用户名: 密码: 验证码:
无线终端设备天线及其解耦技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的发展,要求天线能够同时实现尽量多的功能。出于对天线小型化的考虑,多频段天线无疑是最佳的选择。因此,开发高性能小型多频段天线是无线终端天线技术发展的迫切需求。各种无线通信业务和宽带数据业务的不断发展,多天线技术应运而生。由于受到尺寸的限制,如何降低无线终端设备天线单元之间的互耦是多天线技术的核心问题之一。本论文结合科研课题和各种无线通信系统的需求,对无线终端设备天线及其解耦技术等问题展开研究。作者的主要工作和创造性成果可以概括为:
     1.对无线终端设备天线进行了研究。(1)针对无线设备要求天线具有多频段、宽频带、小型化等性能,采用下面几种方法加以实现:天线形式主要采用单极天线和PIFA天线形式;分别利用谐振枝节法、多缝隙法、曲折线法很好地实现了天线的多频段特性;并且主要通过对馈电形式进行改进,将一般的微带馈电形式改进为耦合馈电和平面套筒馈电形式,将PIFA中的探针馈电形式改进为梯形平板馈电形式,在实现多频段的基础上进一步展宽天线的阻抗带宽;在此基础上,利用顶加载技术以及弯折枝节法实现了天线的小型化。(2)在DVB-H单极天线的设计中,分析载体金属盒对天线性能影响。根据手机实际使用情况,设置最佳角度为150度。(3)在3G PIFA天线的设计中,采用双枝节激励PIFA天线的1/8波长和1/4波长双谐振模式,实现了双宽频带特性。
     2.研究了无线终端设备多天线地支解耦技术。分析在无线终端设备中双天线位置对耦合的影响:当双天线并列放置时,由于天线单元处于另一个天线单元较强的近场区域,因此发生强耦合。在地板上引入另一条耦合路径,控制其幅度和相位与原来的耦合场相抵消,也就是地支解耦技术。根据上述方法设计一款无线设备单频工作双天线系统,设计由三个垂直枝节和一个水平枝节组成的耦合元倒E形地支结构。调节中间最长的垂直枝节控制耦合场的幅度和相位;水平枝节和两端较短的垂直枝节主要调节耦合元的谐振频率。天线元之间的互耦明显减小,在2.45GHz处耦合为-46.7dB,与不加地支结构相比改善大约20dB。同样设计了一款双频工作双天线系统,由五个垂直枝节和两条水平枝节组成的耦合元双倒E形地支结构,上下两条水平枝节分别影响两个频段的互耦。在整个工作频段,天线双端口之间的隔离度均小于-30dB。地支结构易于设计,并且采用弯折技术,地支结构通常尺寸较小,适用于小型移动终端多天线单元之间进行解耦。
     3.研究了无线终端设备多天线地缝解耦技术。缝隙长度约为谐振频率四分之一波长时,得到最小的互耦。缝隙数目增加,阻抗特性变差,互耦减小,因此合理选择缝隙的数目,获得较好的阻抗特性和互耦特性。提出倒T形及双L形缝隙结构,设计了一款双频高隔离度两单元天线。加入T形缝隙结构之后,两天线单元在低频段的互耦明显减小,加入双L形缝隙之后,两天线单元在高频段的互耦降低,在整个工作频带范围内基本上均小于-20dB。与四分之一波长缝隙相比,两节谐振器尺寸明显减小,其高度由14.6mm减小到4mm,尺寸减小了72.6%。利用多节谐振器地缝结构可以有效的降低缝隙尺寸,同样可用于小型移动终端多天线单元解耦。
     4.研究了无线终端设备多天线解耦网络技术。提出两种解耦网络的设计方法:(1)微带线解耦网络(2)本征模解耦网络;为避免集总元件调试的敏感性,利用微带线解耦网络对两单元天线解耦,天线系统的互耦在整个阻抗带宽内低于-15dB;提出180o耦合器作为本征模解耦网络对两单元环天线解耦,天线系统的互耦在整个阻抗带宽内低于-20dB;提出由四个3dB电桥与移相线组成的混合网络作为本征模解耦网络对四单元环天线解耦。天线系统的互耦在整个阻抗带宽内低于-15dB。利用网络解耦,天线单元的设计和网络的设计可以分开进行,简化了联合优化的复杂性,其尺寸较大,一般适用于尺寸限制不太严格的多天线系统。
With the development of wireless communication technology, antennas are required torealize various functions at the same time. For the purpose of the miniature design, themulti-band antenna as a good candidate is often adopted to meet the above requirements Thedemand for the design of an antenna with compact size and multiband operation has increased,because of the rapid development of high performance compact multi-band wireless terminal.Along with the up-growth of various wireless communication services and broadband dataservices, the multiple antenna technology emerges as the times require. Duo to the limitedspace of the wireless terminal device, how to reduce the mutual coupling between arrayelements is one of the core problems of multiple antenna technology. In this paper, combinedwith the scientific researches and the requirements of all kinds of wireless communicationsystem, wireless terminal antenna and its decoupling technology are researched. The author’smajor contributions are as follows:
     1. The wireless terminal antennas were studied.(1) For wireless devices antenna with thecharacteristics of multiple frequency band, broadband, miniaturization as so on, using thefollowing method: antenna form mainly adopts monopole antenna and PIFA antenna; resonantstrips method, multiple slit method and meander line method are adopted to achieve a goodantenna for multi-band characteristics; And mainly through improvement of the feeding mode,the common microstrip feed is modified to coupling feed and planar sleeve feed. In PIFA,probe feed is improved to a trapezoidal flat feed, to further extend antenna impedancebandwidth on the basis of the realization of multi band operating.; On this basis, the toploading and bending branches section method are employed to achieve the miniaturization ofantenna.(2) In the DVB-H monopole antenna design, the effect on the performance of theantenna carrier metal box is analyzed. According to the practical application of mobile phone,the optimum angle is fixed as150degree.(3) In the3G PIFA antenna design, the PIFAantenna excited double strips has1/8and1/4wavelength dual resonant modes, realizing thedouble broadband characteristics.
