用户名: 密码: 验证码:
百日草细胞核雄性不育两用系差异表达基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百日草(Zinnia elegans Jacq.)是菊科百日草属一年生草本花卉,在我国广泛栽培,主要用作花坛、花丛及花境。百日草在繁育过程中,由于其隐性细胞核雄性不育具有败育彻底、不育性稳定和无不良胞质效应等优点,在生产F1种子中广泛应用。然而,到目前为止,对这一材料的育性控制机制了解甚少。为了更好地利用隐性核不育材料,很有必要对其进行深入的研究。
     本研究以百日草雄性不育两用系MS5001AB为实验材料,运用抑制消减杂交技术(suppression subtractive hybridization, SSH)构建了两个cDNA文库以分离可育株和不育株间差异表达基因,同时对得到的差异表达片段利用BLAST工具进行序列同源性分析,并参照MIPS站点的拟南芥数据库对有同源序列的片段进行分类。根据部分差异表达基因的半定量RT-PCR表达结果,从中选出两个与花发育相关EST,利用RACE技术获得了两个基因的cDNA和基因组全长,并且对其序列进行了分析。最后构建其中一基因的正、反义表达载体,并转化烟草,对其进行初步的功能验证。本研究获得的结果和主要结论如下:
     (1)百日草筒状花抑制消减cDNA文库的构建。以百日草雄性可育和不育败育关键时期的筒状花为研究材料,采用SSH技术成功构建了两个抑制消减cDNA文库,共得到1536个克隆;持家基因β-tubulin为指标检测文库的消减效率,两个文库的消减效率均为25倍。利用斑点杂交技术对文库中的所有1536个克隆进行筛选,得到525个阳性克隆。序列分析显示,可育库和不育库cDNA平均长度分别为407bp和386bp;两个文库中共分离到167个非重复的表达序列标签(expressed sequence tags, ESTs),其中70个基因在雄性可育株中呈上升表达,97个基因在雄性不育中呈上升表达。利用BLAST工具对其进行序列同源性分析,可育库中发现一些与绒毡层和小孢子发育相关的基因,不育文库中发现一些与花发育和细胞程序性死亡相关的基因。半定量RT-PCR结果显示,6个基因可能参与雄性育性形成,可育库中的两个基因仅在可育株花蕾中表达。参照MIPS站点的拟南芥数据库,可育库中有同源序列的59个EST可分成10个类别,最大三类依次为碳水化合物代谢(36%)、未分类蛋白(17%)和次级代谢类(14%);不育库中有同源序列的81个EST分为14个类别,最大三类依次为未分类蛋白(27%)、碳水化合物代谢(18%)和细胞组分的合成类(16%)。这些差异表达基因的获得将为以后克隆花药发育相关基因以及了解百日草核雄性不育分子机理提供重要线索。
     (2)两个百日草花发育差异表达基因的克隆与序列分析。以可育库中的两个EST为线索,利用RACE技术,从百日草中克隆出ZeMYB35和ZeSTR两个基因的完整序列,并利用生物学软件对序列进行分析。ZeMYB35基因的cDNA序列全长为1143bp,ORF Finder预测其最大开放阅读框为885bp,编码294个氨基酸;Conserve domain程序搜索到ZeMYB35蛋白含有两个典型的Myb-like DNA-binding domain,一个位于第17-62氨基酸之间,另一个位于第70-113个氨基酸之间。核苷酸和氨基酸序列比对发现,ZeMYB35与多种植物的MYB基因同源,其中与拟南芥MYB35的同源性为76%,表明它是MYB基因家族的一个新成员,属于R2R3-MYB型。通过PCR方法获得该基因的基因组序列,长度为1264bp;利用DNAMAN软件将基因的gDNA序列与cDNA序列相比,显示该基因包括两个内含子和三个外显子。
     ZeSTR基因的cDNA全长为1402bp,ORF Finder预测ZeSTR基因的最大开放读码框全长为1224bp,编码407个氨基酸;NCBI的Conserve domain程序预测该蛋白含有一个STR-Synth结构域,位于第197-284个氨基酸之间,该结构域是异胡豆苷合成酶的一个典型结构特征。NCBI Blastp比对结果表明,ZeSTR蛋白与多种植物STR蛋白同源,其中与拟南芥STR蛋白(AA042227.1)同源性最高,推测ZeSTR基因在百日草中编码异胡豆苷合成酶。通过PCR方法获得了该基因的基因组序列,长度为2214bp; DNAMAN软件比对基因的cDNA和gDNA序列,显示该基因包括四个外显子和三个内含子。另外,cDNA和gDNA序列编码区有四处碱基替换,可能由RNA编辑造成。研究结果将为进一步研究该基因的结构和功能奠定基础。
     (3)百日草ZeMYB35基因转化烟草的研究。通过酶切、连接等步骤,构建了ZeMYB35基因的正义、反义表达载体,并通过农杆菌介导转入烟草中。利用PCR方法对得到的转基因烟草进行了鉴定,电泳结果显示所有转基因植株均能扩增出目的条带。与对照烟草相比,转反义载体烟草中正常花粉生活力略有下降,转正义表达载体烟草长势较差。说明该基因可能与花粉发育相关。
Youth-and-old-age is an annual plant that belongs to genus Zinnia of Asteraceae family. It is widely cultivated in China, especially for flower beds, clusters and borders. Recessive genic male sterility (RGMS) is used to produce F1seeds because of various remarkable advantages, such as its stable and complete male sterility and no negative cytoplasmic effect on yield. However, we still have little knowledge about the mechanism of its fertility control. So it is necessary to do some researches about the mechanism of fertility control for better utilization of the RGMS.
