用户名: 密码: 验证码:
水稻谷蛋白的质谱和Western Blot鉴定与贮藏蛋白分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的营养品质主要取决于两个方面,蛋白质含量和氨基酸含量。其中特别重要的是可消化的蛋白组成含量,以及必需氨基酸的含量。分析水稻种子贮藏蛋白营养组成为水稻育种选取高营养组分品种提供了理论基础。本研究围绕稻米的蛋白营养品质主要进行了两方面的工作:水稻谷蛋白分子鉴定分析和谷蛋白基因启动子初步分析;水稻种子贮藏蛋白组成以及氨基酸含量分析。
     主要研究结果如下:
     1.以水稻品种93-11(Oryza sativa L. ssp. Indica cv.93-11)和日本晴(Oryza sativa L. ssp. Japonica cv. Nipponbare)为材料,鉴定和分析粳稻和籼稻的谷蛋白亚基组成。通过2D-PAGE分离谷蛋白亚基并通过软件比较各亚基组成,运用LC-MS/MS和特异性亚基抗体两种方法鉴定谷蛋白亚基。鉴定结果表明,粳稻(cv. Nipponbare)和籼稻(cV.93-11)有80%的谷蛋白亚基被准确定性到Swiss-Prot数据库里已知亚基,10%的亚基与GluB亚家族序列高同源性;除此之外,发现存在新的谷蛋白亚基和GluA(或者GluB)亚家族序列同源性比较低。粳稻和籼稻的谷蛋白多样性体现在谷蛋白亚基等电点的漂移,具有差异的谷蛋白亚基为GluA-1和GluA-3。从谷蛋白组成来看,籼稻的GluA-3和GluB-1百分含量是粳稻的两倍。从赖氨酸含量来看,籼稻的谷蛋白营养组成要高于粳稻。运用质谱和免疫两种方法鉴定谷蛋白亚基是本研究的创新,总结了籼稻和粳稻的谷蛋白组成特点。
     2.以35个优质栽培水稻品种作为材料,分析不同品种的种子贮藏蛋白营养组成。通过SDS-PAGE分析种子贮藏蛋白组成,运用凯氏定氮法和Bradford方法测定蛋白含量,并测定氨基酸含量。分析结果表明,水稻贮藏蛋白通过SDS-PAGE分成清蛋白、球蛋白、醇溶蛋白和谷蛋白4个组分,其中谷蛋白占50-80%绝对优势。在营养水平上,谷蛋白易消化,其赖氨酸含量是其他组分的9倍。稻米中的蛋白含量和氨基酸含量有一定的规律:谷蛋白组分和醇溶蛋白组分呈极其显著负相关,Lys含量和总蛋白含量呈极其显著正相关(P<0.01)。运用凯氏定氮法、Bradford法、氨基酸分析以及SDS-PAGE等方法分析稻米的营养品质,总结了不同水稻品种之间营养水平的相关性,为水稻育种选取高营养品质资源提供了理论依据。
     3.选取蛋白含量存在显著差异的5个优质栽培水稻品种作为亲本,得到4个水稻亲本子代的组合,其中包括3个籼稻组合和1个粳稻组合。通过不同品种的谷蛋白启动子序列比对和对应谷蛋白2D-PAGE图谱比较,初步分析粳稻和籼稻的谷蛋白组成和水稻组合之间谷蛋白组成差异。启动子分析结果表明,水稻谷蛋白不同亚基的启动子序列中重要转录元件排列有一定特异性;粳稻和籼稻的启动子序列具有几个特异性核苷酸突变。水稻组合谷蛋白2D-PAGE图谱结果表明:粳稻和籼稻各自的杂交组合的谷蛋白含量都具有叠加性。
The protein contents and components in rice (Oryza sativa L.) play a significant role in the quality of rice seeds, especially the digestible protein content and its essential amino acids content. Therefore, it is essential to understand the protein contents and components of rice seed storage protein (SSPs), and to improve the nutritive composition in rice breeding.
