用户名: 密码: 验证码:
快船式飞行器再入轨迹优化与制导方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比小升阻比飞行器,较高升阻比的气动外形从根本上决定了升力式飞行器具有再入过载小,机动范围大,着陆精度高的优点,具有巨大的吸引力和发展前景。美国、俄罗斯、欧盟均对基于升力式再入的天地往返飞行器研制投入了相当的人力、物力和财力。但历史飞行实践证明,研制上述飞行器所必须的系统可靠性、可重复使用等相关技术成熟度远未达到预计的程度。技术风险导致的重大事故使航天事业重创并促使了技术反思,新一代的天地往返飞行器必须也必然会在功能定位上更加明确,在系统规模上适当缩减,并着力提高系统可靠性。
     美国在宣布正式退役航天飞机的同时,启动了新一代运载器和新一代飞船的研制;同期,俄罗斯适时的公开了一种介于传统载人飞船和航天飞机的新型天地往返可重复使用飞行器“快船”。快船式飞行器双构型方案设计具有同时满足技术性和可靠性需求的潜力,代表了新一代天地往返飞行器的发展方向。本研究基于对国内外天地往返飞行器技术发展路线的归纳总结,以及对新一代天地往返飞行器技术发展趋势的分析,以类似快船式飞行器两种构型方案设计的一类升力式再入飞行器为具体对象,研究了适于分析其再入段受力环境和轨迹特性的数值计算方法,并以此为基础,分别针对上述两种不同构型的快船式飞行器,研究了具有较强的自主性和稳健性的高精度再入制导方法,主要包括以下几个方面:
     首先,根据总体设计阶段的任务,针对快船式飞行器双构型方案模型的特点,从系统均衡角度分别选用了工程计算方法和数值计算方法,进行了再入边界条件下的纵向气动特性计算和分析。计算结果表明,快船式飞行器纵向气动系数随攻角和马赫数的变化具有规律性。在小攻角范围,气动系数总体变化平缓,攻角继续增大时,激波干扰诱发气流分离并形成分离旋涡,导致了飞行器表面压力载荷分布的复杂变化,表现为气动系数的非线性变化。
     其次,研究了一般序列梯度-修复算法在升力式再入飞行器轨迹优化问题中的具体应用,形成了一种改进的序列梯度-修复轨迹优化方法。通过对控制约束和过程约束一般数学模型的转化处理,建立了增广的再入运动方程和控制变量,为减小再入运动模型固有的强非线性的影响,引入了状态积分的更新方法,进行了算法程序仿真分析,研究了不同初值、更新方法、大气模型、约束处理对数值优化结果的影响。基于再入轨迹数值优化结果,综合分析和考虑了初始再入段、平衡滑翔段和末端能量管理段的攻角设计因素,提出“常值大攻角减速+最大升阻比攻角过渡”的攻角方案,针对不同任务背景,具体设计了攻角剖面函数,并用于再入制导算法设计。
     再次,基于轨迹-跟踪制导方法的框架,研究了一种新型的在线三维轨迹规划-轨迹跟踪再入制导方法。该方法基于桥函数法设计阻力加速度-能量剖面基准形式,并基于二分段更新策略进行在线轨迹规划,在每个规划阶段,基于一次倾侧翻转模式,通过参数调节获得与目标航程匹配的参考阻力加速度-能量剖面,以倾侧角为主要跟踪控制变量实现了标准轨迹-跟踪制导。轨迹规划同时考虑了飞行器的纵横向运动,不需要专门调节倾侧翻转时机的侧向环节。算法程序仿真表明,在线规划出的参考阻力加速度剖面呈现贴近平衡滑翔边界小幅波动变化的趋势,实际上保证了再入轨迹在满足过程约束的同时,沿着平衡滑翔边界平稳下降,直至再入段末端。蒙特卡洛分析表明,该方法能够快速有效地进行三维再入轨迹自主规划,具有较高的末端制导精度、较强的任务适应性和向在线制导应用的发展潜力。
     最后,基于预测-校正制导方法的框架,研究了一种基于虚拟落点策略的数值预测-校正再入制导方法。该方法在给定攻角剖面条件下,利用平衡滑翔条件,将过程约束转化为倾侧角-速度走廊,作为标称倾侧角剖面的设计约束和预测-校正算法准制导指令输出的截断边界。在侧向制导逻辑中引入了基于虚拟落点瞄准的策略,充分利用高层稀薄大气阻尼的时间累积效应,通过调控初始下降段的倾侧角,导引飞行器产生可观的侧向偏移量,用于抵消地球系下非惯性力的影响。减轻了转入平衡滑翔段后的制导负担。程序仿真分析表明,该方法克服了中低气动品质飞行器轨迹跟踪能力不足导致跟踪制导精度低的矛盾,具有较强的任务适应性和较高的算法稳定性。蒙特卡洛分析表明,基于虚拟落点策略提出的偏置瞄准程序能够有效的提高再入末端制导精度,尤其是在长航程和大轨道倾角再入状况,效果较为明显,且具有简便易操作性。
Lifting entry vehicle has advantages of high lift-to-drag ratio, small entry overload,large motorized range, and high landing accuracy, so it has enormous appeal anddevelopment prospects. The United States, Russia and EU have invested a lot ofmanpower, material and financial resources on the research of lifting entrytransportation vehicle. But the history has proved that the system reliability and thereusable technology which is necessary in the development of transportation vehicle arefar from the expected level.
