用户名: 密码: 验证码:
基于LTCC技术的无源器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信系统的不断发展,近年来崛起的低温共烧陶瓷技术(LTCC)由于其低成本、低介质损耗、多层布局、良好的导电导热率和高频高Q等特性被广泛应用于各种小型化、轻量化、高性能和高集成度的微波毫米波电路与系统。本论文基于平面交叉耦合滤波器和微带天线的基本理论,结合LTCC工艺的三维布局特性,提出了一系列多层结构的微带滤波器和天线设计方案。其中,滤波器具有小体积、高抑制度、宽频/双频、传输零点和谐振频率可调等特性;天线具有双频、双圆极化、紧凑的辐射面和体积等特点,具有广阔的应用前景。
     首先,本论文详细阐述了交叉耦合滤波器的基本原理,将耦合矩阵的优化设计转化为求目标函数最小值问题,提出适用于任意拓扑结构的遗传-Solvopt混合优化算法。以MATLAB作为研究平台,在滤波器设计实例中验证了优化算法的可行性。引入源和负载的耦合并提出一系列新型的滤波器拓扑结构,对它们的传输零点和响应曲线进行了详细设定和分析。介绍了N胞模块级联滤波器,其传输零点由每个N胞模块单独控制,然后根据所需阶数,选择模块之间的级联方式组成多阶级联滤波器。在准确实现传输零点的基础上,可兼顾良好的反射响应、较高的阻带抑制和矩形系数。所以N胞模块级联滤波器不仅拥有高阶滤波器的优良传输性能,其结构分析和实现还因基于独立模块而变得简单,并降低了仿真和加工可能带来的误差影响。
     其次,本论文研究了多种谐振滤波器,提出一系列基于LTCC技术的新型滤波器结构。利用LTCC的工艺特点设计多层交叉耦合阶跃阻抗谐振(SIR)滤波器,使得各谐振单元间的耦合方式从传统的平面转为立体,耦合度控制更灵活,体积更小。同时源-负载的耦合以及零度馈电方式的引入保证了阻带的高抑制度。设计了一系列三维结构的宽带带通和带阻滤波器,所有滤波器均由半集总的谐振单元组成,谐振单元中的电容由LTCC多层平板电容实现。传输零点的位置由各谐振单元参数单独控制,可实现带宽和阻带抑制度的自由调节。同时,利用这种半集总谐振单元的拓扑结构还设计了LTCC双通带滤波器,引入源-负载的垂直耦合来增加传输零点,进而提高选择性。各通带频率和传输零点位置由谐振元件值分别控制,灵活可调。
     接着,本论文研究了LTCC微带天线,提出了多种小型化结构设计。介绍了受扰动的双频双圆极化天线,通过调节不同层上的六边形辐射面和扰动切块面的大小,可在较宽频带内实现双频圆极化辐射特性。同时,在辐射面上使用矩形裂口,延长了辐射电流的有效路径。相当于在频率不变的情况下,进一步缩小了体积。然后在体积仅为3.2mm×1.6mm×2mm的LTCC基板内设计了多层折叠微带线来实现双频WLAN天线的功能。工作频点可通过调节各辐射层之间的耦合距离以及各层折叠线(谐振极子)自身的电长度来控制。辐射层之间的连接通过封端的方式实现,无通孔,工艺简单,成品率高。另外,研究发现使用非均匀间隔的折叠微带线可实现更宽的辐射带宽。
With the development of wireless communication system, low temperature co-firedceramic (LTCC) technology has been widely used in many microwave/millimeter-wavecircuits with small size, light weight, good performance and high integration by itscharacteristics of low cost, low dielectric loss, multilayer layout, superior electric andthermal conductivity, high frequency and high Q value. Based on the basic theory ofplanar cross-coupled filter and microstrip antenna, this paper presents a series design ofmultilayer filter and antenna with LTCC3D structure. The filters have the features ofcompact size, high suppression, wide-band/dual-band, tunable transmission zeros andresonant frequency. And the antennas have the characteristics of dual-frequency, dualcircularly polarization, compact radiation area and volume. Thus there has anexpansively application prospects.