     2. The ground branches decoupling technique of the wireless terminal equipment formultiple antennas was investigated. Careful analysis of the coupling effect on the positionbetween the double antennas in the wireless terminal device: when the dual-antenna placed injuxtaposition, it results in strong coupling that the antenna unit in the strong near field regionof the other antenna unit,. By introducing another coupling path on the ground plane, controlling the amplitude and phase of the coupling field to offset the original field is groundbranches decoupling technique. According to the method mentioned above, a singlefrequency dual-antenna wireless device system is proposed. A coupling element of inverted Eshape ground branches structure is composed of the three vertical strips and a horizontal strip.Adjusting the longest vertical branch in the middle can control the amplitude and phase ofcoupling field; Adjusting the horizontal branch and two shorter vertical branches can changethe resonant frequency of the coupling element. The mutual coupling between antennaelements is obviously reduced, coupling coefficient S21=-46.7dB at2.45GHz, improvingabout20dB comparing with the antenna elements without the ground branches structure.Similarly, a dual-band dual-antenna system is proposed. A dual inverted E shape groundbranches structure is composed of five vertical branches and two horizontal branches. Twoupper and two lower branches effect on mutual coupling in two frequency bands (2.45/5.2GHz) respectively. In the working bands, the isolation between the two ports is less than-30dB. Ground branches structure is easy to realize. And adopting the bending technology, theground branches structure is generally small in size, suitable for decoupling between theantenna elements in small mobile terminals.
     3. The slot decoupling technique for wireless terminal antennas was researched. Whenslot length is about1/4wavelength at resonant frequency, the mutual coupling is theminimum. As the slot number increases, the impedance bandwidth is mismatch and themutual coupling decreases. When the slot number is reasonable, impedance characteristicsand mutual coupling characteristics are obtained better. A dual-frequency high isolation twoelements antenna is designed using the inverted T shape and double L shaped slot structures.After adding T slot structure, two antenna coupling decreases in the lower band. And afteradding a double L shaped slot, two antenna coupling is reduced in upper band. The totalfrequency range basically is less than-20dB. And compared with the1/4wavelength slot,section2resonator size decreases. The height reduced from14.6mm to4mm and reduced72.6%. Using a plurality of resonator slot structure can effectively reduce the slot size. It canalso be used for decoupling of small mobile terminal antenna element.
     4. The decoupling network technology for the wireless terminal device was studied. Putforward two kinds of decoupling network design method:(1) the microstrip line decouplingnetwork (2) eigenmode decoupling network. In order to avoid lumped element testingsensitivity, using microstrip decoupling network decouples two elements antenna system. Themutual coupling in the impedance bandwidth is less than-15dB. Put forward180ocoupler to work in two units loop antenna system decoupling. Mutual coupling in the impedancebandwidth is less than-20dB. Put forward four3dB bridge and shift phase composition of themixed network to work in four units antenna loop decoupling. The mutual coupling ofantenna system is less than-15dB in the impedance bandwidth. Using network decoupling,antenna unit design and network design can be done separately, which simplifies thecomplexity of joint optimization. Because of its larger size, it generally applicable tolimitation of size less rigorous multiple antenna system.
引文
[1] Anguera J, Martinez E, Puente C. Broad-band dual-frequency microstrip patch antennawith modified Sierpinski fractal geometry. IEEE Transactions on Antennas andPropagation.2004,52(1):66-73.
    [2] Wong K L, Wiley J. Compact and broadband microstrip antennas. Wiley Online Library,2002.
    [3] Maci S, Gentili G B. Dual-frequency patch antennas. IEEE Antennas and PropagationMagazine.1997,39(6):13-20.
    [4] Bahl I J, Bhartia P, Garg R. Microstrip Antenna Design Handbook. Artech House.2001.2.
    [5] Bhatti R A, Im Y T, Park S O. Compact PIFA for mobile terminals supporting multiplecellular and non-cellular standards. IEEE Transactions on Antennas and Propagation.2009,57(9):2534-2540.
    [6] Janapsatya J, Esselle K P, Bird T S. A dual-band and wideband planar inverted-F antennafor WLAN applications. Microwave and Optical Technology Letters.2008,50(1):138-141.2.
    [7] Wu C H, Wong K L. Ultrawideband PIFA with a capacitive feed for penta-bandfolder-type mobile phone antenna. IEEE Transactions on Antennas and Propagation.2009,57(8):2461-2464.
    [8] Li J F, Sun B H, Zuo S L. Design of combined PIFAs with high port-to-port isolation forGSM/DCS and WLAN mobile phones. Electronics Letters.2009,45(11):532-533.
    [9] George Thomas K, Sreenivasan M. A simple dual-band microstrip-fed printed antenna forWLAN applications. IET Microwaves, Antennas and Propagation.2009,3(4):687-694.
    [10] Thomas K G, Sreenivasan M. Compact triple band antenna for WLAN/WiMAXapplications. Electronics Letters.2009,45(16):811-813.
    [11] Chang T N, Jiang J H. Meandered T-shaped monopole antenna. IEEE Transactions onAntennas and Propagation.2009,57(12):3976-3978.