     In the present study, the fertile plants and sterile plants of a homozygous RGMS two-type line, MS5001AB, was used to construct two suppression subtractive hybridization (SSH) libraries, from which differentially expressed genes were isolated and sequenced. Homology searches of the isolated sequences were performed using the NCBI BLAST server. Moreover, the sequences that produce homologs by BLAST were classified by MIPS of A. thaliana Genome Database according to the biological processes they participated in. Based on semi-quantitative RT-PCR of some differentially expressed genes, we selected two ESTs to obtain their full-length cDNA and genomic sequence by RACE technology. The gene sequences were analyzed using bioinformatics software. Finally, we constructed two plant expression vectors with sense and antisense ZeMYB35gene, which were introduced into tobacco by Agrobacterium-mediated transformation. Main results and conclusions are listed as follows:
     (1) Construction of subtractive cDNA libraries. Two subtracted cDNA libraries between fertile and male sterile plants, which contain1536clones, are constructed by suppression subtractive hybridization approach from disk florets. The subtraction efficiency of25-fold was obtained in the two libraries using the housekeeping gene β-tubulin as the reference. Blot hybridization against the1536clones was carried out to screen differentially expressed genes.525positive clones were obtained for sequenceing. The average lengths of fragments from the fertile and male sterile libraries were407bp and386bp, respectively. Finally,167nonredundant ESTs were obtained, among which 70were up-regulated in fertile buds, and97were up-regulated in male sterile ones. Results of homology searches showed that some genes from the fertile library were related to tapetum and/or microspore development, and some genes from the male sterile library were related to floret development or PCD. Semi-quantitative RT-PCR analysis showed that2of6genes were expressed only in young disk florets of fertile plants compared with that of male sterile plants. The other4genes were expressed only in leaves of male sterile plants. Fifty-nine ESTs from the fertile library are involved in carbohydrate metabolism, phosphate metabolism, and secondary metabolites. Eighty-one ESTs from the male sterile library are involved in protein synthesis, processing and degradation. These EST sequences will supply the foundation for further cloning of genes related to anther development. Further analysis of these genes will provide new insight into the molecular mechanisms underlying male sterile in Zinnia.
     (2) Cloning and sequence analysis of two differentially expressed genes related to floral development from Zinnia. Full-length of ZeMYB35and ZeSTR were cloned and their sequences were analyzed. The cDNA sequence of ZeMYB35is1143bp in length, with open reading frame (ORF) of885bp encoding294amino acids predicted by ORF Finder. ZeMYB35protein contains two typical MYB-like DNA-binding domains by Conserve domain program analysis, one of which is located in17th-62th amino acids, and the other in70th-113th amino acids. Nucleotide and amino acid sequence alignment analysis showed that ZeMYB35was homologous to MYB genes from other plants, with the highest homology (76%) with AtMYB35, which indicates that it is a member of MYB family, and belongs to the R2R3-MYB type. Genomic sequence of the gene was obtained by PCR, which is1264bp in length, consisting of three exons and two introns.