     The main results are as follows:
     1. The glutelin subunits of cv.93-11and cv.Nipponbare selected from O. sativa L. ssp. japonica and ssp. indica were analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combining with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and western blot with highly subunit-specific antibodies. The results showed that~80%of glutelin content from the total glutelin extract consisted of seven major subunits in the SwissProt database, and~10%of glutelin consisted of a member of the glutelin type-B subfamily. In addition, based on the sequence heterogeneity at the amino acid level, the glutelin components of unknown identity seem to be new members of a new glutelin subfamily. The diversity of rice glutelin subunits between japonica and indica were identified as GluA-1and GluA-3, and the diversity of the glutelin composition between japonica and indica was reflected by the difference in glutelin subunit composition between glutelin type-A and type-B and the special subunits identified as GluA-1, and the percentage composition of GluA-3and GluB-1was twice more in the indica cultivars than that in the japonica cultivars. The result also revealed that the indica cultivars were superior to the japonica cultivars in terms of the nutritional value at the lysine level. The innovation was the combination of two methods, LC-MS/MS and western blot.
     2. The SSPs components of thirty-five prevailing rice cultivars were analyzed. First, they were separated by SDS-PAGE, and then their protein contents were determined by the Kjeldahl and Bradford method, and finally their amino acid contents were identified using the amino acid analyzer. The results showed that four components were separated, including albumin, globulin, prolamine, and glutelin, and the glutelin was found to be the main components in a range of50-80%. Moreover, as one of the digestible proteins for human, the Lys content of the glutelin was nine times higher than the other three. In further analysis, certain relationship was found between the protein contents and the amino acid components:the glutelin content was in significantly negative relation to the prolamine content; while the Lys content showed positive relation to the total SSPs content (P<0.01). In the study, the relativity of the nutritive value will provide the theoretical evidence for rice genetics and breeding.
     3. DNA sequences of Glu promoters in five cultivars with difference protein contents were selected for sequence slignment analysis, which were as hybrid rice parents new rice groups were analyzed the glutelin subunits by2D-PAGE These five cultivars as hybrid rice parents breed and analysis of glutelin composition. The results showed that the transcription factors were known to play central roles in regulating gene transcription from promoters. The diversity of Glu promoters between japonica and indica were4-5mutation nucleotides. The certain protein content of the Hybrid group had the assumption at certain protein content level.
引文
(1)江绍玫,徐朗莱。水稻谷蛋白研究进展。江西农业大学学报2002;24(1):14-19。
    (2)栾吉梅,胡明进,张晓东。有机染料分光光度法测定蛋白质的研究进展。安徽教育学院学报2004;22(3):60-64。
    (3)牛洪斌,王益华,翟虎渠,万建民。水稻谷蛋白基因GluB-6的cDNA克隆及表达。中国水稻科学2007:21(2):111-116。
    (4)曲乐庆,佐藤光。水稻种子贮藏谷蛋白α-2亚基减少突变体。植物学报2001:43(11):1167-1171。
    (5)曲乐庆,佐藤光。水稻种子贮藏谷蛋白的微细异质性。植物学报2001;43(8):815-820。
    (6)魏磊,丁毅,胡耀军。紫稻细胞质雄性不育系叶片全蛋白双向电泳分析。遗传学报2002;29(8):696-699。
    (7)张宪银,薛庆中。水稻胚乳特异性启动子Gtl的克隆及其功能验证。作物学报2002;28(1):110-114。
    (8)郑天清,沈文飚,朱速松,翟虎渠,万建民。水稻谷蛋白突变体的研究现状与展望。中国农业科学2003;36(4):353-359。
    (9)Abe T, Gusti RS, Ono M, Sasahara T. Variations in glutelin and high molecular weight endosperm proteins among subspecies of rice (Oryza sativa L.) detected by two-dimensional gel electrophoresis. Genes & genetic systems 1996; 71: 63-68.
    (10)Adachi M, Kanamori J, Masuda T, Yagasaki K, Kitamura K, Mikami B, et al. Crystal structure of soybean 11S globulin:glycinin A3B4 homohexamer. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:7395-7400.
    (11)Adachi T, Izumi H, Yamada T, Tanaka K, Takeuchi S, Nakamura R, et al. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family. Plant molecular biology 1993; 21: 239-248.
    (12)Asano M, Suzuki S, Kawai M, Miwa T, Shibai H. Characterization of novel cysteine proteases from germinating cotyledons of soybean [Glyeine max (L.) Merrill]. Journal of biochemistry 1999; 126:296-301.