    [12] Liu W C, Chen J K. Dual-band twin stepped-patch monopole antenna for WLANapplication. Electronics Letters.2009,45(18):929-931.2.
    [13] Kuo Y L, Wong K L. Printed Double-T Monopole Antenna for2.4/5.2Ghz Dual-BandWLAN Operations. IEEE Transactions on Antennas and Propagation.2003,51(9):2187-2192.
    [14] Mohammad Ali Nezhad S, Hassani H R. A novel triband E-shaped printed monopoleantenna for MIMO application. IEEE Antennas and Wireless Propagation Letters.2010,9:576-579.
    [15] Rao Q, Denidni T A. New broadband dual-printed inverted L-shaped monopole antennafor tri-band wireless applications. Microwave and Optical Technology Letters.2007,49(2):278-280.
    [16] Pan C Y, Huang C H, Horng T S. A new printed G-shaped monopole antenna fordual-band wlan applications. Microwave and Optical Technology Letters.2005,45(4):295-297.
    [17] Chi G, Li B, Qi D. Dual-band printed diversity antenna for2.4/5.2-GHz wlan application.Microwave and Optical Technology Letters.2005,45(6):561-563.
    [18] Hsiao H M, Lu J H, Wu J W. Y-shaped monopole antenna with dual-broadband operationfor WLAN. Microwave and Optical Technology Letters.2006,48(8):1476-1480.
    [19] Wu J W, Wang Y D, Hsiao H M, et al. T-shaped monopole antenna with shorted L-shapedstrip-sleeves for WLAN2.4/5.8-GHz operation. Microwave and Optical TechnologyLetters.2005,46(1):65-69.
    [20] Huang C Y, Chiu P Y. Dual-band monopole antenna with shorted parasitic element.Electronics Letters.2005,41(21):1154-1155.
    [21] Yeh S H, Wong K L. Dual-band F-shaped monopole antenna for2.4/5.2GHz WLANapplication. San Antonio, TX, United states:200272-75.
    [22] Lu J H, Lee Y Y. Planar C-shaped monopole antenna with multi-band operation forWiMAX system. Toronto, ON, Canada:2010.
    [23] Lu J H, Chou W C. Planar dual U-shaped monopole antenna with multiband operation forIEEE802.16e. IEEE Antennas and Wireless Propagation Letters.2010,9:1006-1009.
    [24] Lu J H, Huang B J. Planar multi-band monopole antenna with L-shaped parasitic strip forWiMAX application. Electronics Letters.2010,46(10):671-672.
    [25] Liu W C, Chen W R, Wu C M. Printed double S-shaped monopole antenna for widebandand multiband operation of wireless communications. IEE Proceedings: Microwaves,Antennas and Propagation.2004,151(6):473-476.
    [26] Song Y, Jiao Y C, Zhao H. Compact printed monopole antenna for multiband WLANapplications. Microwave and Optical Technology Letters.2008,50(2):365-367.
    [27] Wu C M, Chiu C N, Hsu C K. A new nonuniform meandered and fork-type groundedantenna for triple-band WLAN applications. IEEE Antennas and Wireless PropagationLetters.2006,5(1):346-348.
    [28] Kim T H, Park D C. CPW-fed compact monopole antenna for dual-band WLANapplications. Electronics Letters.2005,41(6):291-293.
    [29] Chang T N, Jiang J H. Meandered T-shaped monopole antenna. IEEE Transactions onAntennas and Propagation.2009,57(12):3976-3978.
    [30] Liu W C, Chen J K. Dual-band twin stepped-patch monopole antenna for WLANapplication. Electronics Letters.2009,45(18):929-931.2.
    [31] Wang H, Zheng M. Triple-band wireless local area network monopole antenna. IETMicrowaves, Antennas and Propagation.2008,2(4):367-372.
    [32] Kim S C, Lee S H, Kim Y S. Multi-band monopole antenna using meander structure forhandheld terminals. Electronics Letters.2008,44(5):331-332.
    [33] Xin G L, Xu J P. Wideband miniature G-shaped antenna for dual-band WLANapplications. Electronics Letters.2007,43(24):1330-1332.
    [34] Deepu V, Rohith K R, Manoj J. Compact uniplanar antenna for WLAN applications.Electronics Letters.2007,43(2):70-72.
    [35] Huang C Y, Chiu P Y. Dual-band monopole antenna with shorted parasitic element.Electronics Letters.2005,41(21):1154-1155.
    [36] Chen H D, Chen J S, Cheng Y T. Modified inverted-L monopole antenna for2.4/5GHZdual-band operations. Electronics Letters.2003,39(22):1567-1569.
    [37] Tangjitjesada M, Nakasuwan J, Kaewarsa C. U-shaped slot antenna for triple-frequency.Guilin, China:20061434-1437.
    [38] Qing X M, Chia M Y W. A compact dual-slot antenna for WLAN applications.Microwave and Optical Technology Letters.2003,37(4):311-313.
    [39] Liu H W, Ku C H, Yang C F. Novel CPW-fed planar monopole antenna forWiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters.2010,9:240-243.
    [40] Huang J X, Zhang F S, Zhang F. Compact groove-loaded triband antenna forWLAN/WiMAX applications. Microwave and Optical Technology Letters.2010,52(11):2588-2592.
    [41] Al Joumayly M A, Aguilar S M, Behdad N. Dual-band miniaturized patch antennas formicrowave breast imaging. IEEE Antennas and Wireless Propagation Letters.2010,9:268-271.2.