     The cDNA sequence of ZeSTR is1402bp, with ORF of1224bp, encoding407amino acids predicted by ORF Finder. The NCBI conserve domain program analysis found that the protein contains a STR-Synth structure domain, which is a typical structure feature of synthase, and is located in197th-284th amino acids. ZeSTR protein was homologous to various plant STR proteins, with the highest homology with Arabidopsis STR protein (AAO42227.1). The results showed that ZeSTR gene may code strictosidine synthase in Zinnia. Genomic sequences of the gene was obtained, with full-length of2 214bp, which contains four exons and three introns in the coding region. There are four replaced bases within the coding areas of ZeSTR cDNA and gDNA sequences, which may be caused by RNA editor. The results provide the foundation for further study of the structure and function of the gene.
     (3) Transformation of tobacco by ZeMYB35gene. To investigate the function of ZeMYB35gene, we constructed two plant expression vectors with sense and antisense ZeMYB35gene driven by CAMV35S promoter, which were then introduced into tobacco by Agrobacterium-mediated transformation. Stable transgenic plants were confirmed by PCR analysis, which showed that the purpose gene has been integrated into the genome of all the plants investigated. Compared with the untransformed tobacco plants, the pollen viability was slightly decreased in antisense transgenic plants. The growth of sense ZeMYB35transgenic tobacco plants was inhibited slightly. The result showed ZeMYB35gene may be related to pollen development.
引文
1包满珠.花卉学.北京:中国农业出版社,2000:184
    2陈凤祥,胡宝成,李成,等.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    3陈辉.拟南芥雄性不育突变体tdfl的基因克隆和功能分析.[硕士学位论文].上海:上海师范大学,2007
    4初明光.水稻雄性不育突变体XSl的表型特征和精细定位.[博士学位论文].四川雅安:四川农业大学,2009
    5郭惠明,李召春,张晗,等.棉花CBF基因的克隆及其转基因烟草的抗寒性分析.作物学报,2011,37(2):286-293
    6胡成华,方建忠.百日菊染色体核型分析.南京大学学报,1991,27(2):412-414
    7胡红红.水稻逆境相关转录因子的分离和功能鉴定.[博士学位论文].武汉:华中农业大学,2006
    8黄少甫,赵治芬.三种观赏植物的染色体研究.广西植物,1995,15(1):43-46
    9黄文川,刘贯山,程多福,等.烟草转Kmr基因植株性状鉴定研究初报.湖北农业科学,2001,(4):61-62
    10黄鑫,戴思兰,孟丽,等.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用.分子植物育种,2006,4(5):735-746
    11康健,陈凡,吴乃虎.光敏核不育水稻育性相关基因片段的分离.科学通报,1998,43(19):2078-2082
    12李红霞,张龙雨,张改生,等.黏类小麦育性相关基因SSH文库的构建.作物学报,2008,34(6):965-971
    13李俊,王涛,张西西.百日草雄性不育杂交育种初探.中国农学通报,2011,27(10):133-138
    14林慧贤,刘筱斌,李发强,等.水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定.高技术通讯,2001,(3):9-14
    15刘俊,朱英国.水稻细胞质雄性不育的分子机制研究.武汉大学学报,1998,44(4):461-464
    16刘美英,冶晓芳,唐益苗,等.TaNAC提高转基因烟草的抗旱功能.中国烟草学报,2010,16(6):82-88
    17刘艳鸣.玉米温敏型核雄性不育基因的差异表达.[硕士学位论文].海南詹洲:华南热带农业大学,2002
    18鲁振强,刘大丽,柳参奎.过量表达水稻细胞质型OsAPXs基因提高转基因烟草的耐盐性.植物研究,2010,30(4):448-454
    19孟金陵.植物生殖遗传学.北京:科学出版社,1997:172-177
    20米志勇,王树生,吴乃虎.水稻低分子量GTP结合蛋白基因OsRACD的分离.科学通报.2000,45(19):2047-2055
    21王超,杨传平,魏继承,等.白桦雌花序抑制性消减文库构建及EST分析.植物研究,2008,28(3):293-297
    22王关林,方宏筠.植物基因工程.北京:科学出版社,2002
    23王敏培,周云涛,王茂林,等.甘蓝型油菜异胡豆苷合成酶(Strictosidine synthase) cDNA的克隆与分析.四川大学学报(自然科学版),2008,45(5):1277-1280
    24王平,赵景云,苏君伟.百日草雄性不育两用性及其在育种中的应用.北方园艺,2004,(3):70-71
    25王永勤.白菜核不育两用系育性基因表达特征分析及其小孢子发育相关基因的分离.[博士学位论文].杭州:浙江大学,2003
    26徐海霞,刘彤,刘霞.百日草雄性不育系的选育及研究.安徽农学通报,2007,13(9):51-52
    27徐妙云,周建,张兰,等.大豆2-甲基-6-植基-1,4-苯醌甲基转移酶基因(Gm VTE3)的克隆及对转基因烟草种子中生育酚组成的影响.中国农业科学,2010,43(10):1994-1999
    28叶要妹,陈天花,齐迎春,等.百日草根尖和花药愈伤组织染色体制片技术的研究.广西植物,2007,27(5):673-675
