条件下的应用可行性提供科学依据,推动污染物强化降解及外源促进剂的技术发展。论文总体试验工作分为四个部分:
     第一部分研究液态水介质环境中生物表面活性剂强化酶解纤维素生物质的作用。采用铜绿假单胞菌发酵生产生物表面活性剂鼠李糖脂,并将其应用于酶法降解纤维素生物质的过程,通过在低酶负荷条件下,添加单鼠李糖脂、皂角苷和Tween80表面活性剂进行对比,考察在稻草纤维素酶解转化过程中生物表面活性剂的优越性,证实在相同酶解反应条件下,生物表面活性剂单鼠李糖脂与Tween80和皂角苷相比具有更大的优势,能显著地缓解纤维素酶的失活过程,促进纤维素的转化;将生物表面活性剂鼠李糖脂二糖脂用于磁性固定化纤维素酶的制备,并将该固定化酶用于降解纤维素生物质,含生物表面活性剂的磁性固定化酶稳定性得到提高,能更有效地发挥酶的催化能力。
     第二部分进行液态非水介质环境中生物表面活性剂强化酶解纤维素的可行性研究。首次将生物表面活性剂引入逆胶束酶反应系统,通过构建“鼠李糖脂/异辛烷/正已醇/水”逆胶束体系,并对其进行电导行为分析,获得最佳含水率(%)值条件,采用荧光探针罗丹明B(Rh-B)对表面活性剂在异辛烷/正己醇(1/1,v/v)溶剂中的临界胶束浓度(CMC)进行测定,在最佳W0条件下对纤维素模式物质进行酶法降解,与不同类型表面活性剂作用进行对比,研究结果表明阴离子表面活性剂SDS和鼠李糖脂的逆胶束体系最大增溶水量高于阳离子表面活性剂CTAB和非离子表面活性剂Tween80逆胶束体系,各表面活性剂在1倍CMC浓度下对纤维素酶解促进作用最强,并且同等条件下在逆胶束体系中的酶解效率高于相应水介质体系中的酶解效率,生物表面活性剂鼠李糖脂所构建的逆胶束体系在各浓度条件下对酶解过程的促进作用均优于CTAB、SDS和Tween80这3种化学表面活性剂所构建的逆胶束体系。
     第三部分对固-液介质环境中生物表面活性剂强化降解生物质的作用进行研究。采用白腐菌典型代表菌种黄胞原毛平革菌(Phanerochaete chrysosporium)对固态发酵介质环境中稻草木质素进行降解,在生物表面活性剂二鼠李糖脂的介入下,P. chrysosporium的生长得到促进,同时,二鼠李糖脂对木素过氧化物酶(LiP)活性的保持以及水溶性有机碳(WSOC)的释放起到促进作用,在浓度为0.007%的二鼠李糖脂作用下,LiP活性最大值提高86%,木质素降解率提高54%,经方差分解分析(VPA)统计显示,0.007%二鼠李糖脂对该生物除木质素过程的强化作用具有显著性;通过在剩余污泥静态强制通风好氧堆肥过程中添加鼠李糖脂,对该堆肥化过程的物理化学参数的变化、微生物菌群动态和毒理学指标进行监测,考察了鼠李糖脂对污泥堆肥过程的强化作用,同时与外源复合微生物菌剂的促进作用进行比较,分析生物表面活性剂作用与微生物作用的区别。
     第四部分为表面活性剂胶束化过程与生物质降解酶的缔合作用解析。通过稳态荧光技术,采用非极性的荧光探针芘(Py),对水介质中表面活性剂胶束化过程与酶分子的缔合作用进行解析,以纤维素酶和漆酶为例,探讨生物表面活性剂鼠李糖脂与化学表面活性剂SDS、CTAB和Tween80胶束体系的不同特征,芘的荧光行为可以反映出其所处微环境极性的变化,不同结构表面活性剂对芘的荧光作用各有不同,纤维素酶与表面活性剂的缔合,使芘的荧光行为随表面活性剂浓度的变化特征相对弱化,而漆酶与表面活性剂的缔合,减缓了水介质中表面活性剂的胶束化过程,鼠李糖脂在高于临界胶束浓度时,稳定性优于阴离子表面活性剂SDS;采用极性荧光探针ANS和Rh-B对“鼠李糖脂/异辛烷/正己醇/水”逆胶束体系中酶与表面活性剂的作用进行研究,两种探针的荧光行为均能有效指示出逆胶束体系W0的变化过程酶分子附近微环境极性的变化,同时也表征了不同的酶分子与表面活性剂结合的位点及其迁移趋势。
The large quantity of waste biomass produced all over the world is a kind of organic materials which is difficult to be degraded, while it represents a renewable resource that has attracted more and more attentions. To enhance the degradation of biomass is significant for improving the resource utilization and wastes minimization. Still the waste biomass degradation is important for environmental pollution control. As the biomass degradation is mainly carried out by the microorganisms in nature, the process can be enhanced by the presence of surfactant through increasing the degradable enzymes excretion, improving the microbial growth and the reacting micro-environment. The bio surfactants are typical surfactants which have the similar characteristics in molecular structure compared with synthetic surfactants. They can reduce the surface/interface tension of air-water, oil-water or solid-water phases. In special, the biosurfactants are believe to have a good prospect as they have several advantages such as lower toxicity, easier to be degraded and higher environmental compatibility, thus they are regarded as "green chemicals" which showing high efficient during utilization.