    [42] Ansari J A, Mishra A, Yadav N P. Analysis of pair of L-shaped slot loaded patch antennafor WLAN application. Allahabad, India:2010IEEE; IEEE Joint Societies Chapter ofIE/PEL/CSunder IEEE UP Section.
    [43] Sharma V, Saxena V K, Bhatnagar D. Compact dual frequency wide band circular patchantenna with U-slot. North Charleston, SC, United states:2009.
    [44] Wang Y, Yang S, Chen Y. Design of a bow-tie dual-frequency microstrip antenna at Land S bands. Ningbo, China:20101-4.
    [45] Nasimuddin, Chen Z N, Qing X. Dual-band circularly polarized S-shaped slotted patchantenna with a small frequency-ratio. IEEE Transactions on Antennas and Propagation.2010,58(6):2112-2115.
    [46] Zulkifli F Y, Kurniawan M D, Rahardjo E T. Dual band PIFA with U slot for WiMAXapplication. Singapore, Singapore:20092742-2745.
    [47] Nashaat D, Elsadek H A, Ghali H. Dual-band reduced size PIFA antenna with U-slot forBluetooth and WLAN applications. Columbus, OH, United states:2003962-967.
    [48] Salonen P, Keskilammi M, Kivikoski M. Single-feed dual-band planar inverted-F antennawith U-shaped slot. IEEE Transactions on Antennas and Propagation.2000,48(8):1262-1264.
    [49] Row J S, Hsu C H, Ai C Y. Studies of the planar inverted-F antenna with a U-shaped slot.Columbus, OH, United states:2003561-564.
    [50] Yang M, Chen Y, Mittra R. U-shaped planar inverted-F microstrip antenna with aU-shaped slot inset for dual-frequency mobile communications.2003197-202.
    [51] Lu J H, Huang B J. Planar multi-band monopole antenna with L-shaped parasitic strip forWiMAX application. Electronics Letters.2010,46(10):671-672.
    [52] George Thomas K, Sreenivasan M. A novel triple band printed antenna forWLAN/WiMAX applications. Microwave and Optical Technology Letters.2009,51(10):2481-2485.
    [53] Sze J Y, Chang W S. Dual-band square slot antenna with embedded crossed strips forwireless local area network applications. Microwave and Optical Technology Letters.2009,51(2):435-439.
    [54] Yoon J H, Lee Y C. Modified bow-tie slot antenna for the2.4/5.2/5.8GHz WLAN bandswith a rectangular tuning stub. Microwave and Optical Technology Letters.2011,53(1):126-130.
    [55] Sze J Y, Hsu C I G, Jiao J J. CPW-fed circular slot antenna with slit back-patch for2.4/5GHz dual-band operation. Electronics Letters.2006,42(10):563-564.
    [56] Mukandatimana M C, Denidni T A, Talbi L. Design of a new dual-band CPW-fed slotantenna for ISM applications. Milan, Italy:20046-9.
    [57] Wang Y D, Lu J H, Hsiao H M. Novel design of semi-circular slot antenna withtriple-band operation for WLAN/WIMAX communication. Microwave and OpticalTechnology Letters.2008,50(6):1531-1534.
    [58] Chen J S. Studies of CPW-fed equilateral triangular-ring slot antennas and triangular-ringslot coupled patch antennas. IEEE Transactions on Antennas and Propagation.2005,53(7):2208-2211.2.
    [59] Kim I, Jung C W, Kim Y. Low-profile wideband mimo antenna with suppressing mutualcoupling between two antennas. Microwave and Optical Technology Letters.2008,50(5):1336-1339.
    [60] Shin Y, Park S. Spatial diversity antenna for WLAN application. Microwave and OpticalTechnology Letters.2007,49(6):1290-1294.
    [61] Chiu C Y, Cheng C H, Murch R D. Reduction of mutual coupling between closely-packedantenna elements. IEEE Transactions on Antennas and Propagation.2007,55(6II):1732-1738.
    [62] Kokkinos T, Liakou E, Feresidis A P. Decoupling antenna elements of PIFA arrays onhandheld devices. Electronics Letters.2008,44(25):1442-1444.
    [63] Karaboikis M, Soras C, Tsachtsiris G. Compact dual-printed inverted-F antenna diversitysystems for portable wireless devices. IEEE Antennas and Wireless Propagation Letters.2004,3(1):9-14.
    [64] Li J F, Sun B H, Zuo S L. Design of combined PIFAs with high port-to-port isolation forGSM/DCS and WLAN mobile phones. Electronics Letters.2009,45(11):532-533.
    [65] Cui S, Liu Y, Jiang W. Compact dual-band monopole antennas with high port isolation.Electronics Letters.2011,47(10):579-580.
    [66] Addaci R, Diallo A, Le Thuc P. Dual-band wlan multi-antenna system with high isolation.20112478-2482.
    [67] Ouyang J, Yang F, Wang Z M. Reducing Mutual Coupling of Closely Spaced MicrostripMIMO Antennas for WLAN Application. IEEE Antennas and Wireless PropagationLetters.2011,10:310-313.
    [68] Ki-Jin K, Kyu-Ho P. The high isolation dual-band inverted F antenna diversity systemwith the small N-section resonators on the ground plane.2006195-198.
    [69] Wong K L, Chang C H, Chen B. Three-antenna MIMO system for WLAN operation in aPDA phone. Microwave and Optical Technology Letters.2006,48(7):1238-1242.
    [70]王煊.小型手持移动终端多天线技术研究.北京:清华大学,2010.
