用户名: 密码: 验证码:
顶部分形加载单极子天线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分形曲线具有高效的空间填充性和自相似性,所以采用分形技术的天线可以充分填充有限的空间区域,从而增加天线的电长度,这种特性可以缩小天线尺寸,同时获得多频带或者宽频带特性。单极子天线由于结构简单,被广泛应用于各种通信系统,但是传统单极子天线过大的尺寸不仅影响移动搭载平台的气动性,特别是机载环境,还降低了天线的生存能力。本文围绕减小单极子天线高度,增大阻抗带宽,对顶部分形加载单极子天线进行了理论和实验研究,具体工作如下:
     1.结合分形曲线的放缩,从电流分布的角度阐明了顶部分形加载对于单极子天线高度的压缩原理。针对单纯顶部分形加载时天线输入电阻过小而难以匹配的问题,提出了在分形曲线两端加载短路柱的方法。实测结果表明:顶部Hilbert和Peano加载单极子天线在λ/14的高度下,分别实现了15.7%和13.7%的相对阻抗带宽。
     2.针对搭载空间有限的情况,分析了有限金属接地面对顶部分形加载单极子天线阻抗带宽和方向图的影响。分析表明:设计金属接地面的尺寸可以有效调节天线E面方向图的波束指向和3dB波束宽度。
     3.为了进一步提高顶部分形加载单极子天线的宽带工作能力,提出了多短路柱加载方案。实测结果表明,采用该方案后顶部一阶和二阶Peano分形加载单极子天线的相对阻抗带宽分别提高为25.8%和27%。
     4.为了进一步减小天线的高度和顶部填充空间,提出了对顶部分形加载单极子天线加载集总阻抗网络的方案。分析表明:在顶部填充尺寸增加时,顶部二阶Peano分形加载单极子天线的电高度可以再减小50%;在顶部填充尺寸不变时,天线的电高度可以再减小26.7%。
Fractal antenna can achieve multiband or wideband characteristic with small size due to its efficient space-filling and self-similarity, which is very attractive for modern wireless communications such as mobile platform and airborne platform. In this dissertation, antenna miniaturization and bandwidth enhancement have been studied by introducing fractal loading on the top of monopole. The main contributions of this dissertation are listed as follow:
     Based on the current distribution of scaled fractal curve, the principle of reducing the height of fractal loaded monopole antenna is given. Shorting pins are introduced at the end of fractal structure for impedance matching. Measurement shows that Hilbert and Peano fractal loaded monopole antennas achieve 15.7% and 13.7% impedance bandwidth in the height ofλ/14, respectively.
     Next, effects of finite ground plane are investigated. Simulations show that it is an effective method to adjust E-plane beam bearing and 3dB beamwidth by adjusting the finite ground plane size.
     Next, multiple shorting pins technique is introduced to further enhance the impedance bandwidth of the proposed fractal loaded monopole antennas. Measurements show that a bandwidth improvement of 25.8% and 27% is achieved for the 1st order and 2nd order Peano fractal loaded monopole antennas, respectively.
     In addition, a lumped network is studied as loading for reducing the antenna height and loading area. There is a trade-off between the required antenna height and loading area according to simulations. For example, with the increase of loading area, the 2nd order Peano fractal loaded monopole antenna can achieve a 50% decrease on antenna height. When the loading area remains unchanged, the monopole antenna can achieve a 26.7% decrease on antenna height.
