用户名: 密码: 验证码:
新疆融雪径流预报及其不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展融雪径流预报研究的意义不言而喻,但是受制于融雪水文过程中广泛存在且复杂的不确定性、观测实验条件的匮乏、以及研究基础的薄弱,迄今为止对于融雪径流预报的研究工作尚处于起步阶段,对其不确定性的研究世界范围内也近乎空白。
     本文瞄准分布式融雪径流预报的关键技术、方法以及融雪水文预报中的不确定性问题这两个关键科学问题,以地处新疆天山北坡昌吉州的军塘湖流域作为典型研究区,基于“3S”技术、实验室模拟、野外观测实验、计算机建模以及现代数理方法等方法与技术手段,对新疆融雪径流预报及其不确定性问题展开了较为系统和深入的系列研究。
     本文开展的主要研究内容及结论包括:一是开展了融雪径流预报的基本理论与方法研究;二是开展了系列积雪冻融过程的模拟实验研究,为融雪模型的构建及其参数率定提供基础;三是基于典型研究区近年来的观测实验以及相应的实验室模拟实验,开展了“温度指数法”融雪模型以及“能量平衡法”融雪模型的对比研究,初步构建了面向新疆的分布式融雪径流模型;四是基于大气-陆面模式的耦合,开展了模型参数率定及分布式数据处理等方面的研究;五是融雪水文过程及融雪径流模型中的不确定性研究;六是融雪模型参数率定和预报不确定性的量度标准以及可靠性分析研究;七是融雪水文不确定性评估的理论和方法研究。
     融雪径流预报以及不确定性研究既立足于新疆区域水资源管理以及防灾减灾的社会需求,也是现今国际水文学界的研究热点和前沿科学问题,故此本文的研究起点位于国际先列水平,主要的创新点包括两个方面:一是基于大气-陆面模式耦合、“3S”技术以及室内外模拟实验与观测,建立了面向新疆的分布式融雪径流模型,其中首次对融雪期温度指数法融雪模型中的“度日因子”展开了探讨,大气模式与遥感等多源数据驱动分布式融雪模型进行融雪径流预报乃是未来水文预报的发展方向;二是首次对融雪水文过程及融雪径流预报中的不确定性及其研究方法与理论开展了较为系统、深入的研究,此项工作在国内外尚属首次。
Monitoring of snow along with simulation and forecasting of snowmelt has become the research focuses in both climate change science and hydrology. But researches in snowmelt prediction are yet at the initial phase, especially rare in uncertainty studies, reasons of which are widespread uncertainties in snowmelt process, lack of observed experimental conditions, and weak research infrastructure.
     This paper aims at two cardinal scientific issues - key techniques and methods in distributed snowmelt runoff forecasting and uncertainties in snowmelt hydrological prediction, to systematically and deeply address the prediction of Xinjiang snowmelt floods and their uncertainties. The Juntanghu Basin, which located in the Changji State in the north slope of Tianshan Mountains in Xinjiang, was choosed to be the typical study area, applied "3S" technologies (GIS, RS and GPS), laboratory simulation, field observation experiments, computer modeling and other modern mathematical and technical means, and carried out a large number of field observations and experimental data collections as well as laboratory simulation and analysis of the physical process of the snowmelt.
     Major contents of studies and conclusions in this paper are as follows:First, basic theories and methods for snowmelt runoff forecasting are discussed in this paper. Second, a series of simulations of snow freezing and thawing process were carried out, to build the snowmelt model and to provide basis for its parameters calibration. Third, it takes research on construction of the distributed snowmelt runoff model, and a Distributed Snowmelt Runoff Model was initially constructed for Xinjiang area. Fourth, researches based on the atmosphere - land surface coupling mode combination with conducting the model parameter calibration and distributed data-input are completed. Fifth, research of the uncertainty focused on the process of snowmelt and snowmelt runoff hydrological model is another important part of this paper. Sixth, measurement standards of prediction uncertainty and parameters calibration of the snowmelt model, as well as reliability analysis, are on the table for systematic discussion. Seventh, it launches research works on the theory and method of the uncertainties assessment of the snowmelt hydrological process and snowmelt models.