     This dessertation investigated the biosurfactant-enhanced degradation of biomass in several typical media environment, and used the lignocellulosic wastes and sewage sludge in composting system as substrates. The experimental performances of biomass degradation included enzymatic hydrolysis, biodegradation and composting process. While the effects of biosurfactants in aqueous environment, in reversed micellar media, in solid-state fermentation and in composting matrix are studied. This research helps to understand the behaviors and interfacial influences of biosurfactants in different reacting media, and provides scientific data for biosurfactant application in different medium conditions. As a result, this work is significant for the development of contaminants enhanced-degradation technologies and the application of extrinsic accelerants.
     The first section describes the research on the effects of biosurfactants on enzymatic hydrolysis of cellulosic biomass in aqueous liquid media. The rhamnolipid biosurfactant was produced by Pseudomonas aeruginosa and was used in the following experiments. The effects of three surfactants (Tween80, saponin and monorhamnolipid) on the hydrolysis of NaOH-pretreated rice straw by low dosage of cellulase were studied, and the results indicated that at the same condition, all surfactants were able to enhance the enzymatic hydrolysis by reducing the cellulase denaturalization, while the biosurfactant monorhamnolipid was demonstrated to be more active than Tween80and saponin. In addition, a new magnetic immobilized cellulase was developed by the presence of dirhamnolipid. It was applied in the hydrolysis of cellulosic biomass and showed capable in improving the enzyme stability.
     The second section focuses on the feasibility of biosurfactant on enzymatic hydrolysis of cellulose in non-aqueous liquid media. For the first time, the biosurfactant was introduced into the enzyme-containing reversed micellar system. The'rhamnolipid/isooctane/n-hexanol/water' reversed micellar system was formed, and its electrical conductivity was measured to determine the maximum water solubilization W0. The critical micelle concentrations of surfactant rhamnolipid, SDS, CTAB and Tween80in isooctane/n-hexanol (1/1, v/v) were determined by steady-state fluorescence used the rhodamine B (Rh-B) as a probe. The degradation of cellulose model substrate in reversed micelle was conducted in the condition of W0=W0, max, while the effects of different surfactants were compared. The results showed that the W0, max of anionic surfactant (rhamnolipid and SDS) reversed micellar system was higher than it was in cationic surfactant (CTAB) and in nonionic surfactant (Tween80) system. The peak conversion rates of substrate were obtained when the surfactants concentration was at1CMC of their each. The enzymatic hydrolysis efficiency in reversed micelles was higher than that in aqueous reaction media at the same conditions, independent of surfactant types. While the rhamnolipid showed more effective than the other three synthetic surfactants.
     The third section focuses on the effects of biosurfactant rhamnolipid on biomass degradation at solid-liquid interface. The influence of dirhamnolipid biosurfactant on biodegradation of rice straw by Phanerochaete chrysosporium was investigated. The results showed that the biodelignification of rice straw can be significantly enhanced by the presence of dirhamnolipid biosurfactant. In particular, the dirhamnolipid at the concentration of0.007%increased the peak activity of lignin peroxidase (LiP) by86%. The water-soluble organic carbon (WSOC) contents in the straw substrates as well as the microbial growth and activity were effectively improved by dirhamnolipid, while the degradation rate of lignin increased by54%with dirhamnolipid of0.007%. Variation partitioning analysis revealed that the improvement by dirhamnolipid addition is significant. To investigate the effect of biosurfactant on composting of sewage sludge, a static forced-aeration composting matrix was constructed by the presence of rhamnolipid. The physicochemical factors, microbial parameters and the biological toxicity were analysis. In addition, the influence of biosurfactant addition was compared with that of the microbial inoculants.
     The fourth section demonstrates the interaction between enzyme and surfactant molecules during the micelle or reversed micelle formation. The cellulase and the laccase were taken as an example, while the rhamnolipid, SDS, CTAB and Tween80were used in the analysis of their interactions with enzymes, respectively, in the aqueous media. According to the fluorescence behavior of pyrene, the characterization of interactions depends on the type of surfactant and as well as the enzyme. The changes of pyrene fluorescence intensity along with the concentration of surfactants were reduced by the presence of cellulase, while the laccase seemed to inhibit the surfactant micelle formation in aqueous. Otherwise, the rhamnolipid showed higher stability than SDS at concentrations above CMC. The ANS and Rh-B probes were employed in analysis of interactions between rhamnolipid and enzymes in reversed micellar system. The fluorescence behavior of each probe demonstrated the micro-environmental polarity changes along with the W0, and it described the combining sites of enzymes and surfactant molecules as well as their trends.