     While announcing the retired of the space shuttle, the United States starts adevelopment program of new generation of launch vehicle and spacecraft. During thesame period, Russia discloses a new transportation vehicle Clippers, which between thetraditional manned spacecraft and the space shuttle. With two configuration designs, theClippers vehicle has the potential to meet the technical and reliability requirements, andit is considered to be the represent of the new generation transportation vehicle. Thispaper summed up the technology development path and analyzes the technology trendsof the transportation vehicle in the world. It takes the Clippers-type vehicle as theresearch object and focuses on its entry force environment, trajectory characteristics,and autonomous entry guidance method for lifting entry. The study includes thefollowing aspects.
     First, according to the overall design phase of the mission and features of the twotypical configurations of the Clippers vehicle, engineering calculation methods andnumerical methods were used from the perspective of system balancing in thecalculation and analysis of longitudinal aerodynamic characteristics. The results showthat the longitudinal aerodynamic coefficient Clippers vehicle having remarkableregularity with the change of angle of attack and Mach number. In the range of smallangle of attack, the aerodynamic coefficient changes gently. While the angle of attackcontinues to increase, the shock interaction induced flow separation, and it then formedseparation vortices, which led to complex changes in the vehicle surface pressure loaddistribution, this phenomenon manifests as the nonlinear changes in the aerodynamiccoefficients.
     Secondly, this paper studies the specific applications of the SG-R algorithm in thetrajectory optimization of lifting entry vehicle, and formed an improved SG-Roptimization method. Through the conversion of the general mathematical model of thecontrol constraints and process constraints, the augmented entry equations of motionand control variables are constructed. In order to reduce the nonlinear effects inherent inthe motion model, a full state integral-update method is introduced. The influence onthe results of numerical optimization of different conditions, such as the initial updatemethod, atmospheric model, constraint processing method, is analyzed by the algorithmsimulation. Based on the numerical optimization results of entry trajectory, various design factors of angle of attack in the initial entry phase, equilibrium glide phase andTerminal Area Energy Management are considered. This paper proposed the program ofconstant high angle of attack and maximum lift-drag ratio angle of attack for differenttasks backgrounds, the specific profile function of the angle of attack is designed andused for entry guidance algorithm design.
     Thirdly, a new online three-dimensional trajectory planning and trajectory trackingentry guidance method is designed based on drag acceleration versus energy profile isproposed. The trajectory planning is based on two sub-line updating policy. In eachplanning stage, the bank angle reverses only once. The reference drag accelerationenergy profile is matched to the target range by adjusting the parameters, and nominaltrajectory is tracked using the bank angle as the main tracking control variables. Sincethe trajectory planning taking into account the vertical and horizontal movement of thevehicle, it does not need to specifically regulate the bank reverse in lateral channel. Thealgorithm program simulation results show that, online planning reference dragacceleration profile shows the trend of slightly fluctuating by the balanced gliderboundary, which keep the entry trajectory to meet process constraints, decent along thebalanced glider border steadily until the end of the entry phase. Monte Carlo analysisshows that, the method is able to independent planning three-dimensional entrytrajectory quickly and efficiently. It has high guidance precision, strong task adaptabilityand the potential of online application.
     Finally, in the framework of predictor-corrector guidance, a numerical predictioncorrection entry guidance which based on virtual target strategy is present. By using thebalance gliding conditions, the method transformed the process constraints into the bankangle velocity corridor under the condition of the angle of attack profile is given, whichis used as the design constraints of the nominal bank profile and the output truncatedboundary of quasi-guidance commands. In lateral guidance logic, a virtual targetstrategy is introduced. It makes full use of the time cumulative effect of high-levelatmospheric damping. By regulating the bank angle of initial decrease phase, guidingthe vehicle flight a considerable lateral offset, which is used to offset the impact of thenon-inertial force in the department of earth, and the guidance burden of thequasi-equilibrium glide phase will be reduced. The program simulation analysis showsthat, the method overcomes the contradiction of insufficient accuracy of entry guidancedue to the limited trajectory tracking capability. The algorithm has strong taskadaptability and high stability. Monte Carlo analysis shows that, the bias targetingstrategy has enhanced and ensured the entry terminal guidance accuracy. Especially inthe long range and large orbital inclination entry conditions, the effect is more obvious,and it has a simple and easy maneuverability.
引文
[1]赵梦熊.载人飞船空气动力学[M].北京:国防工业出版社,2000:38~69.