    (13)Barre A, Jacquet G, Sordet C, Culerrier R, Rouge P. Homology modelling and eonformational analysis of IgE-binding epitopes of Ara h 3 and other legumin allergens with a cupin fold from tree nuts. Molecular immunology 2007; 44: 3243-3255.
    (14)Bate N, Twell D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant molecular biology 1998; 37:859-869.
    (15)Beauregard M, Hefford MA. Enhancement of essential amino acid contents in crops by genetic engineering and protein design. Plant biotechnology journal 2006; 4:561-574.
    (16)Bulleid NJ, Freedman RB. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-defieient microsomes. Nature 1988; 335: 649-651.
    (17)Choi SB, Wang C, Muench DG, Ozawa K, Franceschi VR, Wu Y, et al. Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 2000; 407:765-767.
    (18)Chunhieng T, Petritis K, Elfakir C, Brochicr J, Goli T, Montet D. Study of selenium distribution in the protein fractions of the Brazil nut, Bertholletia excelsa. Journal of agricultural and food chemistry 2004; 52:4318-4322.
    (19)Coleman CE, Herman EM, Takasaki K, Larkins BA. The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. The Plant cell 1996; 8:2335-2345.
    (20)Colman SD, Williams CA, Wallace MR. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nature genetics 1995; 11:90-92.
    (21)Dickinson CD, Hussein EH, Nielsen NC. Role of posttranslational cleavage in glycinin assembly. The Plant cell 1989; 1:459-469.
    (22)Duval M, Job C, Alban C, Douce R, Job D. Developmental patterns of free and protein-bound biotin during maturation and germination of seeds of Pisum sativum:characterization of a novel seed-specific biotinylated protein. Biochemical Journal 1994; 299:141-150.
    (23)Fiedler U, Filistein R, Wobus U, Baumlein H. A complex ensemble of cis-regulatory elements controls the expression of a Vicia faba non-storage seed protein gene. Plant molecular biology 1993; 22:669-679.
    (24)Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant physiology 2004; 134:1080-1087.
    (25)Forde BG, Heyworth A, Pywell J, Kreis M. Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic acids research 1985; 13:7327-7339.
    (26)Foresti O, Frigerio L, Holkeri H, de Virgilio M, Vavassori S, Vitale A. A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP. The Plant cell 2003; 15:2464-2475.
    (27)Fresco L. "Rice is life". Journal of Food Composition and Analysis 2005; 18: 249-253.
    (28)Friedman M. Nutritional value of proteins from different food sources. J Agric Food Chem 1996; 44:6-29.
    (29)Galili G. Regulation of Lysine and Threonine Synthesis. The Plant cell 1995; 7: 899-906.
    (30)Galili G, Hofgen R. Metabolic engineering of amino acids and storage proteins in plants. Metabolic engineering 2002; 4:3-11.
    (31)Galili G, Sengupta-Gopalan C, Ceriotti A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant molecular biology 1998; 38:1-29.
    (32)Gibbon BC, Larkins BA. Molecular genetic approaches to developing quality protein maize. Trends Genet 2005; 21:227-233.
    (33)Glaser AG, Menz G, Kirsch AI, Zeller S, Crameri R, Rhyner C. Auto-and cross-reactivity to thioredoxin allergens in allergic bronchopulmonary aspergillosis. Allergy 2008; 63:1617-1623.
    (34)Habben JE, Kirleis AW, Larkins BA. The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant molecular biology 1993; 23:825-838.
    (35)Hammond-Kosack MC, Holdsworth MJ, Bevan MW. In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. The EMBO journal 1993; 12:545-554.
    (36)Hashizume K, Okuda M, Numata M, Zhou Y, Koseki T. Characterization of peptides generated in proteolytic digest of steamed rice grains by sake koji enzymes. Journal of bioscience and bioengineering 2007; 104:251-256.
    (37)Helm RM, Cockrell G, Connaughton C, Sampson HA, Bannon GA, Beilinson V, et al. A soybean G2 glycinin allergen.2. Epitope mapping and three-dimensional modeling. International archives of allergy and immunology 2000; 123:213-219.
    (38)Herman EM, Larkins BA. Protein storage bodies and vacuoles. The Plant cell 1999; 11:601-614.
    (39)Huang W, Wong JM, Bateman E. TATA elements direct bi-directional transcription by RNA polymerases Ⅱ and Ⅲ. Nucleic acids research 1996; 24: 1158-1163.