     The research on the snowmelt runoff forecasting and its uncertainty, which is based on the social needs of the regional water resources management and the disaster prevention and mitigation in Xinjiang, is one of the forefront research focus and scientific issues of international hydrology science, in view of this, this study is the first series of international standards, the main innovations include two aspects:
     First of all, based on the atmosphere - land surface coupling modes, "3S" technologies, and indoor and outdoor simulation experiments and observations, a distributed snowmelt runoff model is set up for Xinjiang. Combining with the outputs of atmospheric modes, multi-source data such as remote sensing data and basic geographic data, were used to drive the distributed snowmelt runoff model and forecast snowmelt runoff, absolutely, this is the direction of the hydrological forecasting in the future.
     The second part of innovative work is that, it takes embedded and systematic discussion on uncertainty of the snowmelt hydrological processes and snowmelt runoff forecasting, as well as the relevant theories and research methods of them. Systemic research on the uncertainty of snowmelt is the first time and it's among the forefront in the world.
引文
[1]李培基.中国积雪分布.冰川冻土[J],1983,5(4):9-18.
    [2]李培基.中国季节积雪资源初步评价[J].地理学报,1988,43(2):108-119.
    [3]Hoinkes H. Glaciology in the International Hydrological Decade [A].IAHS Publication No.79 [C]. Bern:IUGG General Assembly,1967:7-16.
    [4]王建,李文君.中国西部大尺度流域建立分带式融雪径流模拟模型[J].冰川冻土,1999,21(3):264-268.
    [5]房世峰.基于“3S”技术的分布式融雪径流模型的设计和应用[D].新疆大学硕士学位论文,2007.
    [6]Freeze R A, Harlan R L.1969, Blueprint for a physically-based digitally-simulated hydrological response model [J]. Journal of Hydrology,9:237-258.
    [7]Wang M, Hjelmfelt A T.1998, DEM based overland flow routing model [J]. Journal of Hydrologic Engineering,3(1):1-8.
    [8]Senarath U S. On the calibration and verification of two dimensional, distributed, Hortonian, continuous watershed models [J]. Water Resources Research,2000,36 (6):1495-1510.
    [9]Refagard J C. Parameterisation, calibration, and validation of distributed hydrological models [J]. Journal of Hydrology,1997,198:69-97.
    [10]Beven K J, Wood E F. Catchment geomorphology and the dynamics of runoff contributing areas[J]. Journal of Hydrology,1983,65:139-158.
    [11]Beven K J, Kirkby M J, Schofidd N, Tagg A F. Testing a physically based flood-forecasting model (TOPMODEL) for three UK catchments[J]. Journal of Hydrology,1984,69:119-143.
    [12]Beven K J. Changing ideas in hydrology-the case of physically based models[J], Journal of Hydrology, 1989,105:157-172.
    [13]Beven K J (Editor). Distributed Hydrological Modelling: Application of the TOPMODEL Concept [C]. John Wiley & Sons Ltd,1997.
    [14]Beven K J.1996a. A discussion of distributed hydrological modelingc[A]. In: M B Abbott, J C Refsgarrd, Distributed Hydrological Modelling, Chapter 13a,255-278. Kluwer Academic Publishers.
    [15]Beven K J.1996b. Response to comments on "A Discussion of Distributed Hydrological Modelling" by J C Rtsfgard et al. [A]. In: M B Abbott, J C Refsgarrd, Distributed Hydrological Modelling, Chapter 13c,289-296. Kluwer Academic Publishers.
    [16]Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, Rasmussen J. An introduction to. the European Hydrological System-Systeme Hydrologique Europeen, "SHE",1:History and philosophy of a physically-based, distributed modelling system [J]. Journal of Hydrology,1986a,87:45-59.
    [17]Abbott M B, Bathurst J C, Cunge J A, O'Connell P E, Rasmussen J. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE",2:Structure of a physically based, distributed modelling system [J]. Journal of Hydrology,1986b,87:61-77.
    [18]刘昌明.中国地理学会水文专业委员会第五次全国水文学术会议论文集[C].北京:科学出版社.
    [19]王浩,秦大庸,王建华.多尺度区域水循环过程模拟进展与二元水循环模式的研究[A].刘昌明等.黄河流域水资源演化规律与可再生性维持机理研究和进展.郑州:黄河水利出版社.2001.
    [20]夏军.水文学科发展与思考[A].21世纪中国水文科学研究的新问题新技术和新方法.北京:科学出版社,2001,18-27.