引文
[1]朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社,2002,35-74
    [2]McKendry P. Energy production from biomass:Overview of biomass. Bioresource Technology,2002,83(1):37-46
    [3]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management,2001,42(11): 1357-1378
    [4]Mckendry P. Energy production from biomass (part2):conversion technologies Bioresource Technology,2002,83(1):47-54
    [5]尉志武,吴富根.两亲性分子聚集体的相变及其协同性.中国科学:化学.2010,40(9):1210-1216
    [6]张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005,1-13;218-382
    [7]迈克尔.艾琳何什.表面活性剂大全.上海:上海科学技术文献出版社,1988,50-51;54-55;615-619
    [8]Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil:a review. Engineering Geology,2001,60:371-380
    [9]Rosenberg E, Ron E Z. High-and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology,1999,52:154-162
    [10]Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews,1997,61(1):47-64
    [11]Lang S. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science,2002,7:12-20
    [12]Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology,2006,24(11):509-515
    [13]Nitschke M, Costa S G V A O, Contiero J. Rhamnolipid surfactants:An update on the general aspects of these remarkable biomolecules. Biotechnology Progress,2005,21:1593-1600
    [14]金谷.表面活性剂化学.合肥:中国科学技术大学出版社,2008,12-13;102-123:254-261
    [15]Kawasaki H, Imahayashi R, Tanaka S, et al. Vesicle micelle transition and the stability of the vesicle dispersion in mixtures of tetradecyldimethylamine oxide hemihydrochloride and sodium naphthalenesulfonate. Journal of Physical Chemistry B,2003,107:8661-8664
    [16]Viseu M I, Edwards K, Campos C S, et al. Spontaneous vesicles formed in aqueous mixtrures of two cationic amphiphiles. Langmuir,2000,16:2105-2109
    [17]Vinson P K, Talmon Y, Walter A. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys. J.,1989,56:669-681
    [18]Tan H, Champion J T, Artiola J F, et al. Complexation of cadmium by a rhamnolipid biosurfactant. Environmental Science and Technology,1994,28: 2402-2406
    [19]Zhang Y, Miller R M. Enhanced octadecane dispersion and biodegradation by a pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environment Microbiology,1992,58:3276-3282
    [20]Edwards K, Almgren M. Solubilization of lecithin vesicles by C12E8:structural transitions and temperature effects. Journal of Colloid and Interface Science, 1991,147:1-21
    [21]Hofer M, Hampton R Y, Raetz C R H, et al. Aggregation behavior of lipid Ⅳ A in aqueous solutions at physiological pH. I, Simple buffer solutions. Chemistry and Physics of Lipids,1991,59:167-181
    [22]Magid L J, Gee J C, Talmon Y. A cryogenic transmission electron microscopy study of counterion effects on hexadecyltrimethylammonium dichlorobenzoate micelles. Langmuir,1990,6:1609-1613
    [23]钟华.鼠李糖脂的菌体吸附及其对菌体表面的改性作用研究:[湖南大学博士学位论文].长沙:湖南大学,2008:49-60
    [24]Champion J T, Gilkey J C, Lamparski H, et al. Electron microscopy of rhamnolipid (biosurfactant) morphology:effects of pH, cadmium, and octadecane. Journal of Colloid and Interface Science,1995,170:569-574
    [25]Martinek K, Leavashov A V, Klyachko N L, et al. Catalysis by watersoluble enzymes in organic solvents stablization of enzymes against the denaturation (inactivation) when they are included in inversed micelles of surface-active substana. Dokl Akad Nauk SSSR,1977,236:920-923 (in Russian); 1978,236: 951-953 (in English)
    [26]Martinek K, Leavashov A V, Khmelnitski, Yu L, et al. Colloidal solution of water in organic solvents:A microheterogeneous medium for enzymatic catalysis. Science,1982,218:889-891
    [27]Martinek K, Leavashov A V, Klyachko N L, et al. Enzymes that work in organic solvents. European Journal of Biochemistry,1986,155:453-468
    [28]Melo E P, Aires -Barros M R, Cabral J M. Reverse micelles and protein biotechnology. Biotechnology Annual Review,2001,7:87-129
    [29]Tonova K, Lazarova Z. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnol Advances,2008,26: 516-532
    [30]Hoar T P, Schulman J H. Transparent water in oil dispersions:the oleopathic hydromicelle. Nature,1943,152:102-103
    [31]Hanahan D J. The enzymatic degradation of phosphatidylcholine in diethyl-ether. Journal of Biological Chemistry,1952,195:199-206
    [32]Misiorowski R L, Wells M A. Activity of phospholipase A2 in reversed micelles of phosphatidylcholine in diethyl ether:effect of water and cations. Biochemistry,1974,13:4921-4927
    [33]Luisi P L, Henninger F, Joppich M. Solubilization and pectroscopic properties of alpha-chymotrypsin in cyclohexane. Biochemical and Biophysical Research Communication,1977,74:1384-1389
    [34]周群英,高廷耀.环境工程微生物学.第二版.北京:高等教育出版社,2000,276-279
    [35]Carvalho C M L, Cabral J M S. Reverse micelles as reaction media for lipases. Biochimie,2000,82:1063-1085
    [36]Bansal-Mutalik R, Gaikar V G. Reverse micellar solutions aided permeabilization of baker's yeast. Process Biochemistry,2006,41:133-141
    [37]Hebbar H U, Sumana B, Raghavarao K S M S. Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresource Technology,2008,99:4896-4902
    [38]Imm J Y, Kim S C. Convenient partial purification of polyphenol oxidase from apple skin by cationic reversed micellar extraction. Food chemistry,2009,113: 302-306