    [71] Wu T Y, Fang S T, Wong K L. A printed diversity dual-band monopole antenna forWLAN operation in the2.4-and5.2-GHz bands. Microwave and Optical TechnologyLetters.2003,36(6):436-439.
    [72] Mak A C K, Rowell C R, Murch R D. Isolation enhancement between two closely packedantennas. IEEE Transactions on Antennas and Propagation.2008,56(11):3411-3419.
    [73] Kang T W, Wong K L. Isolation improvement of2.4/5.2/5.8GHz WLAN internal laptopcomputer antennas using dual-band strip resonator as a wavetrap. Microwave and OpticalTechnology Letters.2010,52(1):58-64.
    [74] Chi G, Li B, Qi D. Dual-band printed diversity antenna for2.4/5.2-GHz wlan application.Microwave and Optical Technology Letters.2005,45(6):561-563.
    [75] Lee C H, Chen S Y, Hsu P. Integrated dual planar inverted-F antenna with enhancedisolation. IEEE Antennas and Wireless Propagation Letters.2009,8(6):963-965.
    [76] Neyestanak A A L, Jolani F, Dadgarpour M. Mutual coupling reduction between twomicrostrip patch antennas. Niagara Falls, ON, Canada:2008739-742.
    [77] Schuhler M, Wansch R, Hein M A. Reduced mutual coupling in a compact antenna arrayusing periodic structures. Loughborough, United kingdom:200893-96.
    [78] Zhu F G, Xu J D, Xu Q. Reduction of mutual coupling between closely-packed antennaelements using defected ground structure. Electronics Letters.2009,45(12):601-602.
    [79] Bait Suwailam M M, Siddiqui O F, Ramahi O M. Mutual coupling reduction betweenmicrostrip patch antennas using slotted-complementary split-ring resonators. IEEEAntennas and Wireless Propagation Letters.2010,9:876-878.
    [80] Li H, Xiong J, Ying Z. High isolation compact four-port MIMO antenna systems withbuilt-in filters as isolation structure. Barcelona, Spain:2010.
    [81] Wang Y S, Lu J C, Chung S J. A miniaturized ground edge current choke-design,measurement, and applications. IEEE Transactions on Antennas and Propagation.2009,57(5):1360-1366.
    [82] Inclan-Sanchez L, Vazquez-Roy J L, Rajo-Iglesias E. High Isolation Proximity CoupledMultilayer Patch Antenna for Dual-Frequency Operation. IEEE Transactions on Antennasand Propagation.2008,56(4):1180-1183.
    [83] Lee D H, Kim J H, Jang J H. Dual-frequency dual-polarization antenna of high isolationwith embedded mushroom-like EBG cells. Microwave and Optical Technology Letters.2007,49(7):1764-1768.
    [84] Makinen R, Pynttari V, Heikkinen J. Improvement of antenna isolation in hand-helddevices using miniaturized electromagnetic band-gap structures. Microwave and OpticalTechnology Letters.2007,49(10):2508-2513.
    [85] Jiang Z, Eleftheriades G V. A Simple Approach for Reducing Mutual Coupling in TwoClosely Spaced Metamaterial-Inspired Monopole Antennas. IEEE Antennas and WirelessPropagation Letters.2010,9:379-382.
    [86] Jolani F, Dadgarpour A M, Dadashzadeh G. Reduction of mutual coupling betweendual-element antennas with new PBG techniques.20091-4.
    [87] Lee Y, Ha J, Choi J. Design of a Wideband Indoor Repeater Antenna With High Isolationfor3G Systems. IEEE Antennas and Wireless Propagation Letters.2010,9:697-700.
    [88] Fallahzadeh S, Bahrami H, Akbarzadeh A. High-isolation dual-frequency operation patchantenna using spiral defected microstrip structure. IEEE Antennas and WirelessPropagation Letters.2010,9:122-124.
    [89] Dadashzadeh G, Dadgarpour A, Jolani F. Mutual coupling suppression in closely spacedantennas. IET Microwaves, Antennas&Propagation.2011,5(1):113-125.
    [90] Chebihi A, Luxey C, Diallo A. A novel isolation technique for closely spaced PIFAs forUMTS mobile phones. IEEE Antennas and Wireless Propagation Letters.2008,7:665-668.
    [91] Park S, Jung C. Compact MIMO antenna with high isolation performance. ElectronicsLetters.2010,46(6):390-391.2.
    [92] Yeom I, Kim J, Jung C. Compact dual-band MIMO antenna with high isolationperformance.2010.
    [93] Yang C, Kim J, Kim H. Quad-Band Antenna With High Isolation MIMO and BroadbandSCS for Broadcasting and Telecommunication Services. IEEE Antennas and WirelessPropagation Letters.2010,9:584-587.
    [94] Luo Q, Pereira J R, Salgado H M. Reconfigurable dual-band C-shaped monopole antennaarray with high isolation. Electronics Letters.2010,46(13):888-889.
    [95] Kim Y, Itoh J, Morishita H. Decoupling method between two L-shaped folded monopoleantennas for handsets using a bridge line. IET Microwaves, Antennas&Propagation.2010,4(7):863-870.
    [96] Chen S C, Wang Y S, Chung S J. A decoupling technique for increasing the port isolationbetween two strongly coupled antennas. IEEE Transactions on Antennas and Propagation.2008,56(12):3650-3658.
    [97] Coetzee J C, Yu Y. Port decoupling for small arrays by means of an eigenmode feednetwork. IEEE Transactions on Antennas and Propagation.2008,56(6):1587-1593.
    [98] Volmer C, Sengu M, Weber J. Broadband decoupling and matching of a superdirectivetwo-port antenna array. IEEE Antennas and Wireless Propagation Letters.2008,7:613-616.