    (40)Inouye K, Nakano K, Asaoka K, Yasukawa K. Effects of thermal treatment on the coagulation of soy proteins induced by subtilisin Carlsberg. Journal of agricultural and food chemistry 2009; 57:717-723.
    (41)Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S, et al. Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant physiology 1999; 120:1063-1074.
    (42)Katsube-Tanaka T, Duldulao JB, Kimura Y, Iida S, Yamaguchi T, Nakano J, et al. The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochimica et biophysica acta 2004; 1699:95-102.
    (43)Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of experimental botany 2008; 59:4233-4245.
    (44)Kennedy G, Burlingame B. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chemistry 2003; 80:589-596.
    (45)Khan N, Katsube-Tanaka T, Iida S, Yamaguchi T, Nakano J, Tsujimoto H. Identification and variation of glutelin alpha polypeptides in the genus Oryza assessed by two-dimensional electrophoresis and step-by-step immunodetection. Journal of agricultural and food chemistry 2008; 56:4955-4961.
    (46)Khan N, Katsube-Tanaka T, Iida S, Yamaguchi T, Nakano J, Tsujimoto H. Diversity of rice glutelin polypeptides in wild species assessed by the higher-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subunit-specific antibodies. Electrophoresis 2008; 29:1308-1316.
    (47)Kim WT, Okita TW. Structure, Expression, and Heterogeneity of the Rice Seed Prolamines. Plant physiology 1988; 88:649-655.
    (48)Kim WT, Okita TW. Nucleotide and primary sequence of a major rice prolamine. FEBS letters 1988; 231:308-310.
    (49)Krishnan HB, Okita TW. Structural Relationship among the Rice Glutelin Polypeptides. Plant physiology 1986; 81:748-753.
    (50)Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, et al. Low glutelin content1:a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. The Plant cell 2003; 15:1455-1467.
    (51)Lending CR, Larkins BA. Changes in the zein composition of protein bodies during maize endosperm development. The Plant cell 1989; 1:1011-1023.
    (52)Levanony H, Rubin R, Altschuler Y, Galili G. Evidence for a novel route of wheat storage proteins to vacuoles. The Journal of cell biology 1992; 119:1117-1128.
    (53)Li X, Okita TW. Accumulation of prolamines and glutelins during rice seed development:a quantitative evaluation. Plant and cell physiology 1993; 34: 385-390.
    (54)Limas GG, Salinas M, Moneo I, Fischer S, Wittmann-Liebold B, Mendez E. Purification and characterization of ten new rice NaCl-soluble proteins: identification of four protein-synthesis inhibitors and two immunoglobulin-binding proteins. Planta 1990; 181:1-9.
    (55)Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z. Genetic dissection of amino acid content in rice grain. J Sci Food Agric 2009; 89:2377-2382.
    (56)Matsuda T, Nomura R, Sugiyama M, Nakamura R. Immunochemical studies on rice allergenic proteins. Agrie Biol Chem 1991; 55:509-513.
    (57)Matsuda T, Sugiyama M, Nakamura R, Torii S. Purification and properties of an allergenic protein in rice grain. Agric Biol Chem 1988; 52:1465-1470.
    (58)Mitsukawa N, Hayashi H, Yamamoto K, Kidzu K, Konishi R, Masumura T, et al. Molecular cloning of a novel glutelin cDNA from rice seeds. Plant Biotechnol 1998; 15:205-212.
    (59)Mori T, Saruta Y, Fukuda T, Prak K, Ishimoto M, Maruyama N, et al. Vacuolar sorting behaviors of 11S globulins in plant cells. Bioscience, biotechnology, and biochemistry 2009; 73:53-60.
    (60)Morita R, Kusaba M, Iida S, Nishio T, Nishimura M. Knockout of glutelin genes which form a tandem array with a high level of homology in rice by gamma irradiation. Genes & genetic systems 2007; 82:321-327.
    (61)Muntz K. Deposition of storage proteins. Plant molecular biology 1998; 38: 77-99.
    (62)Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, et al. Cloning of the rice seed alpha-globulin-encoding gene:sequence similarity of the 5'-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 1996; 170:223-226.
    (63)O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 1975; 250:4007-4021.
    (64)Ogawa M, Kumamaru T, Satoh H, Iwata N, Omura T, Kasai Z, et al. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol 1987; 28:1517-1527.