    [39]Bansal-Mutalik R, Gaikar V G. Cell permeabilization for extraction of penicillin acylase from Escherichia coli by reverse micellar solutions. Enzyme and Microbial Technology,2003,32:14-26
    [40]Liu J G, Xing J M, Shen R, Yang C L, Liu H Z. Reverse micelles extraction of nattokinase from fermentation broth. Biochemical Engineering Journal,2004, 21:273-278
    [41]Streitner N, Voβ C, Flaschel E. Reverse micellar extraction systems for the purification of pharmaceutical grade plasmid DNA. Journal of Biotechnology, 2007,131:188-196
    [42]冯绪胜,刘洪国,郝京诚.胶体化学.北京:化学工业出版社,2005.183-202
    [43]钟克利,尹炳柱,金龙一.胶束作为纳米反应器的研究进展.高分子通报,2009,2:48-57
    [44]Martinek K, Klyachko N L, Kabanov A V, et al. Micellar enzymology:its relation to membranology. Biochimica et Biophysica Acta,1989,981:161-172
    [45]马光辉,王平,苏志国.纳米科学与酶.中国基础科学,2009,5:49-54
    [46]Padma V I, Laxmi A. Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochemistry,2008,43:1019-1032
    [47]Das D, Das P K. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Langmuir,2009,25:4421-4428
    [48]Goto A, Yoshioka H, Manabe M, et al. spectroscopic study on the dissolution of water in sodium bis(2-ethylhexyl) sulfosuccinate/toluene solution. Langmuir, 1995,11:4873-4875
    [49]Biasutti M A, Abuin E B, Silber J J, et al. Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Advances in Colloid and Interface Science, 2008,136:1-24
    [50]Kabanov A V, Levashov A V, Klyachko N L, et al. Enzymes entrapped in reversed micelles of surfactants in organic solvents:a theoretical treatment of the catalytic activity regulation. Journal of Theoretical Biology,1988,133: 327-343
    [51]Kabanov A V, Levashov A V, Martinek K. Giving of membrane active properties to water soluble enzymes via their artificial hydrophobization—a new approach to regulation of the kinetic parameters of enzymatic reactions in the systems'Surfactant-water-organic solvent'. Vestnik MGU, Ser Ⅱ, Russian: Khimiya,1986,27:591-594
    [52]Brown E D, Yada R Y, Marangoni A G. The dependence of the lipolytic activity of Rhizopus arrhizus lipase on surfactant concentration in Aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure. Biochimica et Biophysica Acta,1993,1161:66-72
    [53]Sanchez -Ferret A, Garcia -Carmona F. Biocatalysis in reverse self-assembling structures:reverse micelles and reverse vesicles. Enzyme and Microbial Technology,1994,16:409-415
    [54]Rodakiewicz-Nowak J, Ito M. Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp. REN-21 in aqueous solutions and water-in-oil microemulsions. J Journal of Colloid and Interface Science,2005,284:674-679
    [55]Bommarius A S, Wang D I C, Hatton T A. Xanthine oxidase reactivity in reversed micellar systems:a contribution to the prediction of enzymatic activity in organized media. Journal of the American Chemical Society,1995,117: 4515-4523
    [56]Kuwahara Y, Goto A, Ibuki Y, et al. Catalytic activity of hexokinase in reversed micelles. Journal of Colloid and Interface Science,2001,233:190-196
    [57]Shome A, Roy S, Das P K. Nonionic surfactants:a key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir,2007,23:4130-4136
    [58]Ermakova E A, Zakhartchenko N L, Zuev Y F. Effect of surface potential of reverse micelle on enzyme-substrate complex formation. Colloids and Surfaces A,2008,317:297-302
    [59]Das D, Das P K. Improving the lipase activity profile in cationic water-in-oil microemulsions of hydroxylated surfactants. Langmuir,2003,19:9114-9119
    [60]Das D, Roy S, Mitra R N, et al. Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions. Chemistry-A European Journal,2005,11:4881-4889
    [61]Dasgupta A, Das D, Das P K. Probing the relationship between interfacial concentrations and lipase activity in cationic w/o microemulsions:a quantitative study by chemical trapping. Langmuir,2007,23:4137-4143
    [62]Mitra R N, Dasgupta A, Das D, et al. Geometric constraints at the surfactant headgroup:effect on lipase activity in cationic reverse micelles. Langmuir,2005, 21:12115-12123
    [63]Debnath S, Das D, Das P K. Unsaturation at the surfactant head:influence on the activity of lipase and horseradish peroxidase in reverse micelles. Biochemical and Biophysical Research Communications,2007,356:163-168
    [64]Dasgupta A, Das D, Mitra R N, et al. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions. Journal of Colloid and Interface Science,2005,289:566-573
    [65]Haigh S D. A review of the interaction of surfactants with organic contaminants in soil. Science of Total Environment,1996,185:161-170
    [66]Vipulanandan C, Ren X P. Enhanced solubility and biodegradation of naphthalene with biosurfactant. Journal of Environmental Engineering,2000,7: 629-634
    [67]钟华,曾光明,黄国和.鼠李糖脂对铜绿假单胞菌降解颗粒有机质的影响.中国环境科学,2006,26(2):201-205
    [68]Fu H Y, Zeng G M, Zhong H, et al. Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain. Colliods and Surface:B,2007,58:91-97
    [69]Yuan X Z, Meng Y T, Zeng G M, et al. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,317(1-3): 256-261
    [70]Harvey S, Elashi I, Valdes J J, et al. Enhanced removalof Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology,1990,8: 228-230