    [99] Dossche S, Romeu J, Blanch S. Decoupling and decorrelation of two closely spacedmonopoles for optimum MIMO capacity. Nice, France:20061-4.
    [100] Volmer C, Weber J, Stephan R. Decoupling and Matching Network for Miniaturised3-Port Antenna Arrays Based on180°Couplers.200763-66.
    [101] Dossche S, Rodriguez J, Jofre L. Decoupling of a two-element switched dual band patchantenna for optimum MIMO capacity.2006325-328.
    [102] Coetzee J C, Yu Y. Design of decoupling networks for circulant symmetric antenna arrays.IEEE Antennas and Wireless Propagation Letters.2009,8:291-294.
    [103] Weber J, Volmer C, Blau K. Miniaturized antenna arrays using decoupling networks withrealistic elements. IEEE Transactions on Microwave Theory and Techniques.2006,54(6):2733-2740.
    [104] Shishan Q, Wen W, Zhongxiang S. Port decoupling of two arbitrary antennas in closeproximity through an Eigenmode feed network.20091-4.
    [105] Wu T Y, Fang S T, Wong K L. Printed diversity monopole antenna for WLAN operation.Electronics Letters.2002,38(25):1625-1626.
    [106] Yu Y, Kim G, Ji J. A compact hybrid internal MIMO antenna for LTE application.Barcelona, Spain:2010.
    [107] Coetzee J C, Yu Y. A compact monopole array with decoupled ports. Kuala Lumpur,Malaysia:2008112-116.
    [108] Yeung L K, Wang Y E. A decoupling technique for compact antenna arrays in handheldterminals. New Orleans, LA, United states:201080-83.
    [109] Chen S C, Wang Y S, Ling C W. A new high isolation dual-antennas with miniaturedecoupling network design. Honolulu, HI, United states:20073125-3128.
    [110] Bhatti R A, Yi S, Park S O. Compact antenna array with port decoupling forLTE-standardized mobile phones. IEEE Antennas and Wireless Propagation Letters.2009,8:1430-1433.
    [111] Weber J, Volmer C, Stephan R. Eigenmode decoupling of miniaturised diversity antennasusing compact quasi-lumped networks. Loughborough, United kingdom:200889-92.
    [112] Kagoshima K, Kagaya A, Obote S. Investigations on decoupling and matching feedingnetworks for a MIMO array antenna. Sydney, NSW, Australia:2010341-344.
    [113] Coetzee J C, Yu Y. New modal feed network for a compact monopole array with isolatedports. IEEE Transactions on Antennas and Propagation.2008,56(12):3872-3875.
    [114] Lui C Y, Wang Y S, Chung S J. Two nearby dual-band antennas with high port isolation.San Diego, CA, United states:2008IEEE Antennas and Propagation Society;USNC/URSI.
    [115] Cui S, Liu Y, Jiang W. Compact dual-band monopole antennas with high port isolation.Electronics Letters.2011,47(10):579-580.
    [116] Juman K, Minseok H, Changho L. Dual band MIMO antenna using a decoupling networkfor WLAN application.2011624-627.
    [117] Biqun W, Kwai-Man L. A4-Port Diversity Antenna With High Isolation for MobileCommunications. IEEE Transactions on Antennas and Propagation.2011,59(5):1660-1667.
    [118] Kagoshima K, Obote S, Kagaya A. An array antenna for MIMO systems with adecoupling network using bridge susceptances.2011.2.
    [119]汪梅芳,单极天线的设计与研究,兰州大学硕士学位论文,2009.
    [120]周朝栋,王元坤,周良明,线天线理论与工程,西安电子科技大学出版社,1988.
    [121] Pan C., Huang C., and Horng T. A New Printed G-Shaped Monopole Antenna forDual-Band WLAN Applications. Microwave and Optical Technology Letters.2005,45(4):295-297.
    [122] Zhang L., Jiao Y., and Zhao G.. Broadband Dual-Band CPW-Fed Closed Rectangular RingMonopole Antenna with a Vertical Strip for WLAN Operation. Microwave and OpticalTechnology Letters.2008,50(7):1929-1931.
    [123] J. Zhu and G. V. Eleftheriades, Dual-Band Metamaterial-Inspired Small MonopoleAntenna for WiFi Applications, Electronics Letters.2009,45(22):1104-1106.
    [124] Tseng C. F. and Huang C. L. A Wideband Cross Monopole Antenna. IEEE Transactionson Antennas and Propagation.2009,57(8):2464-2468.
    [125] Liang J., Chiau C. C., and Chen X.. Printed Circular Disc Monopole Antenna forUltra-Wideband Applications. Electronics Letters.2004,40(20):1246-1248.
    [126] Hong C. Y., Ling C. W., and Tarn I. Y.. Design of a Planar Ultrawideband Antenna with aNew Band-Notch Structure. IEEE Transactions on Antennas and Propagation.2007,55(12):3391-3397.
    [127] W.-C.Liu, C.-C. Song, S.-H. Chung, and J.-L. Jaw, Strip-loaded CPW-fed pentagonalantenna for GPS/WiMAX/WLAN applications, Microwave Opt Technol Lett.2009,51(1):48–52.
    [128] J.-F. Huang, M.-T. Wu, and J.-Y. Wen, A compact triple-band antenna design for UMTS,WLAN and WiMAX applications, Microwave Opt Technol Lett.2009,51(9):2207–2212.
    [129] S.-Y.Lee and C.-C. Yu, A novel wideband asymmetric hybrid antenna forWLAN/WiMAX application, Microwave Opt Technol Lett.2009,51(4):1055–1057.