    [21]郭生练等.分布式流域水文物理模型的研究现状与进展[A].刘昌明等.黄河流域水资源演化规律与可再生性维持机理研究和进展[C].郑州:黄河水利出版杜,2001.
    [22]刘金清,陆建华.国内外水文模型概论[J].水文,1996,16(4):4-8.
    [23]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,22(3):56-70.
    [24]王中根,刘昌明,左其亭,刘青娥.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    [25]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348.
    [26]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997,17(5):5-10.
    [27]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):369-376.
    [28]任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134.
    [29]刘新仁.大尺度水文模拟若干问题的讨论:淮河流域能量与水分循环研究[M].北京:气象出版社,1999,221-228.
    [30]任立良.流域数字水文模型研究[J].河诲大学学报,2000,28(4):1-6.
    [3l]李兰等.流域水文数学物理耦合模型[A].朱尔明.中国水利学会优秀论文集.北京:中国三峡出版社,322-329,2000.
    [32]郭生练,熊立华等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [33]郭生练,熊立华等.分布式流域水文物理模型的应用和检验[J],武汉大学学报(工学版),2001,34(1):1-5.
    [34]俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型[J].河海大学学报,2002,30(5):23-27.
    [35]夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002.
    [36]夏军,王纲胜,吕爱锋,谈戈.分布式时变增益流域水循环模拟[J].地理学报,2003,58(5):789-796.
    [37]王纲胜,夏军,谈戈等.潮河流域时变增益分布式水循环模型研究[J].地理科学进展.2002,21(6):573-582.
    [38]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [39]唐莉华,吕贤弼,张思聪.分布式小流域产汇流及输沙模型研究.基于3S技术的北京市水土保持生态环境管理信息系统专题报告集,2002.
    [40]张建云.气候异常对水资源影响评估中的关键性技术研究[J].水文,1998年,增刊.
    [41]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):6l-65.
    [42]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展,2004,24(2):55-58.
    [43]贾仰文,王浩,王建华等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-308.
    [44]李致家,张珂,姚成.基于GIS和DEM和分布式水文模型的应用比较[J].水利学报,2006,37(8):1022-1028.
    [45]刘卓颖,倪广恒,雷志栋,王玲.黄土高原地区中小尺度分布式水文模型[J].清华大学学报(自然科学版),2006,46(9):1 546-1550.
    [46]王中根,刘昌明,黄友波SWAT模型的原理,结构及应用研究[J].地理科学进展,2003,1,22(1):79-86.
    [47]蓝永超,曾群柱.河西地区融雪径流的灰色预测方法[J].冰川冻土,1997,(02).
    [48]刘凤景,Mark WILLIAMS,程国栋等.天山乌鲁木齐河融雪和河川径流的水文化学过程[J].冰 川冻土,1999,(03).
    [49]冯学智,李文君,史正涛等.卫星雪盖监测与玛纳斯河融雪径流模拟[J].遥感技术与应用,2000,(01).
    [50]王建,马明国,Paolo Federicis.基于遥感与地理信息系统的SRM融雪径流模型在Alps山区流域的应用[J].冰川冻土,2001,(04).
    [51]王建,沈永平,鲁安新,王丽红,史正涛.气候变化对中国西北地区山区融雪径流的影响[J].冰川冻土,2001,(01).
    [52]马虹,程国栋.SRM融雪径流模型在西天山巩乃斯河流域的应用实验[J].科学通报,2003,(19).
    [53]吴宁,程承旗,胡雪莲.应用遥感信息模型理论建立融雪径流模型的初步研究[J].水土保持研究,2003,(03).
    [54]李宝林,张一驰,周成虎.天山开都河流域雪盖消融曲线研究[J].资源科学,2004,(06).
    [55]于春冬.龙凤山水库融雪径流预报[J].黑龙江水专学报,2004,(02).
    [56]田静.积雪融化过程中水、热、溶质运移规律的研究[D].沈阳农业大学硕士毕业论文,2004.
    [57]刘永强.新疆融雪洪水预警DSS关键技术及实现方式[D].新疆大学博士学位论文,2007.
    [58]赵求东.’WRF+DHSVM融雪径流预报模式研究[D].新疆大学硕士学位论文,2008.