    [71]Mulligan C N. Environmental applications for biosurfactants. Environmental Pollution,2005,133:183-198
    [72]张无敌,宋洪川,韦小岿,等.21世纪发展生物质能前景广阔.中国能源,2001(5):33-35
    [73]李海滨,吴创之,陈勇.我国垃圾处理的技术出路.中国科技成果,2002,15:19-20
    [74]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72:169-183
    [75]Bedard D L, Quensen J R. Microbial transformation and degradation of toxic organic chemicals. New York:Wiley-Liss Incorporated,1995,127-216
    [76]Gardner K H, Blackwell J. The structure of native cellulose. Biopolymer,1974, 13(10):1975-2001
    [77]Ilmen M, Saloheimo A, Onnela M L, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environment Microbiology,1997,63:1298-1306
    [78]Durand H, Clanet M, Tiraby G. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme and Microbial Technology,1988,10: 341-346
    [79]Tischer W, Kasche V. Immobilized enzymes:crystals or carriers. Trends in Biotechnology,1999,17:326-335
    [80]刁颖辉,付时雨,余惠生.生物酶的固定化及其应用.化学通报,2002,65:1-6
    [81]邓勇辉,汪长春,杨武利,等.磁性聚合物微球研究进展.高分子通报,2006,(5):27-36
    [82]杨琥,袁博,卢耀柏,等.壳聚糖磁性微球的制备及在水处理中的应用.中国科学:化学,2008,38(9):755-761
    [83]蒋挺大.木质素.北京:化学工业出版社,2001,1-6;77-80
    [84]Tien M, Kirk. Lignin degradation enzyme from Phanerochate chrysosporium. Science,1983,221:661
    [85]Glenn J K, Gold M H. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications,1983,114:1077-1083
    [86]Kuwahara M, Glenn J K, Morgan M A, et al. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters,1984,169(2):247-250
    [87]Shimada M, Hattori, Umezawa T, et al. Regiospecific oxygenations during ring cleavage of a secondary metabolite,3,4-dimethoxybenzyl alcohol catalysed by lignin peroxidase. FEBS Letters,1987,221(2):327-331
    [88]Bright D A, Healey N. Contaminant risk from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in greater Vancouver. British Columbia Environmental Pollution,2003,126:39-49
    [89]石文军,杨朝晖,肖勇,等.全程高温好氧堆肥快速降解城市生活垃圾.环境科学学报,2009,29(10):2126-2133
    [90]Lu Y J, Wu X W, Guo J F. Characteristics of municipal solid waste and sewage sludge co-composting. Waste Management,2009,29:1152-1157
    [91]张陇利,刘青,李季,等.复合微生物菌剂对污泥堆肥的作用效果研究.环境工程学报,2008,2(2):266-272
    [92]Turner B L, Newman S, Newman J M. Organic phosphorus sequestration in subtropical treatment wetlands. Environmental Science and Technology,2006, 40:727-733
    [93]Diego M, Randy M B, Bernard H, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Natural Biotechnology,2008,26:553-560
    [94]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72:169-183
    [95]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3:19-23
    [96]Tengerdy R P, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal,2003,13:169-179
    [97]Goyal S, Dhull S K, Kapoor K K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology,2005,96:1584-1591
    [98]Castaldi P, Garau G, Melis P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Management,2008,28:534-540
    [99]Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 2002,31:353-364
    [100]Kristensen J B, Borjesson J, Bruun M H, et al. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology,2007,40:888-895
    [101]Zhao Z Y, Wong J W C. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environmental Technology,2009,30:291-299
    [102]Mulligan C N. Environmental applications for biosurfactants. Environmental Pollution,2005,133:183-198
    [103]Cheng K Y, Zhao Z Y, Wong J W C. Solubilization and desorption of pahs in soilaqueous system by biosurfactants produced from Pseudomonas Aeruginosa P-CG3 under thermophilic condition. Environmental Technology,2004,25: 1159-1165
    [104]Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol:a review. Bioresource Technology,1996,55:1-33
    [105]Zheng C, Lei Y, Yu Q, et al. Enzymatic hydrolysis of waste sugarcane bagasse in water media. Environmental Technology,2002,23:1009-1016
    [106]Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology,2002,83:1-11
    [107]Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering,1993,42:611-617
    [108]Yuan X Z, Ren F Y, Zeng G M, et al. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Applied Microbiology and Biotechnology,2007,76:1189-1198
    [109]Arino S, Marchal R, Vandecasteele J P. Identification and production of a rhamnolipid biosurfactant by a Pseudomonas species. Applied Microbiology and Biotechnology,1996,45:162-168
    [110]Ghose T K. Measurement of cellulase activities. Pure and Applied Chemistry, 1987,59:257-268
    [111]Kaar W E, Holtzapple M. Benefits from Tween during enzymaic hydrolysis of corn stover. Biotechnology and Bioengineering,1998,59:419-427
    [112]Kim M H, Lee S B, Ryu D D Y. Surface deactivation of cellulase and its prevention. Enzyme and Microbial Technology,1982,4:99-103
    [113]Shi J G, Zeng G M, Yuan X Z, et al. The stimulatory effects of surfactants on composting of waste rich in cellulose. World Journal of Microbiology and Biotechnology,2006,22:1121-1127
    [114]Griittner G, Rudershausen S, Teller J. Improved properties of materials as particle matrix. Journal of Magnetism and Magnetic Materials,2001,225(1): 1-7
    [115]Horst F, Rueda E H, Ferreira M L, et al. Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition.Enzyme and Microbial Technology,2006,38(7):1005-1012.