引文
[1]王元坤,李玉权.线天线的宽频带技术.西安:西安电子科技大学出版社,1995
    [2]周朝栋,王元坤,周良明.线天线理论与工程.西安:西安电子科技大学出版社,1988
    [3]林昌禄,聂在平等.天线工程手册.北京:电子工业出版社,2002
    [4]A. K. Skrivervik, J. F. Zurcher, O. Staub and J. R. Mosing. PCS antenna design:The challenge of miniaturization. IEEE Antenna and Propagation Magazine,2001,43(4): 12-27
    [5]D. M. Grimes, C. A. Grimes. Minimum Q of electrically small antennas:A critical review. Microwave and Optical Technology Letters,2001,29(3):172-177
    [6]D. H. Werner, S. Ganguly. An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine,2003,45(1):38-57
    [7]周朝栋,杨恩耀.电小天线.西安:西安电子科技大学出版社,1990
    [8]陈玉东,全力民.机载天线及其布局设计要求.航空电子技术,2008,39(3):34-38
    [9]D. M. Grimes, C. A. Grimes. Radiation Q of dipole-generated fields. Radio Science, 1999,34(2):281-296
    [10]G. A. Thiele, P. L. Detweiler, R. P. Penno. On the lower bound of the radiation Q for electrically small antennas. IEEE Trans. Antennas and Propagation,2003,51(6): 1263-1269
    [11]J. S. Mclean. A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas and Propagation,1996,44(5):672-676
    [12]H. A. Wheeler. Fundamental limitations of small antennas. Proceedings of the IRE, 1947,35(12):1479-1484
    [13]L. J. Chu. Physical limitation on omni-directional antennas. Journal of applied physics,1948,19(12):1163-1175
    [14]R. F. Harrington. Time-harmonic electromagnetic fields. New York:McGraw Hill, 1961
    [15]R. E. Collin, S. Rothschild. Evaluation of antenna Q. IEEE Trans. Antennas and Propagation,1964,12(1):23-27
    [16]R. L. Fante. Quality factor of general ideal antennas. IEEE Trans. Antennas and Propagation,1969,17(2):151-155
    [17]R. C. Hansen. Fundamental limitations in antennas. Proceedings of IEEE,1981, 69(2):170-182
    [18]J. C.-E. Sten, A. Hujanen, P. K. Koivisto. Quality factor of an electrically small antenna radiating close to a conducting plane. IEEE Trans. Antennas and Propagation, 2001,49(5):829-837
    [19]G. Y. Wen. A method for the evaluation of small antenna Q. IEEE Trans. Antennas and Propagation,2003,51(8):2124-2129
    [20]C. A. Grimes, G. Liu, D. M. Grimes and K. G.Ong. Characterization of a wide-band, low Q, electrically-small antenna. Microwave and Optical Technology Letters,2000,27(1): 53-58
    [21]C. A. Grimes, G. Liu, F. Tefiku and D. M. Grimes. Time domain measurement of antenna Q. Microwave and Optical Technology Letters,2000,25(2):95-100
    [22]T. T. Wu, R. W. P. King. The cylindrical antenna with nonreflecting resistive loading. IEEE Trans. Antennas and Propagation,1965,13(3):369-373
    [23]E. Altshuler. The traveling-wave linear antenna. IRE Trans. Antennas and Propagation,1961,9(4):324-329
    [24]S. D. Rogers, C. M. Butler, A. Q. Martin. Design and realization of GA-optimized wire monopole and matching network with 20:1 bandwidth. IEEE Trans. Antennas and Propagation,2003,51(3):493-502
    [25]K. Yegin, A. Q. Martin. Very broadband loaded monopole antenna. IEEE Antenna and Propagation Society, AP-S International Symposium,1997,1:232-237
    [26]H. R. Bhojwani, L. W. Zelby. Spiral top-loaded antenna:characterization and design. IEEE Trans. Antennas and Propagation,1973,21(3):293-298
    [27]T. L. Simpson. The theory of top-loaded antennas:integral equations for the currents. IEEE Trans. Antennas and Propagation,1971,19(2):186-190
    [28]G. Goubau, N. Puri, F. Schwering. Diakoptic theory for multielement antennas. IEEE Trans. Antennas and Propagation,1982,30(1):15-26
    [29]J. R. James, A. J. Schuler, R. F. Binham. Reduction of antenna dimensions by dielectric loading. IEE Electronics Letters,1974,10(13):263-265
    [30]L. A. Francavilla, J. S. McLean, H. D. Foltz and G. E. Crook. Mode-matching analysis of top-hat monopole antennas loaded with radially layered dielectric. IEEE Trans. Antennas and Propagation,1999,47(1):179-185