     First of all, the paper illustrates the elementary principles of cross coupled filterand reduces the matrix optimization problem to minimum value solution of objectivefunction. Genetic-Solvopt mixed algorithm, which is suitable for any topologicalstructure, is presented and its correctness is verified in filter design based on MATLABsoftware. A series of novel topological structures with source-load coupling is proposed,the transmission zeros and response curves are settled and analyzed in detail. Cascadefilters with N blocks modules are introduced, the transmission zeros of which arecontrolled by each module separately. The modules can be cascaded to form a highorder filter according to different cascade ways, while their transmission zeros are fixed.Thus cascade filter with N blocks modules has the properties of high stop-band rejection,good selectivity and reflection response. Meanwhile, the structure analysis andrealization could be simplified based on each single module, also the effect ofsimulation and fabrication error is reduced.
     Secondly, the paper presents some resonator filters with novel structure based onLTCC technology. Multilayer cross coupled SIR filter is designed with horizontal andvertical couplings, the size is more compact and the coupling element is easier to control. Meanwhile the introduction of source-load coupling and00feed structureguarantees the high suppression of stop band. Besides, a series of multilayeredwideband bandpass and bandstop filter is designed using semilumped resonators andmultilayer capacitors. The transmission zeros are controlled by each resonator separately,and the bandwidth as well as rejection level are free to adjust. Additionally, dual-bandbandpass filter with this semilumped resonator structure is also demonstrated.Source-load coupling in vertical direction is utilized to add transmission zeros andimprove the selectivity. The resonant frequencies and transmission zeros are flexiblytuned by elements of each resonator respectively.
     Thirdly, some LTCC microstrip antennas with miniaturized structure are discussed.Perturbed dual-band circularly polarized antenna with wide radiation bandwidth isrealized by tuning the area of radiation and perturbation pattern. Some inserted silts areutilized to meander the excited fundamental-mode patch surface current path, whicheffectively lowers the resonant frequency of the patch, thus the compactness of theproposed CP design is achieved. Besides, a novel compact WLAN antenna usingmeander striplines in three LTCC layers is completed, the volume of which is only3.2×1.6×2mm3. The resonant frequencies can be easily tuned by adjusting the innercoupling between different patterns and the length of the striplines (dipoles). Besides,the connection between different radiation layers is realized by end-coating, thus no viahole was used in this structure, which guarantees the easy fabrication and highproduction. Moreover, it is found that inhomogeneous spaced meander line createswider radiation bandwidth than homogeneous spaced one does.
引文
[1] M. Makimoto and S. Yamashita. Bandpass filters using parallel-coupled stripline steppedimpedance resonators. IEEE Trans.Microw.Theory Tech.,1980,28:1413–1417
    [2] T.N. Kuo and S.C. Lin. New Coupling Scheme for Microstrip Bandpass Filters WithQuarter-Wavelength Resonators. IEEE Trans. Microw. Theory Tech.,2008,56(12):2930–2935
    [3] P.K. Singh and S. Basu. Miniature Dual-Band Filter Using Quarter Wavelength SteppedImpedance Resonators. IEEE Microw.Wireless Compon.Lett.,2008,18(2):88-90