    [116]王山杉,李琳,李冰.磁场对酶学效应影响的研究进展.现代生物医学进展,2006,6(10):111-114.
    [117]Saiyed Z M, Sharma S, Godawat R, et al. Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). Journal of Biotechnology,2007,131(3):240-244
    [118]Lei Z L, Bi S X, Hu B, et al. Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity. Food Chemistry,2007,105(3):889-896
    [119]Li G Y, Jiang Y R, Huang K L, et al. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Compounds,2008, 466(1-2):451-456
    [120]曹林秋,杨晟,袁中一.载体固定化酶-原理、应用和设计.北京:化学工业出版社,2007,264-265
    [121]Shchipunova Y A, Karpenkoa T Y, Bakuninab I Y, et al. A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing poly-saccharides. Journal of Biochemical and Biophysical Methods 2004,58:25-38
    [122]失俭.生物化学实验.上海:上海科学技术出版社,1981,64
    [123]李冰,邵海员,黎锡流,等.磁性固定化纤维素酶的交联法制备及其磁致酶学性质,河南工业大学学报(自然科学版),2006,27(6):10-14
    [124]Badjic J D, Kostic N M:Effects of encapsulation in sol-gel silica glass on esterase activity, conformational stability, and unfolding of bovine carbonic anhydrase II. Chemistry of Materials,1999,11:3671-3679
    [125]Moriyama S, Noda A, Nakanishi K, et al. Thermal stability of immobilized glucoamylase entrapped in polyacrylamide gels and bound to SP-Sephadex C-50. Agricultural Biology and Chemistry,1980,44:2047-2054
    [126]Eggers D K, Valentine J S. Crowding and hydration effects on protein conformation:a study with sol-gel encapsulated proteins. Journal of Molecular Biology,2001,314:911-922
    [127]Liu D M, Chen I W. Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol-gel process. Acta Materialia,1999, 47:535-544
    [128]Singh D, Goel R, Johri B N. Production of 6-aminopenicillanic acid through double entrapped Ecolincim2563. Current Science,1988,57:1229-1231
    [129]Bajpai P, Margaritis S, Ohkawa H, et al. Immobilization of P450 monooxygenase and chloroplast for use in light-driven bioreactors. Journal of Bioscience and Bioengineering,1999,87:793-797
    [130]夏仕文,俞耀庭,童明容.反胶束中的酶催化研究进展.化学通报,1998,2:8-13
    [131]朱浩,施鼐,范映辛,等.反胶束体系中的酶学研究.生物化学与生物物理进展,1998,25(3):204-210
    [132]艾俊哲,梅平.非水介质中的酶催化反应.化学通报,2002,11:752-756
    [133]Orlich B, Schomacker R. Candida Rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant. Enzyme and Microbial Technology,2001,28:42-48
    [134]Chen N, Fan J B, Xiang J, et al. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. Biochimica et Biophysica Acta,2006,1764: 1029-1035
    [135]Zhang Y, Huang X R, Huang F, et al. Catalytic performance of lignin peroxidase in a novel reverse micelle. Colloids and Surfaces B,2008,65:50-53
    [136]Debnath S, Das D, Dutta S, et al. Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles. Langmuir, 2010,26:4080-4086
    [137]Xie Y W, Ye R Q, Liu H L. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids and Surfaces A,2006,279:175-178
    [138]Reddy A S, Chen C Y, Baker S C, et al. Synthesis of silver nanoparticles using surfactin:a biosurfactant stabilizing agent. Materials Letters,2006,63: 1227-1230
    [139]Kiran G S, Sabu A, Selvin J. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA 19. Journal of Biotechnology,2010,148:221-225
    [140]黄淼淼.反相微乳液的电导研究及其在氧化铝纳米颗粒制备上的应用:[郑州大学硕士学位论文].郑州:郑州大学,2007,32-49
    [141]李伟杰,高静,姜艳军,等.AOT逆胶束体系脂肪酶催化合成油酸乙酯.过程工程学报,2008,8(6):1173-1178
    [142]彭春玉.反相微乳液电导性的研究及纳米电沉积层的制备:[湖南大学硕士学位论文].长沙:湖南大学,2006,5-10
    [143]刘道军,马季铭,程虎民.混合反胶束的电导与微结构研究.高等学校化学学报,1997,18(5):800-802
    [144]郭晓歌,赵俊廷.不同反胶束体系增溶水的比较.精细石油化工进展,2008,9(2):22-24
    [145]Arkin L, Singleterry C R. Study of soap micelles in non-aqueous solvents using a fuorescent dye. Journal of the American Chemical Society,1948,70: 3965-3968
    [146]Frense D, Haftendorn R, Ulbrich-Hofmann R.2-Modified 1,3-diacylglycerols as new surfactants for the formation of reverse micelles. Chemistry and Physics of Lipids,1995,78:81-87
    [147]Hirche F, Ulbrich-Hofmann R. The interfacial pressure is an important parameter for the rate of phospholipase D catalyzed reactions in emulsion systems. Biochimica et Biophysica Acta,1999,1436:383-389
    [148]刘立明,宋功武,吴鸣虎,等.测定蛋白质的Rh,B自聚平衡体系.分析测试学报,2002,21(5):62-64
    [149]傅贤明.C12-2-C12·2Br/正庚烷/正己醇体系中临界反胶束浓度的测定.化学工程与装备,2008,2:103-106
    [150]刘佳.表面活性剂在废木质纤维素制酒精中的应用基础研究:[湖南大学博 士学位论文].长沙:湖南大学,2008.47-57
    [151]Kinugasaa T, Kondo A, Nishimura S, et al. Estimation for size of reverse micelles formed by AOT and SDEHP based on viscosity measurement. Colloids and Surfaces A,2002,204:193-199
    [152]杨丽琨,褚莹,刘阳,等.含有BaMoO4纳米粒子的反胶束溶液与罗丹明B的相互作用.化学学报,2005,63(1):18-22