    [59]Qiudong Zhao, Zhihui Liu, Ye Baisheng, et al.2009. A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrology and Earth system Sciences,13:1897-1906.
    [60]杨绍富.融雪过程中水热耦合实验研究-以天山北坡军塘湖流域为例[D].新疆大学硕士学位论文,2009.
    [61]Singh V. P, Woolhiser D.A..2002. Mathematical modeling of watershed Hydrology[J]. J.of Hydrol. Engng.,7:270-292.
    [62]M. Sivapalan, K. Takeuchi, S. W. Franks, et al.2003. IAHS Decade on Predictions in Ungauged Basins (PUB),2003- 2012:Shaping an Exciting Future for the Hydrological Sciences [J]. Hydrol Sci J,48(6):857-880.
    [63]夏军.现代水文学的发展与水文复杂性问题的研究[A].夏军主编.水问题的复杂性和不确定性研究与进展[C].北京:中国水利水电出版社,2004.
    [64]Goodrich D. Faures C., J., Woolhiser D.A., et al.1995. Measurement and analysis of small- scale convective storm rainfall variability [J]. J. Hydrol.173:283-308.
    [65]Shaha S.M.S., O' Connell P.E., Hosking J.R.M..1996. Modelling the effects of spatial variability in rainfall on catchment response.1. Formulation and calibration of a stochastic rainfall field model [J]. J. Hydrol.175:67-88.
    [66]Shaha S.M.S., O' Connell P.E., Hosking J.R.M..1996. Modelling the effects of spatial variability in rainfall on catchment response.2. Experiments with distributed and lumped models [J]. J. Hydrol. 175:89-111.
    [67]Lopes V. L..1996. On the effect of uncertainty in spatial distribution of rainfall on catchment modeling [J]. Catena.28:107-119.
    [68]Chaubey, C.T. Haan, S. Grunwald, J.M. Salisbury,1999. Uncertainty in the model parameters due to spatial variability of rainfall [J]. J. Hydrol.220:48-61.
    [69]Bronstert, A. Bardossy.2003. Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity [J]. Physics and Chemistry of the Earth.28:283-288.
    [70]郝芳华,陈利群,刘昌明,张雪松.降雨的空间不均性对模拟产流量和产沙量不确定的影响[J].地理科学进展,2003,22(5):446-453.
    [71]Seo D.J.. S. Perica, E. Welles, et al.2000, Simulation of precipitation fields from probabilistic quantitative precipitation forecast [J]. J. Hydrol,239(1-4):203-229.
    [72]Perrin C., C. Michel, V. Andreassian.2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments [J].J. Hydrol,242:275-301.
    [73]Sandra van der Linden, W. Ming- ko. 2003, Application of hydrological models with increasing complexity to subarctic catchments [J]. J. Hydrol,270:145-157.
    [74]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展.2002,22(3):56-70.
    [75]Montanari A.. 2004, A stochastic approach for assessing the uncertainty of rainfall- runoff simulations [J]. Water Resour. Res.,40(1).
    [76]Choi J., J. W. Harvey, M. H. Conklin.1999, Use of multi- parameter sensitivity analysis to determine relative importance of factors influencing natural attenuation of mining contaminants [A]. Proceedings of the U.S. Geological Survey Toxic Substances Hydrology Program- Technical Meeting [C]. Charleston, USA.185-192.
    [77]Beven K.J., A. Binley. The future of distributed models: model calibration and uncertainty prediction [J]. Hydrol. Proc,1992,6:279-298.
    [78]刘毅,陈吉宁,杜鹏飞.环境模型参数识别与不确定性分析[J].环境科学.2002,23(6):6-10.
    [79]Freer J., K.J. Beven, B. Ambroise,1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach [J]. Water Resour. Res.32(7):2161-2173.
    [80]Zak S., K.J. Beven,1999, Equifinality sensitivity and uncertainty in the estimation of critical load [J]. Sci. Total Environ,236:191-214.
    [81]Beven K.J., J. Freer.2001, Equifinality data assimilation and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology [J]. J. Hydrol,249: 11-29.
    [82]Pappenberger F., K.J. Beven,2004, Functional Classification and Evaluation of Hydrographs based on Multicomponent Mapping [J]. International Journal of River Basin Management.2(2).