    29叶要妹.百日草杂交亲本的选育与自交系间遗传多样性评价.[博士学位论文].武汉:华中农业大学,2007
    30易继财,梅曼彤.水稻空间诱变雄性不育突变体WS-3-1的抑制缩减杂交分析.华 南农业大学学报,2007,28(1):70-72
    31张彦锋,张新,张文学,等.芸苔属两个雄蕊心皮化雄性不育系特性及遗传分析.西北农林科技大学学报(自然科学版),2010,38(10):83-88
    32张银东,刘艳鸣,冯仁军,等.玉米温敏型核雄性不育基因差异表达分析.热带作物学报,2004,25(2):66-71
    33张政值.太谷核不育小麦雄性不育相关基因的克隆研究.[博士学位论文].南京:南京农业大学,2003
    34张中华,魏刚,杨燕,等.兰麻优良雄性不育系“C26”的选育及利用研究.中国麻业,2005,27(3):109-112
    35张祖新,唐万虎,郑用琏.玉米S型细胞质雄性不育与恢复花粉中基因表达差异分析.长江大学学报(自科版),2005,25(3):59-65
    36赵景云,王平,李娜,等.百日草“芳菲1号”选育报告.辽宁农业科学,2005,(1):54-55
    37赵景云,王平,李娜,等.矮型百日草“芳菲3号”选育报告.辽宁农业科学,2006a,(3):85-86
    38赵景云,王平,王志刚.矮型百日草“芳菲2号”选育报告.农业工程技术:温室园艺,2006b,(2):34-35
    39赵梁军,宿友民.我国花卉种业现状与发展战略(三).中国花卉园艺,2003,(4):4
    40赵淑艳,沈向群,王平,等.百日草雄性不育两用系AB201遗传研究及性状比较.北方园艺,2007,(3):149-151
    41赵万苓,姜世平,付新生,等.利用农杆菌介导法将查尔酮合酶基因导入大岩桐.分子植物育种,2006,(1):45-48
    42赵燕.马铃薯(Solanum tuberosum L.)花粉特异表达基因ST901的克隆及其功能研究.[博士学位论文].北京:中国农业大学,2004
    43周贤尧,董娜,刘红霞,等.小麦TaPIM1基因的克隆及其转基因烟草的抗病性分析.作物学报,2010,36(6):911-917
    44 Aarts M G, Dirkse W G, Stiekema W J, et al. Tranposon tagging of a male sterility gene in Arabidopsis. Nature,1993,363:715-717
    45 Aarts M G, Hodge R, Kalantidis K, et al. The Arabidopsis MALESTERILITY2 protein shares similarity with reductases in elongation/condensation complexes. The Plant Journal,1997,12(3):615-623
    46 Adams M D, Kelly J M, Gocayne J D, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science,1991,252(5013): 1651-1656
    47 Ahlers F, Lambert J, Wiermann R. Acetylation and silylation of piperidine solubilize sporopollenin from pollen of Typha angustifolia L. Znaurforsch,2003,58:807-811
    48 Albertsen M C, Fox T W, Trimnell M R. Cloning and utilizing a maize nuclear male sterility gene. Proc 48th Ann Corn and Sorghum Industry Res Conf.,1993:224-233
    49 Bachem C W, van der Hoeven R S, de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 1996,9(5):745-753
    50 Battaglia R, Brambilla V, Colambo L, et al. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible ale gene-expression system. Mechanisms of Development,2006,123(4):267-276
    51 Bedinger P. The remarkable biology of pollen. The Plant Cell,1992,4:879-889
    52 Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA,2002,99: 10887-10892
    53 Bertioli D J, Schlichter U H, Adams M J. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Research,1995,23(21): 4520-4523
    54 Bouchez D, Hofte H. Functional genomics in plants. Plant Physiol.,1998,118: 725-732
    55 Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. The Plant Cell,1989,1:37-52
    56 Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development,1991,112(1):1-20
    57 Boyle T H, Stimart D P, Bauchan G R. Influence of Zinnia angustifolia HBK genotype on embryonic and vegetative development of Z. angustifolia × Z. elegans Jacq. interspecific hybrids. Theor Appl Genet.,1987,73:716-723
    58 Boyle T H, Stimart D P. Effect of Zinnia angustifolia HBK genotype on morphology and flowering of Z. angustifolia × Z. elegans Jacq. hybrids. Euphytica,1989,44: 73-79
    59 Boyle T H, Stimart D P. Inheritance of ray floret color in Zinnia angustifolia HBK and Z. elegans Jacq. The Journal of Heretdity,1988,79:289-293
    60 Boyle T H, Stimart D P. Interspecific hybrids of Zinnia elegans Jacq. and Z. angustifolia HBK:embryology, morphology and powdery mildew resistance. Euphytica,1982,31:857-867