    [153]Sanchez C. Lignocellulosic residues:Biodegradation and bioconversion by fungi. Biotechnology Advances,2009,27:185-194
    [154]Perez J, Munoz Dorado J, De la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview. International Microbiology,2002,5:53-63
    [155]Malherbe S, Cloete T E. Lignocellulose biodegradation:fundamentals and applications. Review in Environmental Science and Biotechnology,2002, 1:105-114
    [156]Huang D L, Zeng G M, Feng C L, et al. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environmental Science Technology,2008,42:4946-4951
    [157]Hofrichter M. Review:lignin conversion by manganese per-oxidase (MnP). Enzyme and Microbial Technology,2002,30:454-466
    [158]Stepanova E V, Koroleva O V, Vasilchenko L G, et al. Fungal decomposition of oat straw during liquid and solid-state fermentation. Applied Biochemistry and Biotechnology,2003,39:74-84
    [159]Kumar A G, Sekaran G, Krishnamoorthy S. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresource Technology,2006,97:1521-1528
    [160]Tang L, Zeng G M, Shen G L, et al. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta,2006, 579:109-116
    [161]Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology,2007,98, 320-326
    [162]Tang L, Zeng G M, Shen G L, et al. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosensors and Bioelectronics, 2009,24:1474-1479
    [163]Dorado J, Almendros G, Camarero S, et al. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme and Microbial Technology,1999,25:605-612
    [164]Ahuja S K, Ferreira G M, Moreira A R. Production of an endoglucanase by the shipworm bacterium Teredinobacter turnirae. Journal of Industrial Microbiology and Biotechnology,2004,31:41-47
    [165]Liu J, Yuan X Z, Zeng G M, et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry,2006,41:2347-2351
    [166]Liu X L, Zeng G M, Tang L, et al. Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochemistry,2008,43:1300-1303
    [167]Rogalski J, Szczodrak J, Janusz G. Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii. Bioresource Technology,2006,97:469-476
    [168]Van Soest P J, Rovertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science,1991,74:3583-3597
    [169]Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology,1992,73:1045-1055
    [170]Chi Y J, Yin H W. Lignin degradation mechanisms of ligninolytic enzyme system, manganese peroxidase, laccase and lignin peroxidase, produced by wood white rot fungi. Mycosystema,2007,26:153-160
    [171]Sotirova A, Spasova D, Vasileva Tonkova E, et al. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Micrbiology Research,2009,164:297-303
    [172]Brown J A, Alic M, Gold M H. Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium:Activation by Manganese. Journal of Bacteriology,1991,173:4101-4106
    [173]Van der Meer A B, Beenackers A A C M, Burghard R, et al. Gas/Liquid mass transfer in a four-phase stirred fermentor:Effects of organic phase hold-up and surfactant concentration. Chemical Engineering Science,1992,47:2369-2374
    [174]Fu H Y, Zeng G M, Zhong H, et al. Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain. Colloids and Surfaces B,2007,58:91-97
    [175]Whang L M, Liu P W G, Ma C C, et al. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Journal of Hazardous materials,2008,151:155-163
    [176]Zhong H, Zeng G M, Yuan X Z, et al. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Applied Microbiology and Biotechnology,2007,77:447-455
    [177]Suhas, Carrott P H M, Ribeiro, et al. Lignin-from natural adsorbent to activated carbon:a review. Bioresource Technology,2007,98:2301-2312
    [178]Guo G L, Chen W H, Chen W H, et al. Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresource Technology, 2008,99:6046-6053
    [179]Abouelwafa R, Baddi G A, Souabi S, et al. Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste:physical-chemical, microbiological, and spectroscopic analysis. Bioresource Technology,2008,99:8571-8577
    [180]Fu P, Hu S, Xiang J, et al. Mechanism study of rice Straw pyrolysis by fourier transform infrared technique. Chinese Journal of Chemical Engineering,2009, 17:522-529
    [181]向迎洪,张清东.污水厂剩余污泥的生物小循环多级处理研究.西南科技大学学报,2004,19(3):71-74
    [182]贾程,张增强,张永涛.污泥堆肥过程中氮素形态的变化.环境科学学报,2008,28(11):2269-2276
    [183]Fiona L, Jordan, Susannah K, et al. The influence of system complexity on bacterial transport in saturated porous media. Journal of Contaminant Hydrology,2004,74:19-38
    [184]王仁佑,刘剑潇,黄红丽.鼠李糖脂对两株木质素降解菌产酶能力的影响.湖南大学学报,2008,35(10):70-74