    [2]朱华桥.快船计划及其研制方案[J].中国航天,2006,(2):21~24.
    [3]晓雨.俄新型可复用载人飞船:快船[J].中国航天,2006,(1):19~25.
    [4]金恂叔.俄罗斯新型载人飞船:快船号[J].国际太空,2004,(11):1~3.
    [5] Mueller J B, Zhao Y J, Garrard W L. Optimal Ascent Trajectories forStratospheric Airships Using Wind Energy[J]. Journal of Guidance Control andDynamics,2009,32(4):1232~1245.
    [6] Kindler J T, Schoettle U M, Well K H. Entry Interface Window of Landing SiteCoober Pedy for the Experimental Vehicle X~38V201[C]. AIAA AtmosphericFlight Mechanics Conference. Denver: AIAA,2000.
    [7] Lu P. Entry Trajectory Optimization with Analytical Feedback Bank AngleLaw[C]. AIAA Guidance, Navigation and Control Conference and Exhibit.Honolulu: AIAA,2008.
    [8] Johnson J E, Lewis M J. Analysis of Optimal Earth Entry Heat Shield/TrajectoryConfigurations[C].15th AIAA International Space Planes and HypersonicSystems and Technologies Conference. Dayton: AIAA,2008.
    [9] Heydari A, Balakrishnan S N. Optimal Online Path Planning for Approach andLanding Guidance[C]. AIAA Atmospheric Flight Mechanics Conference.Portland: AIAA,2011.
    [10] Gath P F, Well K H, Mehlem K. Automatic Initial Guess Generation for Ariane5Dual Payload Ascent Trajectory Optimization[C]. AIAA Guidance, Navigation,and Control Conference. Denver: AIAA,2000.
    [11] Weigel N, Well K H. Dual Payload Ascent Trajectory Optimization with aSplash-Down Constraint[J]. Journal of Guidance Control and Dynamics,2000,23(1):45~52.
    [12] Dukeman G A, Hill A D. Rapid Trajectory Optimization for the ARES I LaunchVehicle[C]. AIAA Guidance, Navigation and Control Conference and Exhibit.Hawaii: AIAA,2008.
    [13] Mueller J B, Zhao Y J, Garrard W L. Optimal Ascent Trajectories forStratospheric Airships Using Wind Energy[J]. Journal of Guidance Control andDynamics,2009,32(4):1232~1245.
    [14] Rao A V, Tang S, Mailman W P. Numerical Optimization Study of Multiple-PassAeroassisted Orbital Transfer[R]. AIAA-2000-3995.
    [15] Gogu C, Matsumura T, Haftka R T, et al. Aeroassisted Orbital Transfer TrajectoryOptimization Considering Thermal Protection System Mass[J]. Journal ofGuidance Control and Dynamics,2009,32(3):927~938.
    [16] Darby C L, Rao A V. Minimum-Fuel Low-Earth-Orbit Aeroassisted OrbitalTransfer of Small Spacecraft[J]. Journal of Guidance Control and Dynamics,2011,48(4):618~628.
    [17]桑艳,周进.基于伪谱方法的有限推力变轨策略研究[J].飞行力学,2010,28(2):71~74.
    [18] Seywald H. Trajectory Optimization Based on Differential Inclusion[J]. Journalof Guidance Control and Dynamics,1994,17(3):480~487.
    [19] Conway B A, Larson K M. Collocation Versus Differential Inclusion in DirectOptimization[J]. Journal of Guidance Control and Dynamics,1998,21(5):780~785.
    [20] Hodgson J. Trajectory Optimization Using Differential Inclusion to MinimizeUncertainty in Target Location Estimation[C]. AIAA Guidance, Navigation, andControl Conference and Exhibit. California: AIAA,2005.
    [21] Brusch R G, Schappelle R H. Solution of Highly Constrained Optimal ControlProblems Using Nonlinear Programming[C]. AIAA Guidance, Control and FlightMechanics Conference. Santa Barbara: AIAA,1970.
    [22] Brusch R G, Peltier J P. Parametric Control Models and Gradient Generation byImpulsive Response[C].24th International Astronautical Congress. Baku:International Astronautical Federation,1973.
    [23] Brusch R G, Peltier J P. Gradient Generation for Parametric Control Models[J].Acta Astronautica,1974,1(11-12):1453~1466.
    [24] Hull D G. Application of Parameter Optimization Methods to TrajectoryOptimization[C]. AIAA Mechanics and Control of Flight Conference. Anaheim:AIAA,1974.
    [25] Frabien B C. Some Tools For the Direct Solution of Optimal Control Problems[J].Advances in Engineering Software,1998,29(1):45~61.
    [26] Jacobsen M, Ringertz U T. Airspace Constraints in Aircraft Emission TrajectoryOptimization[J]. Journal of Aircraft,2010,47(4):1256~1265.
    [27] Fisch F, Sewerin F, Holzapfel F. Approach Trajectory Optimization including aTunnel Track Constraint[C]. AIAA Atmospheric Flight Mechanics Conference.Oregon: AIAA,2011.