    [83]Xiong L.H., O'Connor K. M.2008, An empirical method to improve the prediction limits of the GLUE methodology in rainfallOrunoff modeling [J]. Journal of Hydrology,349:115-124.
    [84]Kuczera G., E. Parent,1998, Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm [J]. J. Hydrol.211(1-4):69-85.
    [85]Bates B. C., E. P. Campbell.2001, A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall- runoff modeling [J]. Water Resour. Res,37 (4):937-947.
    [86]Marshall L., D. Nott, A. Sharma.2004, A comparative study of Markov chain Monte Carlo methods for conceptual rainfall- runoff modeling [J]. Water Resour. Res,40(2):1-11.
    [87]Krzysztofowicz R.. 2002, Bayesian system for probabilistic river stage forecasting [J]. J. Hydrol, 268:16-40.
    [88]Hsu K., H. V. Gupta, X. Gao, et al.2002, Self-organizing linear output map (SOLO):An artificial neural network suitable for hydrologic modeling and analysis [J]. Water Resour. Res.,38(12):1302.
    [89]Kelly K.S., R. Krzysztofowicz.2000, Precipitation uncertainty processor for probabilistic river stage forecasting [J]. Water Resour. Res,36(9):2643-2653.
    [90]Krzysztofowicz R., H.D. Herr 2001, Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation- dependent model [J].J. Hydrol,249(1-4):46-68.
    [91]郭生练,李兰,曾光明.气候变化对水文水资源影响评价的不确定性分析[J].水文,1995,(6): 1-5.
    [92]张洪刚,郭生练,刘攀等.基于贝叶斯分析的概率洪水预报模型研究[J].水电能源科学,2004,22(1):22-25.
    [93]钱名开,徐时进,王善序等.淮河息县站流量概率预报模型研究[J].水文,2004,24(2):23-25.
    [94]莫兴国,刘苏峡.GLUE方法及其在水文不确定性分析中的应用[A].夏军主编:水问题的复杂性和不确定性研究与进展[C].北京:中国水利水电出版社,2004.
    [95]胡隐樵.地学、地球系统科学和自然控制论[A].国家自然科学基金委等编.现代大气科学前沿与展望[C].北京:气象出版社,1996,185-188.
    [96]任立良,刘新仁.数字时代水文模拟技术的变革[J].河海大学学报,2000,28(5).
    [97]钱镜林.现代洪水预报技术研究[D].浙江大学博士学位论文,2004.
    [98]周江文.经典误差理论与抗差估计[J].测绘学报,1989,18(2):115-120.
    [99]Huber P J. Robust Statistics. NewYork:Wiley,1981.
    [100]瞿思敏,包为民.实时洪水预报综合修正方法初探[J],水科学进展,2003(2).
    [101]瞿思敏,抗差理论在洪水预报中的应用研究[D],浙江大学博士学位论文,2004.
    [102]Jaynes E.T., Information theory and statistical machanics [J]. Phys. Rev.,1957,106:620-630; 108: 171-190.
    [103]Singh V.P., Entropy based parameter estimation in Hydrology [M]. Kluwer Academic Publishers (Boston London),1998.
    [104]张明.Nash模型参数估计的熵法[J].水利学报,2002,33(1):62-65.
    [105]王栋,朱元.随机观测误差对水环境评价的影响[J].水利学报,2003,34(10):1-5.
    [106]Wang D., Singh V.P. Zhu Y.S.,2007. Hybird fuzzy and optimal modeling for water quality evaluation [J]. Water Resour. Res.,43, W05415.
    [107]刁艳芳,王本德,刘翼.基于最大熵原理方法的洪水预报误差分布研究[J].水利学报,2007,38(5):591-595.
    [108]罗军冈,解建仓,阮本清.基于熵权的水资源短缺风险模糊综合评价模型及应用[J].水利学报,2008,39(9):1092-1098.
    [109]赵卫民,戴东,王玲等译.水文系统降雨径流模拟[M].郑州,黄河水利出版社,1999.
    [110]Linsley, R. K., Jr.1943, A simple procedure for the daily forecasting of runoff from snowmelt, Transaction of the American Geophysical Union, Part Ⅲ,62-67.
    [111]Arnold, J.G., Williams, J. R., Srinivasan, R., et al.,1996, SWAT-Soil and Water Assessment Tool, USDA-ARS, Temple, Texas.