    [4] C.H. Liang, C.H. Chen and C.Y. Chang. Fabrication-Tolerant Microstrip Quarter WaveStepped-Impedance Resonator Filter. IEEE Trans. Microwave Theory Tech.,2009,57(5):1163–1172
    [5] S.C. Lin, Y.S. Lin. Miniaturized Microstrip Interlocked-Coupled Bandpass Filters UsingFolded Quarter-Wavelength Resonators. Proceedings of Asia-Pacific Microwave Conference,2006
    [6] C.F. Chen, T.Y. Huang and R.B. Wu. Compact Microstrip Cross-Coupled Bandpass FiltersUsing Miniaturized Stepped Impedance Resonators. APMC Proceedings,2005
    [7] Sun. S and Zhu. L. Compact dual-band microstrip bandpass filter without external feeds.IEEE Microw. Wireless Compon. Lett.,2005,15(10):644-646
    [8] J. Wang, Y.X. Guo and B.Z. Wang. High-selectivity dual-band stepped-impedance bandpassfilter. Electron Lett.,2006,42(9):51-52
    [9] P. Akkaraekthalin, S. Hongdamnuen. A Bandpass Filter with Cross-Coupled L-Shape FoldedResonators for Compact Size and Spurious Suppression. Proceedings of Asia-PacificMicrowave Conference,2006
    [10] Y.M. Chen and S.F. Chang. A Compact Stepped-Impedance Pseudo-Interdigital BandpassFilter With Controllable Transmission Zero and Wide Stopband Range. EuMA Conference,2009:783-786
    [11] K.U. Yen and E.J. Wollack. A Bandpass Filter Design Using Half-Wavelength SteppedImpedance Resonators With Internal Couplings. IEEE Microw. Wireless Compon. Lett.,2006,16(8):443-445
    [12] J.T. Kuo and E. Shih. Stepped Impedance Resonator Bandpass TH2C-5Filters with TunableTransmission Zeros and Its Application to Wide Stopband Design. IEEE MTT-S Digest:1613-1616
    [13] H. Zhang and K.J.Chen. A Tri-Section Stepped-Impedance Resonator for Cross-CoupledBandpass Filters. IEEE Microw.Wireless Compon.Lett.,2005,15(6):401-403
    [14] H. Yabuki and M. Sagawa. Stripline Dual-Mode Ring Resonators and Their Application toMicrowave Devices. IEEE Trans.Microw.Theory Tech.,1996,44(5):723–729
    [15] M.Sagawa, M. Makimoto and S. Yamashita. Geometrical Structures and FundamentalCharacteristics of Microwave Stepped-Impedance Resonators. IEEE Trans.Microw.TheoryTech.,1997,45(7):1078–1085
    [16] R.J. Mao and X.H. Tang. Novel Dual-Mode Bandpass Filters Using Hexagonal LoopResonators.IEEE Trans. IEEE Trans.Microw.Theory Tech.,2006,54(9):3526–3533
    [17] M.H. Weng and C.T. Liauh. An Ultra-Wideband Bandpass Filter With an Embedded Open-Circuited Stub Structure to Improve In-Band Performance. IEEE Microw. Wireless Compon.Lett.,2009,19(3):146-148
    [18] R. Dong and R.K. Pokharel. An UWB Bandpass Filter with Large Notch Suppression. APMC,2009:1393-1396
    [19] C.P. CHEN and Y. TAKAKURA. Design of Compact Notched UWB Filter Using CoupledExternal Stepped-Impedance Resonator. Microwave Conference,2009:945-948
    [20] C.P. Chen, Z. Ma and T. Anada. Synthesis of UWB Bandpass Filter by Multistage of OneWavelength Commensurate SIRs. ICMMT Proceedings,2008:1247-1250
    [21] Ishizaki.T, Fujita.M and Kagata.H. A very small dielectric planer filter for portable telephones.IRE Trans on MTT,1994,42(11):2017-2022
    [22] Y. Horii. A Novel Microstrip Bandpass Filter having Plural Transmission Zeros Using aCapacitive-Inductive-Capacitive Configuration. IEEE MTT-S,2004,3:1967-1970
    [23] C.W.Tang. Development of LTCC bandpass filters with transmission zeros. Electron lett.,2007,43(21):1149-1150
    [24] C.W. Tang. Development of Multilayered Bandpass Filters With Multiple TransmissionZeros Using Open-Stub/Short-Stub/Serial Semilumped Resonators. IEEETrans.Microw.Theory Tech.,2010,58(3):624-634