    [28]李瑜,魏毅寅,崔乃刚.洲际助推-滑翔导弹弹道优化与分析[J].弹道学报,2010,22(2):52~56.
    [29] Brauer G L, Cornick D E, Stevenson R. Capabilities and Applications of theProgram to Optimize Simulated Trajectories (POST)[R]. NASA CR-2770,1977.
    [30] Dickmanns E D, Well K H. Parametrization of Optimal Control Problems UsingPiecewise Polynomial Approximation[C]. AIAA Mechanics and Control of FlightConference. Anaheim: AIAA,1974.
    [31] Hargraves C R, Paris S W. Direct Trajectory Optimization Using NonlinearProgramming and Collocation[J]. Journal of Guidance Control and Dynamics,1987,10(4):338~342.
    [32] Vlases W G, Paris S W, Lajoie R M, et al. Optimal Trajectories by ImplicitSimulation Version2.0User's Manual[R]. WRDC-TR-90-3056,1990.
    [33] Betts J T. Practical Methods for Optimal Control Using NonlinearProgramming[J]. Advances in Design and Control, Society for Industrial andApplied Mathematics,2001,55(4):457~468.
    [34] Fahroo F, Ross I M. Advances in Pseudospectral Methods for Optimal Control[C].AIAA Guidance, Navigation and Control Conference and Exhibit. Hawaii: AIAA,2008.
    [35] Gong Q, Fahroo F, Ross I M. Spectral Algorithm for Pseudospectral Methods inOptimal Control[J]. Journal of Guidance Control and Dynamics,2008,31(3):460~471.
    [36] Fahroo F, Ross I M. Pseudospectral Methods for Infinite-Horizon OptimalControl Problems[J]. Journal of Guidance Control and Dynamics,2008,31(4):927~936.
    [37] Williams P. Hermite-Legendre-Gauss-Lobatto Direct Transcription in TrajectoryOptimization[J]. Journal of Guidance Control and Dynamics,2009,32(4):1392~1395.
    [38] Darby C L, Hager W W, Rao A V. Direct Trajectory Optimization Using aVariable Low-Order Adaptive Pseudospectral Method[J]. Journal of Spacecraftand Rockets,2011,48(3):433~445.
    [39] M G C Cottrill, L C F G Harmon. Hybrid Gauss Pseudospectral and GeneralizedPolynomial Chaos Algorithm to Solve Stochastic Trajectory OptimizationProblems[C]. AIAA Guidance, Navigation, and Control Conference. Oregon:AIAA,2011.
    [40]宣颖,张为华,张育林.基于Legendre伪谱法的固体运载火箭轨迹优化研究[J].固体火箭技术,2008,31(5):425-429.
    [41]宗群,田栢苓,窦立谦.基于Gauss伪谱法的临近空间飞行器上升段轨迹优化[J].宇航学报,2010,31(7):1775~1781.
    [42]杨希祥,张为华.基于Gauss伪谱法的固体运载火箭上升段轨迹快速优化研究[J].宇航学报,2011,32(1):15~21.
    [43] Ross I M, Fahroo F. Legendre Pseudospectral Approximations of Optimal ControlProblems[J]. Lecture Notes in Control and Information Sciences, Springer-Verlag,2003,295:1~15.
    [44] Benson D A. A Gauss Pseudospectral Transcription for Optimal Control[D].Boston: Massachusetts Institute of Technology,2005:30~35.
    [45]雍恩米,唐国金,陈磊.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化.宇航学报.2008,29(6):1766~1772.
    [46] Betts J T. Practical Methods for Optimal Control and Estimation Using NonlinearProgramming[M]. Second Edition. Philadelphia: Society for Industrial andApplied Mathematics,2010:51~88.
    [47] Brinda V, Dasgupta S, Madan L. Trajectory Optimization and Guidance of an AirBreathing Hypersonic Vehicle[C].14th AIAA Space Planes and HypersonicSystems and Technologies Conference. Canberra, AIAA,2006.
    [48] Betts J T, Huffman W P. Path-Constrained Trajectory Optimization Using SparseSequential Quadratic Programming[J]. Journal of Guidance Control andDynamics.1993,16(1):59~68.
    [49] Jaensh C, Markl A. Trajectory Optimization and Guidance for a Hermes-typeReentry Vehicle[C]. AIAA Guidance, Navigation and Control Conference. NewOrleans: AIAA,1991.
    [50] Weigel N, Well K H. Dual Payload Ascent Trajectory Optimization with aSplash-Down Constraint[J]. Journal of Guidance Control and Dynamics.2000,23(1):45~52.
    [51] Subbarao K, Shippey B M. Hybrid Genetic Algorithm Collocation Method forTrajectory Optimization[J]. Journal of Guidance Control and Dynamics,2009,32(4):1396~1403.