    [130] L.Pazin, I.Kogan, and Y.Leviatan, Flat-plate triangular monopole antenna forWi-Fi/Wimax/DVB-H applications, Microwave Opt Technol Lett.2008,50(11):2922–2925.
    [131] L. Pazin, N. Telzhensky, and Y. Leviatan, Multi-band flat-plate inverted-F antenna forWi-Fi/WiMAX operation, IEEE Antennas Wireless Propagat Lett,2008,7:197-200.
    [132] J.-F. Huang and S.-H. Wu, Planar T-shaped monopole antenna for WLAN/WiMAXapplications, IEICE Trans Electron E91-C.2008,625–630.
    [133] M.J. Ammann. Square planar monopole antenna, IEEE Natl Conf Antennas Propag.1999,461:37–40.
    [134] DVB-H implementation guidelines, ETSI TR102377V1.1.1European Tele-communication Standard Institute,2005.
    [135] P. Lindberg and A. Kaikkonen, Earpiece cord antenna for DVB-H reception in wirelessterminals, Electron Lett.2006,42(11):609–611.
    [136] K.R. Boyle and P.J. Massey, Nine-band antenna system for mobile phones, ElectronLett.2006,42(5):265–266.
    [137] Li, W.Y., Wong, K.L., and Row, J.S. Broadband planar shorted monopole antenna forDTV signal reception in a portable media player. Microw. Opt. Technol. Lett.2007,49(3):558–561.
    [138] Wong, K.L., Chi, Y.W., Chen, B., and Yang, S. Internal DTV antenna for folder-typemobile phone, Microw. Opt. Technol. Lett.2006,48(6):1015–1019.
    [139] S.-G. Zhou, B.-H. Sun, Y.-F. Wei, and Q.-Z. Liu. HTwo-Port Antenna with High Isolationfor Dtv/GSM/UMTS Indoor ApplicationsH. Progress In Electromagnetics ResearchLetters.2009, H10H:107-113.
    [140] Chio, D.H., Yun, H.S., and Park, S.O. Internal antenna with modified monopole type forDVB-H applications, Electron. Lett.2006,42(25):1436–1438.
    [141] H. Rhyu, C. Jung, J. Byun, M. Park, Y. Chung, T. Kim, and B. Lee. DVB-H AntennaDesign Using Folder-Type Chassis and Coupling Element on a Ferrite, IEEE AntennasAnd Wireless Propagation Letters.2009,8:453-456.
    [142] B.H. Sun, J.F. Li, T. Zhou and Q.Z. Liu. Planar meander sleeve monopole antenna forDVB-H/GSM mobile handsets, Electron. Lett.2008,44(8):603-605.
    [143] W F Richard.S E Davidson.S A Long, Dual-band reactively loaded microstrip antenna,IEEE Transactions on Antennas and Propagation,1985,33(5):556-61.
    [144] D Sanchez-Hernandez.I D Robertson, Analysis and design of a dual-band circularlypolarized microstrip patch antenna, IEEE Transactions on Antennas and Propagation,1995,43(2):201-205.
    [145] CTIA Certification Program. Test Plan for Mobile Station Over the AirPerformance.2006.
    [146]朱旗,付侃,李琰,利用等效模型分析倒F天线,中国科学技术大学学报,2005,35(2).
    [147] K.L.Wong,Planar Antennas for Wireless CommunicatiOIlS,New York:JohnWiley&Sons,2003.
    [148] P. Nepa, G. Manara, A. A. Serra, and G. Nenna, Multiband PIFA for WLAN mobileterminals, IEEE Antennas and Wireless Propagation letters,2005,4(105):349-350.
    [149] Fan Wang, Amitava Ghosh, Chandy Sankaran, Philip J.Fleming, Frank Hsieh, and StanleyJ. Benes, Mobile WiMAX Systems: Performance and Evolution,IEEE CommunicationsMagazine.2008,46(10):41-49.
    [150] Y.J.Cho, Y.S. Shin and S.O. Park, Internal PIFA for2.4/5GHz WLAN applications,Electron Lett,2006,42(1):8-9.
    [151] Chow-Yen-Desmond Sim1and Shu-Yang Tu, Dual-frequency shorted patch antenna forWLAN applications, Microwave Opt Technol Lett.2007,49(2):389-395.
    [152] P. Salonen, M. Keskilammi, and M. Kivikoski, Single-feed dual-band planar inverted-Fantenna with U-shaped slot, IEEE Trans Antennas Propagat.2000,48(8):1262–1264.
    [153] R. Feick, H. Carrasco, M. Olmos, and H. D. Hristov, PIFA input bandwidth enhancementby changing feed plate silhouette, Electron Lett.2004,40(15):921-922.
    [154] Theodore S.Rappaport.Wireless Communications Principles and Practice,Prentice HallInc.1999.50-104.
    [155]赵荣黎.数字移动传播特性预测及信道模型的研究.北方交通大学学报.1997,21(5):495-496.
    [156] J. H. Winters, On the capacity of radio communication systems with diversity in aRayleigh fading environments, IEEE J. Select Areas Commun.1987,5(5):871-878.
    [157] T. L. Marzetta and B. M. Hochwald, Capacity of a mobile multiple-antennacommunication link in Rayleigh flat fading, IEEE Trans. Inform. Theory,1999,45(1):139-157.
    [158] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fadingenvironment when using multiple antennas, Wireless Personal Commun.1998,6(3):311-335.