    61 Brooks J, Shaw G. Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nature,1968,219:532-533
    62 Bucciaglia P A, Smith A G. Cloning and characterization of Tag 1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol.,1994,24: 903-914
    63 Budar F, Pelletier G, Pabo C O, et al. Transcription factors:structural families and principles of DNA recognition. Annu Rev Biochem,1992,61:1053-1095
    64 Budar F, Pelletier G, Riechmann J L, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science,2000,290:2105-2110
    65 Budar F, Pelletier G. Male sterility in plants:occurrence, determinism, significance and use. C R Acad Sci Ⅲ,2001,324 (6):543-550
    66 Chapple R M, Chaundhury A M, Blomer K C, et al. Construction of A YAC contig of 2 megabases around the MS1 gene in Arabidopsis thaliana. Australian Journal of Plant Physiology,1996,23:453-465
    67 Chaudhury A M. Nuclear genes controlling male fertility. The Plant Cell,1993,5: 1277-1283
    68 Cigan A M, Unger E, Xu R J, et al. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sexual Plant Reproduction,2001,14(3): 135-142
    69 Coen E S, Carpenter R. The metamorphosis of flowers. The Plant Cell,1993,5: 1175-1181
    70 Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development. Nature,1991,353:31-37
    71 Consoli F L, Tian H S, Vinson S B, et al. Differential gene expression during wing morph differentiation of the ectoparasitoid Melittobia digitata (Hym. Eulophidae). Comparative Biochemistry and Physiology,2004,138(2):229-239
    72 Cowen R K D, Ewart L C. Inheritance of a male apetalous inflorenscence in Zinnia elegans. Acta Horticulture,1990,272:37-40
    73 Dewey R E, Levings C S, Timothy D H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell,1986,44:439-449
    74 Dewey R E, Timothy D H, Levings C S. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA, 1987,84:5374-5378
    75 Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93(12):6025-6030
    76 Edwardson I R. Cytoplasmic male sterility. Botanical Review,1956,22:696-739
    77 Fiecher H K, Stoger E, Schillberg S, et al. Plant-based production of biopharmaceuticals. Curr Opin Plant Biol.,2004,7(2):152-158
    78 Frankel R, Lzhar S, Nitsan J. Timing of callase activity and cytoplasmic male sterility in petunia. Biochem Genet.,1969,3:451-455
    79 Frohman M A, Dush M K, Martin G R. Rapid production of full length cDNAs from transcripts:amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA,1988,85:8998-9002
    80 Glover J, Grelon M, Craig S, et al. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis. The Plant Journal,1998,15(3):345-356
    81 Goodman H M, Ecker J R, Dean C. The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA,1995,92(24):10831-10835
    82 Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic gene pistillate. Genes and Development,1994,8(13):1548-1560
    83 Grelon M, Budar F, Bonhomme S, et al. Ogura CMS associated orfl38 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica hybrids. Mol.Gen.Genet.,1994,243:540-547
    84 Gutierrez R A, Ewing R M, Cherry J M, et al. Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis:rapid decay is associated with a group of touch and specific clock-controlled genes. Proc Natl Acad Sci USA,2002,99(17): 11513-11518