    (65)Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R, et al. Structure and expression of the rice glutelin multigene family. The Journal of biological chemistry 1989; 264:12573-12581.
    (66)Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F. A rice functional transcriptional activator, RISBZI, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. The Journal of biological chemistry 2001; 276:14139-14152.
    (67)Osborne TB. The Vegetable Proteins (1924). Longmans, Green, London.
    (68)Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000; 405: 837-846.
    (69)Pierucci VR, Tilley M, Graybosch RA, Blechl AE, Bean SR, Tilley KA. Effects of overexpression of high molecular weight glutenin subunit 1Dy10 on wheat tortilla properties. Journal of agricultural and food chemistry 2009; 57: 6318-6326.
    (70)Pompa A, Vitale A. Retention of a bean phaseolin/maize gamma-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. The Plant cell 2006; 18:2608-2621.
    (71)Qu le Q, Xing YP, Liu WX, Xu XP, Song YR. Expression pattern and activity of six glutelin gene promoters in transgenic rice. Journal of experimental botany 2008; 59:2417-2424.
    (72)Qu LQ, Wei XL, Satoh H, Kumamaru T, Ogawa M, Takaiwa F. Biochemical and molecular characterization of a rice glutelin allele for the GluA-1 gene. TAG Theoretical and applied genetics 2003; 107:20-25.
    (73)Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant physiology 2004; 134:1718-1732.
    (74)Robotham JM, Hoffman GG, Teuber SS, Beyer K, Sampson HA, Sathe SK, et al. Linear IgE-epitope mapping and comparative structural homology modeling of hazelnut and English walnut 11S globulins. Molecular immunology 2009; 46: 2975-2984.
    (75)Robotham JM, Wang F, Seamon V, Teuber SS, Sathe SK, Sampson HA, et al. Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family. The Journal of allergy and clinical immunology 2005; 115: 1284-1290.
    (76)Schaeffer GW, Sharpe Jr FT. Increased lysine and seed storage protein in rice plants recovered from calli selected with inhibitory levels of lysine plus threonine and S-(2-aminoethyl) cysteine. Plant physiology 1987; 84:509-515.
    (77)Sha S, Sugiyama Y, Mitsukawa N, Masumura T, Tanaka K. Cloning and sequencing of a rice gene encoding the 13-kDa prolamin polypeptide. Bioscience, biotechnology, and biochemistry 1996; 60:335-337.
    (78)Shewry PR, Napier JA, Tatham AS. Seed storage proteins:structures and biosynthesis. The Plant cell 1995; 7:945-956.
    (79)Shibasaki M, Suzuki S, Nemoto H, Kuroume T. Allergenicity and lymphocyte-stimulating property of rice protein. J Allergy Clin Immunol 1979; 64:259-265.
    (80)Simon SM, Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell 1991; 65:371-380.
    (81)Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, et al. Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chem Int Ed 2004; 43:357-360.
    (82)Tabe LM, Higgins CM, McNabb WC, Higgins TJ. Genetic engineering of grain and pasture legumes for improved nutritive value. Genetica 1993; 90:181-200.
    (83)Takagi H, Hirose S, Yasuda H, Takaiwa F. Biochemical safety evaluation of transgenic rice seeds expressing T cell epitopes of Japanese cedar pollen allergens. Journal of agricultural and food chemistry 2006; 54:9901-9905.
    (84)Takaiwa F, Oono K. Genomic DNA sequences of two new genes for new storage protein glutelin in rice. Idengaku zasshi 1991; 66:161-171.
    (85)Takaiwa F, Oono K, Kato A. Analysis of the 5'flanking region responsible for the endosperm-specific expression of a rice glutelin chimeric gene in transgenic tobacco. Plant molecular biology 1991; 16:49-58.
    (86)Takaiwa F, Oono K, Wing D, Kato A. Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant molecular biology 1991; 17:875-885.
    (87)Takaiwa F, Sakuta C, Choi SK, Tada Y, Motoyama T, Utsumi S. Co-expression of soybean glycinins AlaB1b and A3B4 enhances their accumulation levels in transgenic rice seed. Plant & cell physiology 2008; 49:1589-1599.
    (88)Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, et al. Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant molecular biology 1996; 30:1207-1221.
    (89)Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant physiology 2002; 128:1212-1222.