    [25] A. Kundu and N. Mellen. Miniaturized Multilayer Bandpass Filter with MultipleTransmission Zeros. Microwave Symposium Digest,2006:760-763
    [26] C.W. Tang. Using the Technology of Low Temperature Co-Fired Ceramic to Design theDual-Band Bandpass Filter. Microw. Wireless Compon.Lett.,2006,16(7):407-409
    [27] K. Huang, T. Chiu. LTCC Wideband Filter Design With Selectivity Enhancement. IEEEMicrow. Wireless Compon. Lett.,2009,19(7):452-454
    [28] K. Ahn and I. Yom. A Ka-Band Multilayer LTCC4-pole Bandpass Filter using Dual-modeCavity Resonators. Microwave Symposium Digest,2008
    [29] C.L. Hsu and J.T. Kuo. A Two-Stage SIR Bandpass Filter With an Ultra-Wide UpperRejection Band. IEEE Microw.Wireless Compon. Lett.,2007,17(1):34-36
    [30] P. J. Qiu and J. Hui. A Compact High-Selective Stripline SIR Bandpass Filter embedd inLTCC. Microwave Conference,2008:1-4
    [31] S.Oshima and K. Wada. Multilayer Dual-Band Bandpass Filter in Low-Temperature Co-FiredCeramic Substrate for Ultra-Wideband Applications. IEEE Trans. Microw. Theory Tech.,2010,58(3):614-623
    [32] T.H. Duong and I. S. Kim. New Elliptic Function Type UWB BPF Based on CapacitivelyCoupled λ/4Open T Resonator. IEEE Trans.Microw.Theory Tech,2009,57(12):3089-3098
    [33] J.A. Cruz and Y. Zhang. Ultra-Wideband LTCC Ridge Waveguide Filters. IEEE Microw.Wireless Compon.Lett.,2007,17(2):115-117
    [34] T. Yasuzumi and T. Uwano. A Study on the UWB BPF Using the Hairpin-type LPF and theParallel-coupled Lines. Microwave Conference,2009:2557-2560
    [35] T. Yasuzumi and O. Hashimoto. An Experimental Study on UWB BPF Loaded withDielectric Rods. Microwave Conference,2008,1-4
    [36] S. Sakhnenko and D. Orlenko. Low Profile LTCC Balanced Filter Based on a LumpedElements Balun for WiMAX Applications. Microwave Symposium Digest,2008:1111-1114
    [37] S. Sakhnenko and K. Markov. LTCC Balanced Filter Based on a Transformer Type Balun forWLAN802.11a Application. European Microwave Conference,2007:434-437
    [38] D.W. YOO and E.S. KIM. A Balance Filter with DC supply for BluetoothTMModule.Microwave Conference,2005
    [39] K.T. Chen and S.J. Chung. A Novel Compact Balanced-to-Unbalanced Low-TemperatureCo-Fired Ceramic Bandpass Filter With Three Coupled Lines Configuration. IEEE Trans.Microw. Theory Tech,2008,56(7):1714-1720
    [40] A.Ziroff and M.Nalezinski. A40GHz LTCC Receiver Module Using a Novel SubmergedBalancing Filter Structure. Radio and Wireless Conference,2003:151-154
    [41]吴思汉,吴国安,徐勤芬.具有传输零点的片式LTCC滤波器的设计与实现.半导体技术,2009,34(1):34-36
    [42]张祥军,方大纲.小型化多层带线谐振腔缺陷地结构LTCC宽带带通滤波器.微波学报,2008,24(5):58-61
    [43]吴国安,毕晓君,汤清华.基于LTCC技术的片式带通滤波器设计.微波学报,2007,23:77-81
    [44]墨晶岩,马哲旺.一种新型多层低温共烧陶瓷三级带通滤波器.微波学报,2006,22(2):59-61
    [45]许佳,覃亚丽,吴小燕.小型LTCC折叠线带通滤波器的设计.微波学报,2005,21(4):58-61
    [46]墨晶岩,马哲旺.低温共烧陶瓷(LTCC)四级低通滤波器设计.电波科学学报,2005,20,(5):566-569
    [47]张鹏,尉旭波,杨邦朝.一种新型SIR结构LTCC带通滤波器设计与制作.电子元件与材料,2010,29(1):52-54
    [48]陆达富,李元勋,刘颖力.双传输零点LTCC带通滤波器的设计与制作.电子元件与材料,2009,28(3):19-22
    [49]傅焕展,谢拥军,冯鹤.附加传输零点的层叠式LTCC带通滤波器设计.现代电子技术,2009,16:158-160
    [50]李元勋,边丽菲,刘颖力,等.叠层片式LTCC低通滤波器的设计与制作.电子科技大学学报,2009,38(4):521-524
    [51] H.M.CHEN. Single-feed dual-frequency rectangular microstrip antenna with a π-shaped slot.IEE Proc. Microw.Antennas Propagat,2007
    [52] D.H. SCHAUBERT and F.G. FERRAR. Microstrip antennas with frequency agility andpolarization diversity. IEEE Trans.Antennas Propagat.,1981,29:118-123