    [31]D. Guha, Y. M. M. Antar, A. Ittipiboon, A. Pstosa and D. Lee. Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters,2006,5(1):373-376
    [32]S. Ghosh, A. Chakrabarty. Ultrawideband performance of dielectric loaded T-shaped monopole transmit and receive antenna/EMI sensor. IEEE Antennas and Wireless Propagation Letters,2008,7:358-361
    [33]阮成礼,王春.小型化准分形加载单极子天线.电波科学学报,2006,21(5):727-730
    [34]J. McVay, C. Thajudeen, A. Hoorfar. Reconfigrable top-loaded monopoles using stacked space-filling curves. IEEE Antennas and Propagation Society, AP-S International Symposium,2008,1-4
    [35]B. B. Mandelbrot. The fractal geometry of nature. New York:W. H. Freeman,1983
    [36]D. L. Jaggard. Fractal electrodynamics:Wave interactions with discretely self-similar structures. New York:Plenum Co.,1995
    [37]C. Puente, J. Romeu, R. Pous, et al. Small but long Koch fractal monopole. IEE Electronics Letters,1998,34(1):9-10
    [38]T. Fukusako, T. Terada, K. Iwata. Design and comparative study on planar small antennas using meander and peano line structure. IEEE Antennas and Propagation Society, AP-S International Symposium,2007,2451-2454
    [39]J. P. Gianvittorio, Y. Rahmat-Samii. Fractal antennas:a novel antenna miniaturization technique and applications. IEEE Antennas and Propagation Magazine, 2002,44(1):20-36
    [40]J. L. Sanchez, L. de Haro. Experiences on multiband fractal antennas. IEEE Antennas and Propagation Society, AP-S International Symposium,2001,3:1700-1703
    [41]C. Puente, J. Ponmeu, R. Pous, et al. Fractal multiband antenna based on the Sierpinski gasket. IEE Electronic Letters,1996,32(1):1-2
    [42]S. R. Best. On the significance of self-similar fractal geometry in determing the multiband behavior of the Sierpinski gasket antenna. IEEE Antennas and Wireless Propagation Letters,2002,1(1):22-25
    [43]J. S. Petko, D. H. Werner. Miniature reconfigurable three-dimensional fractal tree antennas. IEEE Trans. Antennas and Propagation,2004,52(8):1945-1956
    [44]J. Anguera, C. Puente, E. Martinez, and et al. The fractal Hilbert monopole:a two-dimensional wire. Microwave and Optical Technology Letters,2003,36(2):102-104
    [45]H. Elkamchouchi and M. Abu. Nasr.3D-fractal rectangular Koch dipole and Hilbert dipole antennas. IEEE Antennas and Propagation Society, International AP-S Symposium, 2007,4148-4151
    [46]S R. Best. A comparison of the performance properties of the Hilbert curve fractal and meander line monopole antennas. Microwave and Optical Tehcnology Letters,2002, 35(4):258-262
    [47]J. Zhu, A. Hoorfar and N. Engheta. Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas. IEEE Antennas and Wireless Propagation Letters,2003,2:2-5
    [48]K. J. Vinoy, K.A. Jose, V. K. Varadan and et al. Hilbert curve fractal antenna:a small resonant antenna for VHF/UHF applications. Microwave and Optical Technology Letters, 2001,29(4):215-219
    [49]A. S. Andrenko. Conformal fractal loop antennas for RFID tag applications. International Conference on Applied Electromagnetics and Communications,2005,1-6
    [50]K. J. Vinoy, K.A. Jose, V. K. Varadan and et al. Hilbert curve fractal antennas with reconfigurable characteristics. IEEE Microwave Theory and Techniques Society, International Microwave Symposium,2001,1:381-384
    [51]J. M. Gonzalez-Arbesu, S. Blanch and J. Romeu. The Hilbert curve as a small self-resonant monopole from a practical point of view. Microwave and Optical Technology Letters,2003,39(1):45-49
    [52]J. McVay, A. Hoorfar. A miniaturized planar space-filling antenna with wideband monopole-like radiation characteristics. IEEE Antennas and Propagation Society, International AP-S Symposium,2006,3723-3726
    [53]K. S. Yee. Numerical solution of initial boundary-value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation,1966, 14(5):302-307