    [112]Arnold, J. G., Williams, J. R., Srinivasan, R., et al.,1998, SWAT-Soil and Water Assessment Tool, Fortran source code, USDA-ARS, Temple, Texas.
    [113]Finsterwalder S, Schunk H. Der Suldenferner [J]. Zeitschrift des Deutschen und Oesterreichischen Alpenvereins,1887,18:72-89.
    [114]Hoinkes H C, Steinacker H. Hydro meteorological implications of the mass balance of Hintereisferner,1952/53 to 1968/69 [J]. IAHS Publ,1975,104:144-149.
    [115]Johannesson T, Sigurdsson O, Laumann T, et al. Degree-day Glacier mass balance modeling with applications to glaciers in Iceland, Norway and Greenland [J]. Journal of Glaciology,1995,41(151): 345-358.
    [116]Liu Shiyin, XieZichu, Song Guoping, et al. Mass balance of Kangwure (flat top) Glacier on the north side of Mt. Xixabangma, China[J]. Bulletin of Glacier Research,1996,14:37-43.
    [117]Oerlemans J, Anderson B, Hubbard A., et al. Modeling the response of glaciers to climate warming [J]. Climate Dynamics,1998,14:267-274.
    [118]Braithwaite R J, Zhang Y. Sensitivity of mass balance of five Glaciers to temperature changes assessed by tuning a degree Day model [J]. Journal of Glaciology,2000,46(152):7-14.
    [119]刘时银,丁永建,叶佰生,等.度-日因子用于乌鲁木齐河源1号冰川物质平衡计算的研究[C]//第五届全国冰川冻土学大会论文集(上册).兰州:甘肃文化出版社,1996:197-204.
    [120]刘时银,丁永健,王宁练,等.天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J].冰川冻土,1998,20(1):9-13.
    [121]Singh, P., Kumar, N. Determination of snowmelt factor in the Himalayan region [J]. Hydrol. Sci. 1996,41:301-310.
    [122]Arendt A, Sharp M. Energy balance measurements on a Canadian high arctic glacier and their implications for mass balance modeling [J]. IAHSPubl.1999,256:165-172.
    [123]Marinec, J., Rango, A. Parameter values for snowmelt runoff modeling [J]. Hydrol.1986,84, 197-219.
    [124]Kuusisto, E. Snow accumulation and snowmelt in Finland [J]. Publ. of the Water Research Institute, National Board of Waters, Finland 1984, No.155.
    [125]Hock R.,1999. A distributed temperature index ice and snowmelt model including potential direct solar radiation [J]. Journal of Glaciology,45(149):101-111.
    [126]Hock R. Temperature index melt modeling in mountain areas [J]. Journal of Hydrology,2003, 282:104-115.
    [127]张勇,刘时银.度-日模型在冰川与积雪研究中的应用进展[J].冰川冻土,2006,28(1):101-107.
    [128]Lang H. Relations between glacier runoff and meteorological factors observed on and outside the glacier [J]. IAHS Publ.1968,79:429-439.
    [129]Zuzel J F, Cox L M. Relative importance of meteorological variables in snowmelt [J].Water Resource. Res.,1975,11(1):174-176.
    [130]Martinec, J.,1975, Snowmelt-runoff model for stream flow forecasts:Nordic Hydrology 6,145-154.
    [131]Brubaker, K., Rango, A., and Kustas, W.1996, Incorporating radiation inputs into the snowmelt runoff model: Hydrological Processes 10,1329-1343.
    [132]Martinec, J.,1989, Houre-to-houre snowmelt rates and lysimeter outflow during an entire ablation, Snow Cover and Glacier Variation, Proceeding of the Baltimore symposium, Maryland, IHAS Publ. 183,19-28.
    [133]Morid, S.,2000, Snowmelt-runoff simulation for snowbound ungauged catchment, PhD dissertation, Indian Institute of Technology.
    [134]Morid, S., Gosain, A. K., and Keshari, A. K.,2000, An algorithm for monitoring snow water equivalent In ungauged catchments using GIS, Submitted to International Conference of Integrated Water Resource Management 2000.
    [135]Cazorzi F, Dalla Fontana G. Snowmelt modeling by combining air temperature and a distributed radiation index [J]. Journal of Hydrology,1996,181:169-187.