    [52] J. M. Lewallen, B. D Tapley, S. D. Williams. Iteration Procedures for IndirectTrajectory Optimization Methods[J]. Journal of Spacecraft and Rockets.1968,5(3):321~327.
    [53] Miele A, Pritchard R E, Damoulakis J N, Sequential Gradient-RestorationAlgorithm for Optimal Control Problems[J]. Journal of Optimization Theory andApplications,1970,5(4):235~282.
    [54] Miele A, Damoulakis J N, Cloutier J R, et al. Sequential Gradient RestorationAlgorithm for Optimal Control Problems with Nondifferential Constraints[J].Journal of Optimization Theory and Applications,1974,13(2):218~255.
    [55] Gonzalez S, Miele A. Sequential Gradient-Restoration Algorithm for OptimalControl Problems with General Boundary Conditions[J]. Journal of OptimizationTheory and Applications,1978,26(3):395~425.
    [56] Miele A, Wang T, Basapur V K. Primal and Dual Formulations of SequentialGradient-Restoration Algorithms for Trajectory Optimization Problems[J]. ActaAstronautica,1986,13(8):491~505.
    [57] Rom M, Avriel M. Properties of the Sequential Gradient-RestorationAlgorithm(SGRA), Part2: Convergence Analysis[J]. Journal of OptimizationTheory and Applications,1989,62(1):99~125.
    [58] Vinh N X著,茅振东译.大气中飞行的最优轨迹[M].北京:宇航出版社,1987:46~228.
    [59] Miele A, Venkataraman P. Optimal Trajectories for Aeroassisted OrbitalTransfer[J]. Acta Astronautica,1984,11(7-8):423~433.
    [60] Miele A, Wang T, Melvin W W. Optimal Take-off Trajectories in the Presence ofWindshear[J]. Journal of Optimization Theory and Applications,1986,49(1):1~45.
    [61] Miele A, Wang T. Multiple-Subarc Gradient-Restoration Algorithm, Part1:Algorithm Structure[J]. Journal of Optimization Theory and Applications,2003,116(1):1~17.
    [62] Miele A, Wang T. Multiple-Subarc Gradient-Restoration Algorithm, Part2:Application to a Multistage Launch Vehicle Design[J]. Journal of OptimizationTheory and Applications,2003,116(1):19~39.
    [63] Weeks W W. The Computation of Optimal Rendezvous Trajectories Using theSequential Gradient-Restoration Algorithm[D]. Houston: Rice University,2006:38~45.
    [64] Istratie V. Optimal Skip Entry with Terminal Maximum Velocity and HeatConstraint[C].7th AIAA Heat Transfer Conference. Albuquerque: AIAA,1998.
    [65] Murillo O J, Lu P. Fast Ascent Trajectory Optimization for HypersonicAir-Breathing Vehicles[C]. AIAA Guidance, Navigation, and Control Conference.Toronto: AIAA,2010.
    [66]周浩,周韬,陈万春,殷兴良.高超声速滑翔飞行器引入段弹道优化.宇航学报.2006,27(5):970~973.
    [67]吴德隆,彭伟斌.基于气动辅助变轨的变气动外形飞行器概念研究——最优控制律问题.宇航学报.2004,25(2):123~126.
    [68]唐国金,罗亚中,雍恩米.航天器轨迹优化理论、方法及应用[M].北京:科学出版社,2011:17~36.
    [69]傅瑜.升力式天地往返飞行器自主制导方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:3~80.
    [70]雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397~406.
    [71]赵汉元.飞行器再入动力学和制导.长沙:国防科技大学出版社,1997:382~384,451~473.
    [72] Harpold J C, Graves C A. Shuttle Entry Guidance[J]. Journal of AstronauticalSciences,1979,27(3):239~268.
    [73] Harpold J C, Gavert D E. Space Shuttle Entry Guidance Performance Results[J].Journal of Guidance Control and Dynamics,1983,6(6):442~447.
    [74] Zimpfer D, Hattis P, Ruppert J, et al. Space Shuttle GN&C Development Historyand Evolution[C]. AIAA SPACE2011Conference&Exposition. California:AIAA,2011.
    [75] Gamble J D, Cerimele C J, Moore T E, et al. Atmospheric Guidance Concepts foran Aeroassisted Flight Experiment[J]. Journal of the Astronautical Sciences,1988,36(1):45~71.
    [76] Jouhaud F. Closed Loop Reentry Guidance Law of a Space Plane: Application toHermes[J]. Acta Astronautica,1992,26(8-10):577~585.
    [77] Roenneke A J, Cornell P J. Trajectory Control for a Low-Lift Re-entry Vehicle[J].Journal of Guidance Control and Dynamics,1993,16(5):927~933.
    [78] Mease K D, Kremer J P. Shuttle Entry Guidance Revisited Using NonlinearGeometric Methods[J]. Journal of Guidance Control and Dynamics,1994,17(6):1350~1356.
    [79] Roenneke A J, Markl A. Re-entry Control of a Drag vs. Energy Profile[J]. Journalof Guidance Control and Dynamics,1994,17(5):916~920.