    [53] I.EGOROV and Z.YING. A non-uniform helical antenna for dual-band celluar phones. IEEEAP-S Int Symp,2000:652-655
    [54] H.M.CHEN and Y.F.LIN. A compact dual-band microstrip-fed monopole antenna. IEEE AP-SInt Symp,2001,2:124-127
    [55] I. Wolff and I. GmbH. From Antennas to Microwave Systems-LTCC as an IntegrationTechnology for Space Applications. EuCAP Antennas and Propagation,2009:3-8
    [56] I.K. Kim and S. Pinel. Linear Tapered Slot Antennas on LTCC Substrate for Millimeter-waveApplications. Antennas and Propagation Society International Symposium,2005:483-486
    [57] Antti E.I.Lamminen and Jussi S ily.60-GHz Patch Antennas and Arrays on LTCC WithEmbedded-Cavity Substrates. IEEE Trans.Antenn.Propag,2008,56:2865-2874
    [58] D.Manteuffel, M.Arnold. Considerations on configurable multi-standard antennas for mobileterminals realized in LTCC technology. EuCAP conference2009:2541-2545
    [59] G. Brzezina and L. Roy. Planar Antennas in LTCC Technology With Transceiver IntegrationCapability for Ultra-Wideband Applications. IEEE Trans. Microw. Theory Tech,2006,54(6):2830-2839
    [60] W. Byun and K. C. Eun. Design of8x8Stacked Patch Array Antenna on LTCC SubstrateOperating at40GHz Band. Microwave Conference Proceedings,2005
    [61] A.Shamim and G.Brzezina.5.2GHz Differential LTCC Antenna and Balun for BiomedicalSystem in Package (SiP) Application Antenna Technology. Small and Smart AntennasMetamaterials and Applications,2007:443-446
    [62] Y.P. Zhang and M.Sun. Antenna-in-Package in LTCC for60-GHz Radio.Antenna Technology.Small and Smart Antennas Metamaterials and Applications,2007:279-282
    [63] Y. Huang and K.L. Wu. An Integrated LTCC Millimeter-Wave Planar Array Antenna WithLow-Loss Feeding Network.Antennas and Propagation,2005,53:1232-1234
    [64] R.L. Li and G. DeJean. Design of Compact Stacked-Patch Antennas in LTCC MultilayerPackaging Modules for Wireless Applications. IEEE Trans Adv Packaging,2004,27(4):581-589
    [65] M. Sun and Y. P. Zhang. Integration of Grid Array Antenna in Chip Package for HighlyIntegrated60-GHz Radios. IEEE Antenn Wirel Propag Lett,2009,8:1364-1366
    [66] A.Bondarik and D.S. Jun.60GHz System-On-Package Antenna Array with ParasiticMicrostrip Antenna Single Element. Microwave Conference,2008:1-4
    [67] T. SEKI and K. NISHIKAWA.60-GHz Multi-Layer Parasitic Microstrip Array Antenna withStacked Rings using Multi-Layer LTCC Substrate. Radio and Wireless Symposium,2008:679-682
    [68] W. Byun and B.S. Kim.60GHz2x4Low Temperature Co-fired Ceramic Cavity BackedArray Antenna. Antennas and Propagation Society International Symposium,2009:1-4
    [69] A.Panther and A.Petosa. A Wideband Array of Stacked Patch Antennas Using Embedded AirCavities in LTCC. IEEE Microw. Wireless Compon. Lett.,2005,15(12):916-918
    [70] J. Aguirre and H.Y. Pao. An LTCC94GHz Antenna Array. Antennas and Propagation SocietyInternational Symposium,2008:1-4
    [71] Y. P. Zhang and M.Sun. An Overview of Recent Antenna Array Designs for Highly-Integrated60-GHz Radios. Antennas and Propagation,2009:3783-3786
    [72] M.Sun and Y.X. Guo. Integrated60-GHz LTCC Circularly Polarized Antenna Array. RadioFrequency Integration Technology,2009:178-181
    [73] S. Holmartb and R. Kulke. Integrated stacked patch antenna array on LTCC materialoperating at24GHz. Antennas and Propagation Society International Symposium,2004
    [74] W. Byun and B.S. Kim. LTCC Microstrip Patch Array Antenna with WR-22FeedingStructure for an Integrated Transceiver Module. Antennas and Propagation SocietyInternational Symposium2006:1495-1498