    85 Heslop-Harrison J, Mackenzie A. Autoradiography of soluble [2-14C] thymidine derivatives during meiosis and microsporogenesis in Lilium anthers. Journal of Cell Science,1967,2:387-400
    86 Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. The Plant Journal,2003,35:177-192
    87 Hill J P, Lord E M. Floral development in Arabidopsis thaliana:a comparison of the wild type and the homeotic pisfillata mutant. Canadian Journal of Botany,1989, 67:2922-2936
    88 Hird D L, Worrall D, Hodge R, et al. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to (3-1,3-glucanases. The Plant Journal,1993,4:1023-1033
    89 Hoffman J C, Vaughn K C, Joshi H C. Structural and immunocytochemical characterization of microtubule organizing centers in pteridophyte spermatogenous cells. Protoplasma,1994,179(1-2):46-60
    90 Hord C L H, Chen C, Deyoung B J, et al. The BAM1/BAM2 receptor like kinases are important regulators of Arabidopsis early anther development. The Plant Cell,2006, 18:1667-1680
    91 Horsch R B, Fry J E, Hoffman N, et al. A simple and general method for transferring genes into plants. Science,1985,227:1229-1231
    92 Hubank M, Sehatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Research,1994,22: 5640-5648
    93 Huminiecki L, Bicknell R. In silico cloning of novel endothelial-specific genes. Genome Res.,2000,10:1796-1806
    94 Huynh T V, Young R A, Davis R W. Constructing and screening cDNA libraries in λgt10 and λgt11. DNA cloning:a practical approach. Oxford:IRL Press,1985
    95 Irish V F. The evolution of floral homeotic gene function. Bioessays,2003,25(7): 637-646
    96 Ito T, Wellmerl F, Yu H, et al. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature,2004,430:356-360
    97 Ivan A, Eugenia R, Ludmil A, et al. Expression of an anther specific chalcone synthase like gene is correlated with uninucleate microspore development in Nicotiana sylvestris. Plant Mol Biol,1998,38:1169-1178
    98 Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell,1992,68:683-697
    99 Jiang D G, Li J, Wu P, et al. Isolation and characterization of a microsporocyte specific gene, OsMSP, in rice. Plant Mol Biol Rep.,2009,27:469-475
    100 Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol.,1999,41:577-585
    101 Jung K H, Han M J, Lee Y S, et al. Rice undeveloped tapetuml is a major regulator of early tapetum development. The Plant Cell,2005,17:2705-2722
    102 Kapoor S, Kobayasha A, Takatsuji H. Silencing of the tapetum specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. The Plant Cell,2002,14:2353-2367
    103 Kaul M L H. Male sterility in higher plants. Berlin, Heidelberg:Springer-Verlag Press,1988
    104 Kim J Y, Chung Y S, Paek K H, et al. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization. Molecules and Cells,1999, 9(4):392-397
    105 Koltunow A M, Truettner J, Cox K H, et al. Different temporal and spatial gene expression patterns occur during anther development. The Plant Cell,1990,2: 1201-1224
    106 Ku S J, Yoon H, Suh H S, et al. Male-sterility of thermo-sensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta,2008, 217(4):559-565
    107 Lewin B. Gene VII. New York:Oxford University press Inc.,2000
    108 Li S F, Higginson T, Parish R W. A novel MYB-related gene from Arabidopsis thaliana expressed in development anthers. Plant Cell Physiol.,1999,40:343-347.