    (90)Takcya H, Oda K, Miyata T, Omori-Satoh T, Iwanaga S. The complete amino acid sequence of the high molecular mass hemorrhagic protein HR1B isolated from the venom of Trimeresurus flavoviridis. The Journal of biological chemistry 1990; 265:16068-16073.
    (91)Tanaka K, Sugimoto T, Ogawa M, Kasai Z. Isolation and characterization of two types of protein bodies in the rice endosperm. Agric Biol Chem 1980; 44: 1633-1639.
    (92)Tay SL, Kasapis S, Han AT. Phase model interpretation of the structural properties of two molecular soy protein fractions. Journal of agricultural and food chemistry 2008; 56:2490-2497.
    (93)Udaka J, Koga T, Tsuji H, Kimoto M, Takumi K. Efficient extraction and some properties of storage proteins (prolamin and glutelin) in ancient rice cultivars. Journal of nutritional science and vitaminology 2000; 46:84-90.
    (94)Ufaz S, Galili G. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant physiology 2008; 147:954-961.
    (95)Wakasa Y, Yang L, Hirose S, Takaiwa F. Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation. Journal of experimental botany 2009; 60:3503-3511.
    (96)Wang F, Robotham JM, Teubcr SS, Sathe SK, Roux KH. Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family. International archives of allergy and immunology 2003; 132:27-39.
    (97)Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, et al. The vacuolar processing enzyme OsVPEl is required for efficient glutelin processing in rice. Plant J 2009; 58:606-617.
    (98)Washida H, Kaneko S, Crofts N, Sugino A, Wang C, Okita TW. Identification of cis-localization elements that target glutelin RNAs to a specific subdomain of the cortical endoplasmic reticulum in rice endosperm cells. Plant & cell physiology 2009; 50:1710-1714.
    (99)Washida H, Sugino A, Kaneko S, Crofts N, Sakulsingharoj C, Kim D, et al. Identification of cis-localization elements of the maize 10-kDa delta-zein and their use in targeting RNAs to specific cortical endoplasmic reticulum subdomains. Plant J 2009; 60:146-155.
    (100)Watson BS, Asirvatham VS, Wang L, Sumner LW. Mapping the proteome of barrel medic (Medicago truncatula). Plant physiology 2003; 131:1104-1123.
    (101)Wen TN, Luthe DS. Biochemical Characterization of Rice Glutelin. Plant physiology 1985; 78:172-177.
    (102)Wu C, Washida H, Onodera Y, Harada K, Takaiwa F. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 2000; 23:415-421.
    (103)Wu CY, Suzuki A, Washida H, Takaiwa F. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 1998; 14:673-683.
    (104)Wu XR, Chen ZH, Folk WR. Enrichment of cereal protein lysine content by altered tRNA (Lys) coding during protein synthesis. Plant biotechnology journal 2003;1:187-194.
    (105)Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of Storage Proteins in Developing Rice Seeds. Plant physiology 1982; 70:1094-1100.
    (106)Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant and Cell Physiology 1986; 27:135-145.
    (107)Yamagata H, Tanaka K, Kasai Z. Evidence for a precursor form of rice glutelin subunits. Agricultural and Biological Chemistry 1982; 46:321-322.
    (108)Yang L, Wakasa Y, Kawakatsu T, Takaiwa F. The 3'-untranslated region of rice glutelin GluB-1 affects accumulation of heterologous protein in transgenic rice. Biotechnology letters 2009; 31:1625-1631.
    (109)Yang P, Li X, Wang X, Chen H, Chen F, Shen S. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 2007; 7:3358-3368.
    (110)Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant & cell physiology 2009; 50:1532-1543.
    (111)Zhang ZL, Shin M, Zou X, Huang J, Ho TH, Shen QJ. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant molecular biology 2009; 70:139-151.
    (112)Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant physiology 2004; 134:1500-1513.
    (113)Zhu X, Galili G. Increased lysine synthesis coupled with a knockout of its catabolism syncrgistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. The Plant cell 2003; 15: 845-853.
    (114)Zhu X, Tang G, Galili G. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains. The Journal of biological chemistry 2002; 277:49655-49661.
    (115)Zorb C, Steinfurth D, Seling S, Langenkamper G, Koehler P, Wieser H, et al. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization. Journal of agricultural and food chemistry 2009; 57: 3877-3885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700