    [75] T. Seki and K. Nishikawa. Multi-Layer Parasitic Microstrip Array Antenna on LTCCSubstrate for Millimeter-Wave System-on-Package. European Microwave Conference,2003:1393-1396
    [76] S.Holzwarth and J.Kassner. Planar Antenna Arrays on LTCC-Multilayer Technology.lntemational Conference on Antennas and Propagation,2001:710-714
    [77] Y. Horii. A Compact Microstrip Patch Antenna Having a2-Dimentional Grounded-Pad ArrayEmbedded in an LTCC Substrate. Antennas and Propagation Society InternationalSymposium,2003:986-989
    [78] J.H. Lee and N. Kidera. V-band Integrated Filter and Antenna for LTCC Front-End modules.Microwave Symposium Digest,2006:978-981
    [79] D.Neculoiu and S.I.Ene. Electromagnetic Modelling and Design of77GHz Antennas inLTCC Technology. Semiconductor Conference,2009:341-344
    [80] S.Holzwarth and0.Litschke. Far Field Pattern Analysis and Measurement of a Digital BeamForming8x8Antenna Array Transmitting From29.5to30GHZ. EuCAP Antennas andPropagation,2007:1-5
    [81] Y. Ouyang and W. Chappell. Distributed Body-worn Transceiver System with the Use ofElectro-textile Antennas. Microwave Symposium,2007:1229–1232
    [82] B.Yang and A.Vorobyov. A Novel Shielded UWB Antenna in LTCC for Radar andCommunications Applications. ICUWB2008,2:117-120
    [83] S.S. Nam and H.M. Lee. Composite Right/Left-Handed Transmission Line Leaky-waveAntenna using LTCC Technology. iWAT Antenna Technology,2009
    [84] Manteuffel.D and Arnold.M. Concepts for Future Multistandard and Ultra Wideband MobileTerminal Antennas using Multilayer LTCC Technology. iWAT Antenna Technology,2009
    [85] W.I. Chang and D.Y. Jung. A surface wave reduced higher mode circular patch antenna for60GHz LTCC SiP. Microwave Conference Proceedings,2005,4
    [86] W.J. Byun and B.S. Kim. A Feasibility Study of Antenna in a Package Technology for40GHzFront-end Module. Advanced Packaging and Systems Symposium,2008:198-201
    [87] R. Baggen and M.M. V. Low Profile GALILEO Antenna Using EBG Technology. IEEETrans.Antenn.Propag,2008,56(3):667-674
    [88] S.H. Wi and Y.B. Sun. Package-Level Integrated Antennas Based on LTCC Technology. IEEETrans.Antenn.Propag,2006,54(8):2190-2197
    [89] K. M. Lum and T. Tick. Design and Measurement Data for a Microwave CP Antenna using anew Travelling-Wave Feed Concept. Microwave Conference,2005,1
    [90] Y. S. Bee and C. Z. Ning.60-GHz LTCC Antenna Array with Microstrip to CPW Transition.Microwave Conference,2009:1938-1941
    [91] G. Kim and A.C.W. Lu.3D Strip Meander Delay Line Structure for Multilayer LTCC-basedSiP Applications. Electronic Components and Technology Conference,2008
    [92] K.Markov and S. Royak. A Simple LTCC Balun for WLAN Applications Using Left-Handed(LH) Transmission Lines (TL). Microwave Conference,2005,1
    [93] A. Yatsenko, D. Orlenko. A Small-Size High-Rejection LTCC Diplexer for WLANApplications Based on a New Dual-Band Bandpass Filter. MicrowaveSymposium,2007:2113-2116
    [94] M.S.Zarnik and D.Belavic. An Application of PZT Thick Films on LTCC Substrates: A CaseStudy of a Resonant Pressure Sensor. Applications of Ferroelectrics,2008,3:1-2
    [95] M. Massiot. Evolution of LTCC technology for industrial applications. MicrowaveConference,2002:1-2
    [96] A.E. Tager and J. Bray. High-Q LTCC Resonators For Millimeter Wave Applications.Microwave Symposium Digest,2003,3:2257-2260
    [97] L.L. Wai and A.C. W. LTCC Based Integration for RF Applications. Electronics PackagingTechnology Conference,2005:309-312