    109 Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257:967-970
    110 Liang P, Pardee A B. Recent advance in differential display. Curr Opin Immunol, 1995,7:274-280
    111 Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science,1993,259:946-951
    112 Lou X Y, Hu Q S, Bao M Z, et al. Analysis of combining ability of two-type of male sterile and four restorer lines of Zinnia elegans. Euphytica,2010,174(1): 91-103
    113 Lou X Y, Lu T T, Li M J, Pang R H, Ye Y M, Bao M Z. Combining ability among male sterile two-type and restorer lines of Zinnia elegans and implications for the breeding of this ornamental species. Scientia Horticulturae,2011,129:862-868
    114 Ma H, de Pamphilis C. The ABCs of floral evolution. Cell,2000,101(1):5-8
    115 Mcclelland M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primed PCR. Tends Genet,1995,11:242-246
    116Meinke D, Cherry J M, Dean C, et al. Arabidopsis thaliana:a model for genome analysis. Science,1998,282 (5389):662-682
    117 Millar A A, Gubler F. The Arabidopsis GaMYB like genes, MYB33 and MYB65, are micro RNA regulated genes that redundantly facilitate anther development. The Plant Cell,2005,17:705-721
    118 Moneger F, Smart C J, Leave C J. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J.,1994,13(1):8-17
    119 Nonomura K I, Miyoshi K, Eiguchi M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. The Plant Cell,2003,15:1728-1739
    120 Ogata K, Morikawa S, Nakamura H, et al. Comparison of the free and DNA-complexed forms of the DNA-binding domain of c-Myb. Nat Struct Biol.,2005, 2:309-320
    121 Okumura N, Nishizawa N K. Aioxygenase gene (Ids2) expressed under iron deficiency conduction in the roots of Hordeum vulgare. Plant Molecular Biology, 1994,25:705-719
    122 Pathak C S, Singh D P, Deshpande A A. Male and female sterility in chilli pepper (Capsicum annuum L.). Cap sicum Newsltr,1983,2:95-96
    123 Pesquet E, Ranocha P, Legay S, et al. Novel markers of xylogenesis in Zinnia are differentially regulated by auxin and cytokinin. Plant Physiology,2005,139: 1821-1839
    124 Piffanelli P, Ross J H E, Murphy D J. Biogenesis and function of the Iipidc structure of pollen grains. Sexual Plant Reproduction,1998,11:65-80
    125 Piffanelli P, Ross J H E, Murphy D J. Intra-and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. The Plant Journal,1997,11:549-562
    126 Pinyopieha A, Ditta G S, Savidge B, et al. Assessing the redundancy of MADS-box genes during carple and ovule development. Nature,2003,424(6944):85-88
    127 Preston J, Wheeler J, Heazlewood J, et al. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. The Plant Journal,2004,40:979-995
    128 Preuss D, Lemieux B, Yen G, et al. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev.,1993,7:974-985
    129 Rebrikov D V, Desai S M, Siebert P D, et al. Suppression subtractive hybridization. Methods in Molecular Biology,2004,258:107-134
    130 Rogers R B, Smith M, Cowen R K D. In vitro production of male sterile Zinnia elegans. Euphytica,1992,61(3):217-223
    131 Rosinski J A, Atchley W R. Molecular evolution of the Myb family of transcription factors:evidence for polyphyletic origin. Mol Evol.,1998,46:74-83
    132 Ross K J, Fransz P, Armstrong S J, et al. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chromosome Research,1997,5:551-559
    133 Sanders P M, Bui A Q, Weterings K, et al. Anther developmental defects in male-sterility mutants. Sex Plant Reprod,1999,11:297-322
    134 Schiefthaler U, Balasubramantan S, Sieber P, et al. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:11664-11669
    135 Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci.,1998,3:175-180
    136 Scott R, Dapless E, Hodge R, et al. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol.,1991,17:195-207
    137 Sears E R. Genetics and farming. Science and Farming:Yearbook of Agriculture, 1947:245-255
    138 Sheridan W F, Avlkina N A, Shamrovi I, et al. The mac1 gene:controlling the commitment to the meiotic pathway in maize. Genetics,1996,142:1009-1020
    139 Sheridan W F, Golubeva E A, Abrhamova L I, et al. The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics,1999,153:933-941
    140 Singh M, Brown G G. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS:developmental influences. Curr Genet., 1993,24(4):316-322
    141 Sompayrac L, Jane S, Burn T C, et al. Overcoming limitations of the mRNA differential display technique. Nucleic Acids Research,1995,23(22):4738-4739
    142 Song J, Hedgcoth C A. Chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. Plant Mol Biol.,1994,26(1):535-539
    143 Song Z Q, Wang J W, Hao F, et al. Identification of differentially expressed genes HSPC016 in dermal papilla cells with aggregative behavior. Archives of Dermatological Research,2005,297(3):114-120