    [80] Lu P. Entry Guidance and Trajectory Control for Reusable Launch Vehicle[J].Journal of Guidance Control and Dynamics.1997,20(1):143~149.
    [81] Lu P, Hanson J U. Entry Guidance for the X-33Vehicle[J]. Journal of Spacecraftand Rockets,1998,35(3):342~349.
    [82] Lu P. Regulation about Time-Varying Trajectories: Precision Entry GuidanceIllustrated[J]. Journal of Guidance Control and Dynamics,1999,22(6):784~790.
    [83] Tu K Y, Munir M S, Mease K D, et al. Drag-Based Predictive Tracking Guidancefor Mars Precision Landing[J]. Journal of Guidance Control and Dynamics,2000,23(4):620~628.
    [84] Mease K D, Chen D T, Tandon S, et al. A Three-Dimentional Predictive EntryGuidance Approach[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit. Denver: AIAA,2000.
    [85] Grimm W, Van Der Meulen J G, Roenneke A J. Optimal Update Scheme for DragReference Profiles in an Entry Guidance[J]. Journal of Guidance Control andDynamics,2003,26(5):695~701.
    [86] Mease K D, Chen D T, Teufel P, et al. Reduced-Order Entry Trajectory Planningfor Acceleration Guidance[J]. Journal of Guidance Control and Dynamics,2002,25(2):257~266.
    [87] Chen D T, Saraf A, Leavitt J A. Performance of Evolved Acceleration GuidanceLogic for Entry (EAGLE)[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit. Monterey: AIAA,2002.
    [88] Chen D T. Three-Dimensional Acceleration Planning for Atmospheric Entry[D].California: University of California, Irvine,2003:38~69.
    [89] Saraf A, Leavitt J A, Chen D T, et al. Design and Evaluation of an AccelerationGuidance Algorithrn for Entry[J]. Journal of Spacecraft and Rockets.2004,41(6):986~996.
    [90] Saraf A, Leavitt J A, Chen D T, et al. Design and Evaluation of an AccelerationGuidance Algorithm for Entry[R]. AIAA-2003-5737,2003.
    [91] Saraf A, Leavitt J A, Ferch M, et al. Landing Footprint Computation for EntryVehicles[R]. AIAA-2004-4774,2004.
    [92] Leavitt J A. Advanced Entry Guidance Algorithm with Landing FootprintComputation[D]. California: University of California, Irvine,2005:24~68.
    [93] Leavitt J A, Mease K D. Feasible Trajectory Generation for Atmospheric EntryGuidance[J]. Journal of Guidance Control and Dynamics,2007,30(2):473~481.
    [94] Mooij E, Mease K D, Benito J. Robust Re-entry Guidance and Control SystemDesign and Analysis[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit. Hilton Head: AIAA,2007.
    [95] Talole S E, Benito J, Mease K D. Sliding Mode Observer for Drag Tracking inEntry Guidance[C]. AIAA Guidance, Navigation, and Control Conference andExhibit. Hilton Head: AIAA,2007.
    [96] Shen Z, Lu P. On-Board Generation of Three-Dimensional Constrained EntryTrajectories[C]. Guidance, Navigation, and Control Conference and Exhibit.Monterey: AIAA,2002.
    [97] Shen Z. On-Board Three-Dimensional Constrained Entry Flight TrajectoryGeneration[D]. Iowa: Iowa State University,2002:65~86.
    [98] Shen Z, Lu P. Onboard Generation of Three-Dimensional Constrained EntryTrajectories[J]. Journal of Guidance Control and Dynamics,2003,26(1):111~121.
    [99] Shen Z, Lu P. Onboard Entry Trajectory Planning Expanded to Sub-OrbitalFlight[R]. AIAA-2003-5736,2003.
    [100] Shen Z, Lu P. Dynamic Lateral Entry Guidance Logic[J]. Journal of GuidanceControl and Dynamics,2004,27(6):949~959.
    [101] Lu P. Asymptotic Analysis of Quasi-Equilibrium Glide in Lifting Entry Flight[J].Journal of Guidance Control and Dynamics,2006,29(3):662~670.
    [102] Lu P. Entry Trajectory Optimization with Analytical Feedback Bank AngleLaw[C]. AIAA Guidance, Navigation and Control Conference and Exhibit.Hawaii: AIAA,2008.
    [103] Lu P, Xue S. Rapid Generation of Accurate Entry Landing Footprints[J]. Journalof Guidance Control and Dynamics,2010,33(3):756~767.
    [104] Dukeman G A. Profile-Following Entry Guidance Using Linear QuadraticRegulator Theory[C]. AIAA Guidance, Navigation, and Control Conference andExhibit. California: AIAA,2002.
    [105] Zimmerman C, Dukeman G A, Hanson J M. Automated Method to ComputeOrbital Reentry Trajectories with Heating Constraints[J]. Journal of GuidanceControl and Dynamics,2003,26(4):523~529.