    [98] D. Orlenko and G. Sevskiy. LTCC Triplexer for WiMax Applications. Microwave Conference,2005,1
    [99] R.J. Pratap and S. Sarkar. Modeling and Optimization of Multilayer LTCC Inductors forRF/Wireless Applications Using Neural Network and Genetic Algorithms. ElectronicComponents and Technology Conference,2004:248-254
    [100] J. Müller, M. Norén and M. Mach. Small Size LTCC Flip Chip-Package for RF-PowerApplications. Microelectronics and Packaging Conference,2009:1-4
    [101] R.J.Cameron. General Coupling Matrix Synthesis Methods for Chebyshev FilteringFunctions. IEEE Trans.Microw.Theory Tech.,1999,47(4):433-442
    [102] S. Amari. Synthesis of Cross-Coupled Resonator Filters Using an Analytical kmGradientBased Optimization Technique. IEEE Trans. Microw. Theory Tech.,2000,48(9):1559-1564
    [103]周明,孙树栋.遗传算法理论及应用.北京:国防工业出版社,1999
    [104] J.T. Kuo, M.J.Maa and P.H. Lu. A microstrip elliptic function filter with compactminiaturized hairpin resonators. IEEE Microw.Guided Wave Lett.,2000,10(3):94-95
    [105] C.M.Tsai, S. Y. Lee and H.M.Lee. Transmission-line filters with capacitively loaded coupledlines. IEEE Trans.Microw.Theory Tech.,2003,51(5):1517-1524
    [106] P.H.Deng, C.H.Wang and C.H.Chen. Compact microstrip bandpass filters with goodselectivity and stopband rejection. IEEE Trans.Microw.Theory Tech.,2006,54(2):533-539
    [107] J.T.Kuo, C.L.Hsth and E.Shih. Compact planar quasi-elliptic function filter with inlinestepped impedance resonators. IEEE Trans.Microw.Theory Tech.,2007,55(8):1747-1755
    [108] D.T. Hoa and I. S. Kim. Miniaturized Low Insertion Loss Multilayer Capacitively LoadedStep-Impedance Interdigital Bandpass Filter. Proceedings of Asia-Pacific MicrowaveConference,2007
    [109] C.W.Tang, H.C.Hsu and J.W.Wu. Design of a LTCC Dual-Passband Filter With SteppedImpedance Resonators. Proceedings of Asia-Pacific Microwave Conference,2007
    [110] S.Y. Lee and C.M. Tsai. New Cross-Coupled Filter Design Using Improved HairpinResonators. IEEE Trans.Microw.Theory Tech.,2000,48(12):2482-2490
    [111] J.S.Hong and M.J.Lancaster. Microstrip filters for RF/microwave applications. New York:Wiley,2001
    [112] C.M. Tsai, S.Y. Lee. Performance of a Planar Filter Using a00Feed Structure. IEEETrans.Microwave Theory Tech.,2002,50(10):2362–2367
    [113]赵宏锦,李志坚.无线通信中的微波谐振器与滤波器.北京:国防工业出版社,2002
    [114] G.L.Mattaei. Intcrdigital bandpass filters. IEEE Trans. Microwave Theory Tech.,1962,10(11):479–491
    [115] E.G.Cristal.Tapped-line coupled transmission lines with applications to interdigital andcombline filters. IEEE Trans. Microwave Theory Tech.,1975,23(12):1007-1012
    [116] R.N.Bates. Design of microstrip spur-line band-stop filters. Microwave Optics and Acoustics.,1977,1(6):209-214
    [117] A.F.Sheta, K.Hettak and J.P.Coupez. A new Semi-Lumped Microwave Filter Structure. IEEEMTT-S Digest,1995:383-386
    [118] M.H. Ho and W.H. Hsu. Bandstop Filters of Suspended Stripline Design Using the QuasiLumped Element Approach. CJMWProceedings,2011
    [119] M.D. Sindreu, J.Bonache and F. Martín. Compact CPW Dual-Band Bandpass Filters Basedon Semi-lumped Elements and Metamaterial Concepts. Proceedings of Asia-PacificMicrowave Conference,2010:670-673
    [120] A. Shine, V. Piatnitsa and A. Lapshin. Design of Quasi-Lumped-Element LTCC Filters andDuplexers for Wireless Communications. European Microwave Conference,2003:911-914
    [121] J.S. Hong and M.J. Lancaster. Bandpass characteristics of new dual-mode microstrip squareloop resonators. Electron Lett.,1995,7:891–892.