    [54]A. Taflove and S. C. Hagness. Computational electrodynamics:The finite difference time domain method. Artech House, Norwood, MA,2000
    [55]J. H. Beggs, R. J. Luebbers, B. G. Ruth. Analysis of electromagnetic radiation from shaped-end radiators using the finite difference time domain method. IEEE Trans. Antennas and Propagation,1993,41(9):1324-1327
    [56]N. Jin, Y. Rahmat-Samii. Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas and Propagation,2005,53(11):3459-3468
    [57]R. Pascaud, R. Gillard, R. Loison, J. Wiart and et al. Dual-grid finite-difference time-domain scheme for the fast simulation of surrounded antennas. IEE Microwave, Antennas and Propagation,2007,1(3):700-706
    [58]P. A. Tirkas, C. A. Balanis, M. P. Purchine, G. C. Barber. Finite-difference time-domain method for electromagnetic radiation, interference, and interaction with complex structures. IEEE Trans. Electromagnetic Compatibility,1993,35(2):192-203
    [59]R. Luebbers, J. Beggs, K. Chamberlin. Finite difference time-domain calculation of transients in antennas with nonlinear loads. IEEE Trans. Antennas and Propagation,1993, 41(5):566-573
    [60]M. Hussein, A. Sebak. Application of the finite-difference time-domain method to the analysis of mobile antennas. IEEE Trans. Vehicular Technology,1996,45(3):417-426
    [61]M. Chen, B. Houshmand, T. Itoh. FDTD analysis of a metal-strip-loaded dielectric leaky-wave antenna. IEEE Trans. Antennas and Propagation,1997,45(8):1294-1301
    [62]M. Omiya, T. Hikage, N. Ohno, K. Horiguchi and et al. Design of cavity-backed slot antennas using the finite-difference time-domain technique. IEEE Trans. Antennas and Propagation,1998,46(12):1853-1858
    [63]Y. Nishioka, O. Maeshima, S. Adachi. FDTD analysis of resistor-loaded bow-tie antennas covered with ferrite-coated conducting cavity for subsurface radar. IEEE Trans. Antennas and Propagation,1999,47(6):970-977
    [64]G. M. Turner, C. Christodoulou. FDTD analysis of phased array antennas. IEEE Trans. Antennas and Propagation,1999,47(4):661-667
    [65]M. N. O. Sadiku. A simple introduction to finite element analysis of electromagnetic problems. IEEE Trans. Education,1989,32(2):85-93
    [66]T. Itoh. Numerical technique for microwave and millimeter wave passive structure. Wiley, New York,1989
    [67]Dong-Ho Han, A. C. Polycarpou, C. A. Balanis. Hybrid analysis of reflector antennas including higher order interactions and blockage effects. IEEE Trnas. Antennas and Propagation,2002,50(11):1514-1524
    [68]M. N. Vouvakis, C. A. Balanis, C. R. Birthcer, A. C. Polycarpou. Ferrite-loaded cavity-backed antennas including nonuniform and nonlinear magnetization effects. IEEE Trans. Antennas and Propagation,2003,51(5):1000-1010
    [69]T. Simpson, Yanjie Zhu. The Electrically Small Multi-Turn Loop Antenna with a Spheroidal Core. IEEE Magazine Antennas and Propagation,2006,48(5):54-66
    [70]T. Ozdemir, J. L. Volakis. Triangular prisms for edge-based vector finite element analysis of conformal antennas. IEEE Trans. Antennas and Propagation,1997,45(5): 788-797
    [71]Kyoung Yang, G. David, Jong-Gwan Yook, I. Papapolymerou and et al. Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna. IEEE Trans. Antennas and Propagation,2000,48(2):288-294
    [72]Dong-Ho Han, A. C. Polycarcou, C. A. Balanis. Ground effects for VHF/HF antennas on helicopter airframes. IEEE Trans. Antennas and Propagation,2001,49(3): 402-412
    [73]Ching-Wei Ling, Chia-Yu Lee, Chia-Lun Tang, Shyh-Jong Chung. Analysis and Application of an On-Package Planar Inverted-F Antenna. IEEE Trans. Antennas and Propagation,2007,55(6):1774-1780
    [74]M. M. Ilic, B. M. Notaros. Higher Order FEM-MoM Domain Decomposition for 3-D Electromagnetic Analysis. IEEE Antennas and Propagation Letters,2009,8:970-973