    [106] Hanson, J M, Jones R E. Test Results for Entry Guidance Methods for SpaceVehicles[J]. Journal of Guidance Control and Dynamics,2004,27(6):960~966.
    [107] Jackson M C, Straube T M, Fill T J, et al. On-Board Determination of VehicleGlide Capability for the Shuttle Abort Flight Manager (SAFM)[C]. IEEEAerospace and Electronic Systems Society, Core Technologies for Space SystemsConference. Colorado: IEEE,2002.
    [108]潘乐飞.可重复使用运载器再入制导研究[D].西安:西北工业大学硕士学位论文,2006:45~52.
    [109]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科技大学博士学位论文,2008:5~58.
    [110]李瑜.助推-滑翔导弹弹道优化与制导方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:12~45.
    [111]吴浩,杨业.基于RCMAC网络的动态逆再入制导方法研究[J].空间控制技术与应用,2011,37(4):49~53.
    [112]曾志峰,汤一华,徐敏.基于神经网络的飞行器再入制导研究[J].飞行力学,2011,29(3):64~67.
    [113] Mease K D, Teufel P, Schonenberger H, et al. Reentry Trajectory Planning for aReusable Launch Vehicle[C]. AIAA Atmospheric Flight Mechanics Conferenceand Exhibit, Portland: AIAA,1999.
    [114] Bharadwaj S, Rao A, Mease K D. Tracking Law for a New Entry GuidanceConcept[C]. AIAA Atmospheric Flight Mechanics Conference. New Orleans:AIAA,1997.
    [115]王志刚,南英,吕学富.载人飞船再入大气层的最优轨迹与制导研究[J].导弹与航天运载技术.1996,(1):1~9.
    [116]李小龙.天地往返航天运载器再入的最优轨迹与制导研究[D].西安:西北工业大学博士论文,1990:35~50.
    [117] Haroz C. A Predictor-Corrector Guidance Algorithm Design for a Low L/DAutonomous Re-entry Vehicle[D]. Boston: Massachusetts Institute of Technology,1998:52~68.
    [118] Tigges M A, Crull T, Rea J R. Numerical Skip Entry Guidance[C].29th AnnualAAS Guidance and Control Conference, Breckenridge: AAS,2006.
    [119] Bairstow S H. Reentry Guidance with Extended Range Capability for Low L/DSpacecraft[D]. Boston: Massachusetts Institute of Technology,2006:54~67.
    [120] Brunner C W, Lu P. Comparison of Numerical Predictor-Corrector and ApolloSkip Entry Guidance Algorithms[C]. AIAA Guidance Navigation and ControlConference, Toronto: AIAA,2010.
    [121] Brunner C W, Lu P. Skip Entry Trajectory Planning And Guidance[J]. Journal ofGuidance Control and Dynamics,2008,31(4):1210~1219.
    [122] Vernis P, Spreng F, Gelly G. Accurate Skip Entry Guidance for Low to MediumL/D Spacecrafts Return Missions Requiring High Range Capabilities[C]. AIAAGuidance, Navigation, and Control Conference, Portland: AIAA,2011.
    [123] Braun R D, Powell R W. Predictor-Corrector Guidance Algorithm for Use inHigh-Energy Aerobraking System Studies[J]. Journal of Guidance Control andDynamics,1992,15(3):672~678.
    [124] Fuhry D P. Adaptive Atmospheric Reentry Guidance for the Kistler K-1OrbitalVehicle[C]. AIAA Guidance, Navigation and Control Conference. Portland:AIAA,1999.
    [125] Youssef H, Chowdhry R, Lee H, et al. Predictor-Corrector Entry Guidance forReusable Launch Vehicles[R]. AIAA-2001-4043,2001.
    [126] Joshi A, Sivan K, Amma S S. Predictor-Corrector Reentry Guidance Algorithmwith Path Constraints for Atmospheric Entry Vehicles[J]. Journal of GuidanceControl and Dynamics,2007,30(5):1307~1318.
    [127] Xue S, Lu P. Constrained Predictor-Corrector Entry Guidance[J]. Journal ofGuidance Control and Dynamics,2010,33(4):1273~1281.
    [128]陈刚,董龙雷,闫桂荣,等.航天器再入制导方法研究现状与发展评述[J].飞行力学,2008,26(1):1~4.
    [129]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,2009:42~44,61~67.
    [130] David M, Lau K Y. Aerothermodynamic Environments and Thermal Protectionfor a Wave-Rider Second Stage[J]. Journal of Spacecraft and Rockets.2005,42(2):208~212.
    [131] Roberto A, Michele L. Aerogravity Assist Maneuvers Coupled Trajectory andVehicle Shape Optimization[J]. Journal of Spacecraft and Rockets.2007,44(5):1051~1059.
    [132] Raffaele S. Aerothermodynamic Study of UHTC-based Thermal ProtectionSystems[J]. Aerospace Science and Technology.2005,9(2):151~160.