    [122] J.Watkins.Circular resonant structures in microstrip. Electron Lette.,1969,5:524–525.
    [123] C.W. Tang and H.C. Hsu. Development of Multilayered Bandpass Filters With MultipleTransmission Zeros Using Open-Stub/Short-Stub/Serial Semilumped Resonators. IEEE Trans.Microwave Theory Tech.,2010,58(3):624–633
    [124] G.L. Matthaei, L.Young, and E.M.T. Jones. Microwave Filters.Impedance MatchingNetworks and Coupling Structures. New York: McGraw-Hill,1980
    [125] K.Divyabramham, M.K.Mandal and S.Sanyal. Sharp-Rejection Wideband Bandstop Filters.IEEE Microw.Wireless Compon.Lett.,2008,18(10):662-664
    [126] V.K.Velidi, A.B.Guntupalli and S.Sanyal. Sharp-Rejection Ultra-wide Bandstop Filters. IEEEMicrow.Wireless Compon.Lett.,2009,19(8):503-505
    [127] Tsai.L.C and Hsue.C.W. Dual-band bandpass filters using equal-length coupled serial shuntedlines and Z-transform technique. IEEE Trans.Microw.Theory Tech.,2004,52(4):1111–1117
    [128] Zhou.M, Tang.X and Xiao. F. Compact dual band bandpass filter using novel-type resonatorswith controllable bandwidths. IEEE Microw.Wirel.Compon.Lett.,2008,18(12):779–781
    [129] Zhang.X.Y and Xue.Q. Novel dual-mode dual-band filters using coplanar-waveguide-fed ringresonators.IEEE Trans.Microw.Theory Tech.,2007,55(10):2183–2190
    [130] Zhou.M, Tang.X and Xiao F. Compact dual band transversal bandpass filter with multipletransmission zeros and controllable bandwidths. IEEE Microw.Wirel. Compon. Lett.,2009,19(6):347–349
    [131] M.Komulainen, J.M h nena and T.Ticka. Embedded air cavity backed microstrip antenna onan LTCC substrate. Journal of the European Ceramic Society.,2007,27(8):2881–2885
    [132] S. Mei and Z.Y. Ping. A Chip Antenna in LTCC for UWB Radios. IEEE Trans. AntennasPropagat,2008,56:1177-1180
    [133] Liu.C, Guo.Y and Bao.X.60-GHz LTCC Integrated Circularly Polarized Helical AntennaArray. IEEE Trans.Antennas Propagat,2011,99
    [134] C.M.Su and K.L.Wong. A dual-band GPS microstrip antenna. Microw.Opt.Technol. Lett.,2002,33:238–240
    [135] R. Shavit, L. Pazin and Y. Israeli. Dual Frequency and Dual Circular Polarization MicrostripNonresonant Array Pin-Fed From a Radial Line. IEEE Trans. Antennas Propagat,2005,53:897-3905
    [136] K.B.Hsieh, M.H.Chen, and K.L.Wong. Single-feed dual-band circularly polarized microstripantenna. Electron.Lett.,1998,34:1170–1171
    [137] K.P.Yang and K.L.Wong. Dual-band circularly-polarized square microstrip antenna. IEEETrans.Antennas Propagat.,2001,49:377–382
    [138] J.Y.Jan and K.L.Wong. A dual-band circularly polarized stacked elliptic microstrip antenna.Microwave Opt.Technol.Lett.,2000,24:354–357
    [139] K.P.Ray and G.Kuma. Determination of the resonance frequency of microstrip antennas.Microw Opt Technol Lett.,1999,23:114–117
    [140] S. Mei and Z.Y. Ping. A Chip Antenna in LTCC for UWB Radios. IEEE Trans. AntennasPropagat,2008,56(4):1177-1180
    [141] J.I. Moon and S.O. Park. Small Chip Antenna for2.4/5.8-GHz Dual ISM-Band Applications.IEEE Antenn Wirel Propag Lett.,2003,2:313-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700