    [75]J. Martinez-Fernandez, J. M. Gil, W. Wiesbeck. Twin Orthogonally Polarized UWB Aperture Antenna Elements With Optimized Profile Feed for Optimal Adaptation. IEEE Antennas and Propagation Letters,2009,8:517-521
    [76]Hai Jiang, R. Penno, K. M. Pasala, L. Kempel and et al. Broadband Microstrip Leaky Wave Antenna With Inhomogeneous Materials. IEEE Trans. Antennas and Propagation,2009,57(5):1558-1562
    [77]余彦民,吴文.UHF波段Peano分形单极子天线的分析与设计.南京理工大学学报:自然科学版,2008,32(1):96-99
    [78]Jinhui Zhu, A. Hoorfar, N. Engheta. Peano antennas. IEEE Antennas and Wireless Propagation Letters,2004,3(1):71-74
    [79]Seunghwan Yoon, Franco De Flaviis.2.45GHz Peano curved line V-H antenna with differential mode inputs. IEEE Antennas and Propagation Society, International AP-S Symposium,2006,2045-2048
    [80]E. El-Khouly, H. Ghali, S. A. Khamis. High directivity antenna using a modified peano space-filling curve. IEEE Antennas and Wireless Propagation Letters,2007,6: 405-407
    [81]E. A. El-Khouly, H. A. Ghali. High gain fractal-based Yagi antenna. Antennas and Propagation Conference, LAPC 2008, Loughborough,2008,405-408
    [82]Xuan Chen, Yaxun Liu and Safieddin Safavi-Naeini. Printed plane-filling antennas for UHF band. IEEE Antennas and Propagation Society, International AP-S Symposium, 2004,4:3425-3428
    [83]Jinhui Zhu, Ahmad. Hoorfar and Nader. Engheta. Mutual coupling effects in space-filling-curve antennas. IEEE Topic Conference on Wireless Communication Technology,2003,277-278
    [84]Yanmin Yu, Yiming Tang, Wen Wu. Effect of a finite ground plane on Peano fractal loaded monopole antenna. Microwave and Optical Technology Letters,2007,49(12): 3087-3090
    [85]Boyu Zheng, Zhongxiang Shen. Effect of a finite ground plane on microstrip-fed cavity-backed slot antennas. IEEE Trans. Antennas and Propagation,2005,53(2):862-865
    [86]N. V. Larsen, O. Breinbjerg. Modelling the impact of ground planes on antenna radiation using the method of auxiliary sources. IEE Microwave, Antennas and Propagation,2007,1(2):472-479
    [87]A. K. Bhattacharyya. Effects of finite ground plane on the radiation characteristics of a circular patch antenna. IEEE Trans. Antennas and Propagation,1990,38(2):152-159
    [88]J. P. Seaux, A. Reinneix, B. Jecko, J. H. Hamelin. Transient analysis of a space-borne microstrip patch antenna illuminated by an electromagnetic pulse. IEEE Trans. Electromagnetic Compatibility,1991,33(3):224-233
    [89]P. L. Garcia-Muller, A. G. Roederer. A physical optics based plane wave spectrum approach to the analysis of finite planar antennas. IEEE Trans. Antennas and Propagation, 1992,40(8):906-911
    [90]T. Namiki, Y. Murayama, K. Ito. Improving radiation-pattern distortion of a patch antenna having a finite ground plane. IEEE Trans. Antennas and Propagation,2003,51(3): 478-482
    [91]A. Mohammadian, S. S. Soliman, M. A. Tassoudji, L. Golovanevsky. A Closed-Form Method for Predicting Mutual Coupling Between Base-Station Dipole Arrays. IEEE Trans. Vehicular Technology,2007,56(3):1088-1099
    [92]V. Volski, G. A. E. Vandenbosch. Modelling of a microstrip antenna on a finite ground plane using the expansion wave concept and the aperture integral equation formulation. IEE Proceedings Microwave, Antennas and Propagation,2004,151(2): 109-114
    [93]C. L. Mak, Y. L. Chow, K. M. Luk. Finite ground plane effect of a microstrip patch antenna:a CAD formula of impedance perturbation by synthetic asymptote and GTD. IEE Proceedings Microwave, Antennas and Propagation,2003,150(1):11-17
    [94]J. McVay, A. Hoorfar. Miniaturization of top-loaded monopole antennas using Peano-curves. IEEE Radio and Wireless Symposium,2007, pp:253-256
    [95]Yanmin Yu, Yiming Tang, Wen Wu. An enhanced bandwidth design technique for Peano fractal loaded monopole antenna. Microwave and Optical Technology Letters,2008, 50(8):2045-2048