    144 Spooner D M, Stimart D P, Boyle T H. Zinnia marylandica (Asteraceae: Heliantheae), a new disease-resistant ornamental hybrid. Brittonia,1991,43:7-10
    145 Steiner-lange S, Unte U S, Eckstein L, et al. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. The Plant Journal, 2003,34:519-528
    146 St-Pierre B, Vazquez-Flota F A, De Luca V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. The Plant Cell,1999,11:887-900
    147Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Trends in Genetics,1995, 11(2):63-68
    148 Terefe D, Tatlioglu T. Isolation of a partial sequence of a putative nucleotide sugar epimerase, which may involve in stamen development in cucumber (Cucumis sativus L.). Theor Appl Genet,2005,111(7):1300-1307
    149 Terry-Lewandowski V M, Stimart D P. The inheritance of resistance to powdery mildew in interspecific hybrids and induced amphiploids of Zinnia elegans Jacq. and Z angustifolia HBK. Euphytica,1985,34:483-487
    150 Theissen G, Becker A, Di Rose A, et al. A short history of MADS-box genes in plants. Plant Mol. Biol.,2000,42(1):115-149
    151 Vieira H L, Haouzi D, Hamel C E, et al. Permeabilization of the mitochondrial inner membrane during apoptosis:impact of the adenine nucleotide translocator. Cell Death and Differentiation,2000,7(12):1146-1154
    152 Villemur R, Haas N A, Joyce C M, et al. Characterization of four new P-tubulin genes and their expression during male flower development in maize(Zea mays L.). Plant Molecular Biology,1994,24(2):295-315
    153 Von Stein O D, Thies W G, Hofmann M A. A high through put screening for rarely transcribed differentially expressed genes. Nucleic Acids Research,1997,25: 2598-2602
    154 Wang A, Xia Q, Xie W, et al. Male gametophyte development in bread wheat (Triticum aestivum L.):molecular, cellular and biochemical analyses of a sporophtic contribution to pollen wall ontogeny. The Plant Journal,2002,30:613-623
    155 Wang H M, Ketela T, Keller W A, et al. Genetic correlation of the orf24/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol Biol,1995,27(4): 801-807
    156 Warmke H E, Overman M A. Cytoplasmic male sterility in sorghum. Journal of Heredity,1972,63:103-108
    157 Waterkeyn L, Beinfait A. On a possible function of the callosic special wall in Lpomoea purpuea (L.) Roth. Grana,1970,10:13-20
    158 Waterkeyn L. Les parois microsporocytaires de nature callosique chez helleborus et tradescantia. Cellule,1962,62:225-255
    159 Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell,1994,78(2): 203-209
    160 Weijer J. A catalogue of genetic maize types together with a maize bibliography. Bibl. Genet.,1952,14:189-425
    161 Wise R P, Fliss A E, Pring D R, et al. Urf13-T of T cytoplasm maize mitochondria encodes a 13kD polypeptide. Plant Mol. Biol.,1987,9:121-126
    162Worrall D, Hird D L, Hedge R, et al. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. The Plant Cell,1992,4(7): 759-771
    163 Wu J Y, Shen J R, Mao X Z, et al. Isolation and analysis of differentially expressed genes in dominant genie male sterility (DGMS) Brassica napus L. using subtractive PCR and cDNA microarray. Plant Science,2007,172(2):204-211
    164Xu H, Knox R B, Taylor P E, et al. Bcpl, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA,1995,92:2106-2110
    165 Yang M, Hu Y, Lodhi M, et al. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA,1999, 96:11416-11421
    166 Yang S L, Xie L F, Mao H Z, et al. Tapetum determinant 1 is required for cell specialization in the Arabidopsis anther. The Plant Cell,2003,15:2792-2804
    167 Yang W C, Sundaresan V. Genetics of gametophyte biogenesis in Arabidopsis. Current Opinion in Plant Biology,2000,3:53-57
    168 Ye Y M, Zhang J W, Ning G G, et al. A comparative analysis of the genetic diversity between inbred lines of Zinnia elegans using morphological traits and RAPD and ISSR markers. Scientia Horticulturae,2008a,118(1):1-7
    169 Ye Y M, Hu Q S, Chen T H, et al. Male sterile lines of Zinnia elegans and their cytological observations. Agricultural Sciences in China,2008b,7(4):423-431
    170 Zhang J Z, Li Z M, Liu L, et al. Identification of early-flower-related ESTs in an early-flowering mutant of trifoliate orange (Poncirus trifoliata) by suppression subtractive hybridization and macroarray analysis. Tree Physiology,2008,28, 1449-1457
    171 Zhang W, Sun Y, Timofejeva L, et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM 1 (DYT1) encoding a putative bHLH transcription factor. Development,2006,133:3085-3095
    172 Zhao D Z, Wang G F, Speal B, et al. The excess microsporocytesl gene encodes a putative lercine rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16:2021-2031
    173 Zhu J, Chen H, Li H, et al. Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. The Plant Journal,2008,55(2):266-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700