    [133]王希季等.航天器进入与返回技术[M].北京:宇航出版社,1991:261.
    [134]黄志澄主编.航天空气动力学[M].宇航出版社.1994:122.
    [135] Pitts W C, Nielsen J N, Kaatari G E. Lift and Center of Pressure ofWing-Body-Tail Combination at Subsonic, Transonic, and Supersonic Speeds[R].NACA Report1307.1957:2~5.
    [136] Blake W B. Missile DATCOM User’s Manual[M]. Air force research laboratory.AFRL-VA-WP-TR-1998-3009.1998:1~95.
    [137] Doyle J B. Improvements in Finshed Vortex Treatment for Missile DATCOM[C].27th AIAA Applied Aerodynamics Conference. San Antonio: AIAA,2009.
    [138] McDaniel M A. Boattail Improvements for Missile DATCOM[C].47th AIAAAerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition. Orlando: AIAA,2009.
    [139]严恒元主编.飞行器气动特性分析与工程计算[M].西北工业大学出版社.1990:8~263.
    [140]箭弹气动力编辑组.箭弹空气动力特性分析与计算[M].国防工业出版社.1979:223~245.
    [141]苗瑞生等著.导弹空气动力学[M].国防工业出版社.2006:364~545.
    [142]唐伟.二次曲线截面弹身的气动设计及优化.宇航学报,2004,25(4):429~433.
    [143] Kulfan M B. Fundamental Parametric Geometry Representations for AircraftComponent Shapes[C].11th AIAA Multidisciplinary Analysis and OptimizationConference, Portsmouth: AIAA,2006.
    [144] Kulfan M B. A Universal Parametric Geometry Representation Method CST[C].45th AIAA Aerospace Sciences Meeting. Reno: AIAA,2007.
    [145] Lane A K. A Surface Parameterization Method for Airfoil Optimization and HighLift2D Geometries Utilizing the CST Methodology[C].47th AIAA AerospaceSciences Meeting. Orlando: AIAA,2009.
    [146] Ceze M. A Study of the CST Parameterization Characteristics[C]. AIAA AppliedAerodynamics Conference. San Antonio: AIAA,2009.
    [147]冯毅.飞行器参数化几何建模方法研究[J].空气动力学学报,2012,30(4):546~550.
    [148]唐伟.快船概念气动特性初探[J].空气动力学学报,2008,26(4):504~507.
    [149] Peter T B. Aerodynamic Characteristics of the140A/B Space Shuttle Orbiter atMach10[R]. Scientific and Technical Information Office, National Aeronauticsand Space Administration, United States,1979.
    [150] Semenov Y P. Aerodynamics of Reentry Vehicle Clipper at Descent Phase[C].Proceedings of the Fifth European Symposium on Aerothermodynamics for SpaceVehicles. Cologne: European Space Agency,2005.
    [151]王福军编著.计算流体动力学分析[M].清华大学出版社.2006:1~23.
    [152]朱志强等著.应用计算流体力学[M].北京航空航天大学出版社.1998:1~6,191~220.
    [153] Anderson J D著.吴颂平,刘赵森译.计算流体力学基础[M].北京:机械工业出版社,2007:371.
    [154]瞿章华,刘伟,曾明等.高超声速空气动力学[M].长沙:国防科技大学出版社,2001:2~85.
    [155] CFD Research Corporation. CFD-FASTRANTM Demonstrations andValidations[M]. CFD Research Corporation.2003:1-1~8-12.
    [156] CFD Research Corporation. CFD-FASTRAN Theory Manual[M]. CFD ResearchCorporation.2002:1~5.
    [157] Eggers A J, Allen H J, Neice S E. A Comparative Analysis of the Performance ofLong-Range Hypervelocity Vehicles[R]. NACA Research Memorandum,Washington: National advisory committee for Aeronautical,1955:1~14.
    [158] George R, Colorado S. The Common Aero Vehicle: Space Delivery System of theFuture[C]. AIAA Space Technology Coference and Exposition, Albuquerque:AIAA,1999.
    [159]张冉,李惠峰.基于平衡滑翔的升力再入攻角设计分析及应用[J].宇航学报,2012,33(10):1557~1563.
    [160] Sanger E, Bredt I. A Rocket Drive for Long-Range Bombers[R]. TranslationCGD-32, Washington: Technical Information Branch, U. S. Navy Bureau ofAeronautics,1952.
    [161] Semenov Y P, Brukhanov N A, Khamits I I, Petrov N K, et. al. Reusable MannedSpacecraft Clipper[C]. Proceedings of the Fifth European Symposium onAerothermodynamics for Space Vehicles. Cologne: European Space Agency,2005.
    [162] Moore T E. Space Shuttle Entry Terminal Area Energy Management[R]. NASALyndon B. Johnson Space Center, Novemenber1991.
    [163] NASA-STD-3000, NASA man-systems integration standards[S]. NASA JohnsonSpace Center,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700