    [96]S. I. Kwak, K. Chang, Y. J. Yoon. Small spiral antenna for wideband capsule endoscope system. IEE Electronic Letters,2006,42(23):1328-1329
    [97]Chang Wenmo, Zhenghe Feng. Investigation of a Novel Wideband Feeding Technique for Dielectric Ring Resonator Antennas. LEEE Antennas and Wireless Propagation Letters,2009,8:348-351
    [98]S. Hayashida, H. Morishita, K. Fujimoto. Self-balanced wideband folded loop antenna. IEE Proceedings Microwave, Antennas and Propagation,2006,153(1):7-12
    [99]M. A. Antoniades, G. V. Eleftheriades. A Compact Multiband Monopole Antenna With a Defected Ground Plane. IEEE Antennas and Wireless Propagation Letters,2008,7: 652-655
    [100]Wang-Sang Lee, Dong-Zo Kim, Ki-Jin Kim, Jong-Won Yu. Wideband planar monopole antennas with dual band-notched characteristics. IEEE Trans. Microwave Theory and Techniques,2006,54(6):2800-2806
    [101]S. Tanaka, Yongho, Kim, H. Morishita, S. Horiuchi and et al. Wideband Planar Folded Dipole Antenna With Self-balanced Impedance Property. IEEE Trans. Antennas and Propagation,2008,56(5):1223-1228
    [102]A. Atia, K. K. Mei. Analysis of multiple-arm conical log-spiral antennas. IEEE Trans on Antennas and Propagation,1971,19(3):320-331
    [103]R. Bawer, J. J. Wolfe. A printed circuit balun for use with spiral antennas. IRE Trans on MTT,1960,8:319-325
    [104]O. Kim, J. Dyson. A log-spiral antenna with selectable polarization. IEEE Trans on Antennas and Propagation,1971,19(5):675-677
    [105]Liang-Biao Yang, K. Lizuka. Experimental investigation on a method of lowering the silhouette of conical log-spiral antenna. IEEE Trans on Antennas and Propagation, 1983,31(2):347-352
    [106]D. E. Anagnostou, J. Papapolymerou, M. M. Tentzeris and et al. A printed log-periodic koch-dipole array. IEEE Antennas and Wireless Propagation Letters,2008,7: 456-460
    [107]S. K. Sharma, L. Shafai. Investigations on miniaturized endfire vertical polarized quasi-fractal log-periodic zigzag antenna. IEEE Trans on Antennas and Propagation,2004, 52(8):1957-1962
    [108]D. Isbell. Log periodic dipole array. IRE Trans on Antennas and Propagation,1960, 8(3):260-267
    [109]Shih-Yuan Chen, Po-Hsiang Wang, P. Hsu. Uniplanar log-periodic slot antenna fed by a CPW for UWB applications. IEEE Antennas and Wireless Propagation Letters,2006, 5(1):256-259
    [110]R. Solosko, S. Laxpat. A log-periodic antenna with vertically polarized omnidirectional radiation. IEEE Antenna and Propagation,1968,16(6):752-753
    [111]Yanmin Yu, Wen Wu. Miniaturized Peano Fractal Loaded Monopole Antenna. Asia-Pacific Microwave Conference,2009. (accepted)
    [112]Yo-Shen Lin, Chun Hsiung Chen. Lumped-element impedance-transforming uniplanar transitions and their antenna applications. IEEE Trans. Microwave Theory and Techniques,2004,52(4):1157-1165
    [113]J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro and et al. An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans. Microwave Theory and Techniques, 2004,52(2):489-497
    [114]J.-S. Lee, H. Rhyu, B. Lee. Design concept of multi-band antenna with resonant circuit on PCB. IEE Electronic Letters,2007,43(6):5-6
    [115]H. Choo, H. Ling. Design of electrically small planar antennas using inductively coupled feed. IEE Electronic Letters,2003,39(22):1563-1565
    [116]马汉清,褚庆听.一种集总元件加载的宽带小型化多臂折叠天线.电波科学学报,2009,24(1):50-54
    [117]周斌,刘其中,郭景丽.螺旋天线的快速分析及宽带化设计.电波科学学报,2005,20(5):647-650
    [118]孙保华,纪奕才,刘其中VHF/UHF天线宽带匹配网络的优化设计与实验研究.电子学报,2002,30(6):797-799
    [119]Boag. A, Michielssen. E, Mittra. R. Design of electrically loaded wire antennas using genetic algorithms. IEEE Trans. Antennas and Propagation,1996,44(5):687-695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700