    [159]罗涛,乐光新.多天线无线通信原理与应用.北京:北京邮电大学出版社,2005
    [160]尤肖虎.Fu TUREB3G研究开发及关键技术进展.移动通信,ISSSE-98,Pisa,ItalySept2006,30(6):18-22.
    [161]龚耀寰,Multiple-Input Multiple—Output Smart Antenna Technique[C].中兴通讯期刊-未来移动通信技术.2002,44.
    [162] Space-Time Coded Wifeless Systems.IEEE Journal Oil Selected Areas inCommunications.2003,21(3):28l-302.
    [163] A.EMolisch,M.Z.Win.MIMO Systems with Antenna Selection.IEEE MicrowaveMagazine.2004,5(1):46-56.
    [164] S.Sanayei,A.Nosratinia.Antenna Selection in MIMO Systems.IEEE CommunicationsMagazine.2004,42(10):68-73.
    [165] Ayaweera,S.K.,Poor,H.V, Capacity ofmultiple-antenna systems with both receiver andtransmitter channel state information, IEEE Trans Information Theory,2003,49(10):2697-2709.
    [166]马磊. MIMO天线选择及其相关技术研究,西安电子科技大学硕士论文,2006.
    [167]刘清德,张吴,钟学峰.MIMO系统中接受天线选择算法的研究,现代电子技术,2008,2l.
    [168] Telatar E.Capacity of Multiantenna Gaussian Channels.AT&T-Bell Lab Internal TechMemo,1995.
    [169] Foschini G J.Layered space—time architecture for wireless communication in a fadingenvironment when using multiple antennas.Bell Laboratiories Technical Journal,1996,1(2):741-765.
    [170] Tarokh v,Seshachi N,Calderbank A R.Space—time codes for high data rate wirelesscommunications performance analysis and code construction. IEEE Trans InfoITnTheory,1998,44(2):744-765.
    [171] Wolniansky P W,Forshini G J,Golden G D,et a1.V-BLAST:an architecture forrealizing very high data rates over the rich—scattering wireless channel.Proc ISSSE-98,Pisa,Italy Sept29,1998.
    [172] Usman,M.,R. A. Abd-Alhameed,and P. S. Excell, Design considerations of MIMOantennas for mobile phones, PIERS Online,2008,4(1):121–125.
    [173] Chen,Y. B.,Y. C. Jiao,F. S. Zhang,and H. W. Gao, A novel small CPW-fed T-shapedantenna for Mimo system applications, Journal of Electromagnetic Waves andApplications,2006,20(14):2027–2036.
    [174] Min,K.-S.,M.-S. Kim,C.-K. Park,and M. D. Vu, Design for PCS antenna based onWIBRO-MIMO, Progress In Electromagnetics Research Letters,2008,1:77–83.
    [175]侯轶,姜兴一种适用于MIMO移动端多天线单元的分析与设计,桂林电子科技大学学报.2010(30):101-104.
    [176] Gao,G.-P.,X.-X. Yang,and J.-S. Zhang, A printed volcano smoke antenna for UWB andWLAN communications, Progress In Electromagnetics Research Letters,2008,4:55–61.
    [177] Koo,B.-W.,M.-S. Baek,and H.-K. Song, Multiple antenna transmission technique forUWB system, Progress In Electromagnetics Research Letters,2008,2:177–185.
    [178] C. Tounou, C. Decroze, D. Carsenat, T. Monédière, and B. Jécko, Diversity antennasefficiencies enhancement, in Proc. IEEE Antennas Propag. Int. Symp., Honolulu, HI,Jun.2007,1064–1067.
    [179]李正夷,杜正伟,龚克,冯正和,吴多龙.自适应MIMO系统中的支持选择功能的四单元天线电波科学学报,2009,24(3):383-388.
    [180] Li H,Xiong J,and He S L.Extremely compact dual-band PIFAs for MIMO application.Electronics Letters.2009,45(17):869-870.
    [181] YGao,C.C.Chiau,X.Chert and C.G Parini.Modified PIFA and its array for MIMOterminals.Microwaves,Antennas and Propagation,2005,52(4):255-259.
    [182]耿嘉,MIMO技术及其在WLAN中的应用,东南大学硕士学位论文集,2006.
    [183]肖伟宏,MIMO移动通信系统中的终端多天线设计,电子科技大学硕士学位论文集,2006.
    [184] Salonen, I., and Vainikainen, P.: Estimation of signal correlation in antenna arrays. Proc.JINA, Nice, France.2002,(2):383–38.
    [185] Brachat, P., and Sabatier, C.: Re′seau d’antennes a`6Capteurs en Diversite′dePolarisation. Proc. JINA, Nice, France,2004.
    [186] Blanch, S., Romeu, J., and Corbella, I., Exact representation of antenna systemdiversity performance from input parameter description, Electron. Lett.,2003,39(9):705–707.
    [187] R. Vaughan and J. Andersen, Antenna diversity in Mobile Communications, IEEE Trans.Veh. Technol.,1987,36(4):149-172.
    [188] P. Almers, F. Tufvesson, and A. F. Molisch, Measurement of keyhole effect in a wirelessmultiple-input-multiple-output (MIMO) channel, IEEE Commun. Lett.,2003,7(8):373-375.
    [189]李建峰,宽带阵列天线及无线终端设备天线研究,西安电子科技大学博士论文,2009.
    [190]徐丹,紧凑MIMO天线互耦合的仿真研究,南京邮电大学硕士学位论文,2009.
    [191] David M Pozar. Microwave Engineering(Third Edition).北京;电子工业出版社,2006.
    [192]梁昌洪,谢拥军,官伯然,简明微波,高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700