    [185]Ahuja S K., Ferreira G M, Moreiraa R. Production of an endoglucanase by the shipworm bacterium, Teredinobacter turnirae. Journal of Industrial Microbiology and Biotechnology,2004,31(5):41-47
    [186]Wu L, Ma L Q, Martinez G A. Comparison of methods for evaluating stability and maturity of biosolids compost. Journal of Environmental Quality,2000, 29(2):424-429
    [187]Stentiford E L. Composting coutrol:principles and practice[C]. Bertoldi Paolo Sequi,Bert Lemmes, Tiziano Papi In:The Science of Composting[S.I.]:Blackiecademic&Professional,1996:49-59
    [188]Fang M, Wong J W C, Ma K K, et al. Co-composting of sewage sludge and coal fly ash:Nutrient transformations. Bioresource Technology,1999,67:19-24
    [189]Mac G S T, Miller F C, Psarianos K M, et al. Composting process control based on interaction between microbial heat output and temperature. Applied and Environmental Microbiology,1981,41(6):1321-1330
    [190]Raviv M, Medina S, Karasnovsky A. Conserving nitrogen during compositing. Biocycle,2002,43(9):52-55
    [191]Bonito G, Omoanghe S, Isikhuemhen, et al. Identification of fungi associated with municipal compost using DNA-based techniques. Bioresource Technology,2010,101: 1021-1027
    [192]陈慧,陶秀祥,石开仪,等.褐煤生物转化及其研究展望.洁净煤技术,2008,14(5):39-42
    [193]Hassen A, Belguith K, Jedidi N. Microbial characterization during composting of municipal solid waste. Biotechnology,2001,80:217-225
    [194]Tang J C, Maie N, Tada Y, et al. Characterization of the maturing process of cattle manure compost. Process Biochemistry,2006,41:380-389
    [195]冯春,杨光,杜俊,等.污水污泥堆肥重金属总量及形态变化.环境科学研究,2008,21(1):97-102
    [196]伏小勇,许生辉,杨柳,等.城市污泥中重金属消解方法的比较试验研究.中国给水排水,2008,24(15):97-99
    [197]Ralph J P, Catcheside D E A. Involvement of lignin peroxidase, manganese peroxidase and other agents in the degradation of brown coal by Phanerochaete chrysosporium. Bioresource Techhnology,2006,97(3):329-332
    [198]袁勤生.现代酶学.上海:华东理工大学出版社,2001,77-159
    [199]Jakubowska A. Interactions of different counterions with cationic and anionic surfactants. Journal of Colloid and Interface Science,2010,346:398-404
    [200]许金钩,王尊本.荧光分析法.第三版.北京:科学出版社,2006,3-17;49-62
    [201]Ignac C. Fate of excited probes in micellar systems. Advances in Colloid and Interface Science,2002,97:91-149
    [202]Torres E, Bustos-Jaimes I. Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B:Environmental,2003, 46:1-15
    [203]Bastogne F, David C. Quaternary'N-alkylaldonamide-brine-decane-alcohol' systems-Part Ⅲ. Microstructure of the monophasic microemulsion domain studied by fluorescence. Journal of Photochemistry and Photobiology A: Chemistry,2000,136:93-101
    [204]Gallego M J P, Bravo-Diaz C, Gonzalez-Romero E. Fluorimetric determination of structural parameters of BuOH/SDS/H2O reverse micelles. Colloids and Surfaces A,2004,249:25-28
    [205]Xiang J, Fan J B, Chen N, et al. Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level. Colloids and Surfaces B: Biointerfaces,2006,49:175-180
    [206]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度.石化技术与应用,2007,25(1):48-51
    [207]胡梦瑶,彭毛,吴辉.荧光法研究表面活性剂CTAB与蛋白质的相互作用.2009,27(3):33-37
    [208]Biswas R, Das A R, Pradhan T, et al. Spectroscopic studies of catanionic reverse microemulsion:correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment. Journal of Physical Chemistry B,2008,112: 6620-6628
    [209]Abuin E, Lissi E, Ceron A, et al. Spectroscopic probing of the effect of alkanols on the properties of the head group region in reverse micelles of AOT-heptane-water. Journal of Colloid and Interface Science,2003,258: 363-366
    [210]Glenn K M, Palepu R M. Fluorescence probing of aerosol OT based reverse micelles and microemulsions in n-alkanes (C6-C16) and quenching of Safranine-T in these systems. Journal of Photochemistry and Photobiology A: Chemistry,2006,179:283-288
    [211]Moore S A, Palepu R M. Fluorometric investigations on the transition from reverse micelles to microemulsions in non-aqueous microemulsions. Journal of Molecular Liquids,2007,135:123-127
    [212]Yu J C, Tang H Y, Yu J G, et al. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods. Journal of Photochemistry and Photobiology A:Chemistry,2002,153:211-219
    [213]高勇,张敏,郭斌.罗丹明荧光探针在生化分析中的应用.化学通报,2009,1:15-19
    [214]Pesavento M, Profumo A. Interaction of serum albumin with a sulphonated azo dye in acidic solution. Talanta,1991,38(10):1099-1106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700