    [136]The U.S. Army crops of Engineers. Snow Hydrology [M]. Plate 8-1,1956.
    [137]Anderson, E.A. National Weather Service River Forecast System-snow accumulation and ablation model [C]. NOAA Technical Memorandum NWS-HYDRO-17, United States Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Washington, DC, USA,1973.
    [138]Male, D.H., Granger, R.J. Snow surface energy exchange [J]. Water Resource. Res,1981,17(3): 609-627.
    [139]Morris, E.M.,1983. Modeling the flows of mass and energy within a snow pack for hydrological forecasting [J]. Ann. Glasiol.,1983,4.
    [140]Morris, E.M. Snow and ice [M]. In: M. Anderson and T.P. Burt (Editors), Hydrological Forecasting, Wiley, Chichester,1985, pp:154-1982.
    [141]马虹,刘宗超,刘一峰,胡汝骥.中国西部天山季节性积雪的能量平衡研究和融雪速率模拟[J].科学通报,1992,17(21).
    [142]马虹,刘一峰,胡汝骥.天山季节性积雪的能量平衡研究和融雪速率模拟[J].地理研究,1993,12(1).
    [143]Abbott, M.B., Bathurst, J.C., Cunge, J.A., et al. An introduction to European Hydrological System-System Hydrological European (SHE),1.History and philosophy of a physically-based distributed modeling system,2. Structure of a physically-based distributed modeling system [J]. Hydrol.,1986, 87(1-2):45-77.
    [144]Dozier, J. A clear sky spectral solar radiation model for snow-covered mountainous terrain [J]. Water Resour. Res.1980(16):709-718.
    [145]Marks, D., Domingo, J., Susong, D., et al. A spatially distributed energy balance snowmelt model for application in mountain basins [J]. Hydro. Process,1999(13):1935-1959.
    [146]Ohara, N. Numerical and stochastic upscaling of snowmelt process [D].2004, UMI Number: 3108016.
    [147]Male D.H., Gray D.M., Snowcover ablation and runoff, In: Gray D.M., Male D.H. (Editors), Handbook of Snow: Principles, Process, Management and Use [M]. Pergamon Press, New York, 1981.
    [148]Marks, D., Kimball, J., Tingey, D., et al., The sensitivity of snowmelt process to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood [J]. Hydro. Process,1998(12):1569-1587.
    [149]Kondo, J. and Yamazaki, T.,1990. A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance methods [J]. Appl Meteorol.,1990(29):375-384.
    [150]Horton, R.E. The melting of snow [J]. Mon Weather Rev.,1915 (43):599-605.
    [151]Colbeck, S. C. A theory of water percolation in snow [J]. Journal of Glaciology,1972(2):369-385.
    [152]Tuteja N.K., Cunnane C. Modeling coupled transport of mass and energy into the snowpack- model development, validation and sensitivity analysis [J]. Journal of Hydrology.1997,195(1-4): 232-255.
    [153]Sokratov S.A., Maeno N. Heat and mass transport in snow under a temperature gradient[C]//Proc. of the 3rd International Conference on Snow Engineering (Vol.3),1997:49-54.
    [154]Morris, E.M.and Godfrey, J. T he European hydrologic system snow routine[C]//Collbeck SC, Ray M. Modeling snow cover runoff. CRREL, Hanover, New Hampshire,1979:269-278.
    [155]FernandezA.An energy balance model of seasonal snow evolution [J]. Phys.Chem.Earth,1998, 23(5/6):661-666.
    [156]Kustas, W.P., Rango, A., Uijlenhoet, R.,1994. A simple energy budget algorithm for the snowmelt runoff model. Water Resources Research.30(5):1515-1527.
    [157]Lindstrom, G., Johansson, B., Persson, M., et al.,1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology.201(1-4):272-288.
    [158]Boggild, C.E., Knudby, C.J., Knudsen, M.B., et al.,1999. Snowmelt and runoff modelling of an Arctic hydrological basin in west Greenland. Hydrological Processes.13(12-13):1989-2002.
    [159]Daly, C., R.P. Neilson, and D.L. Phillips,1994. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountanious Terrain. J. Appl. Meteor.,33:140-158.
    [160]Hartman, M.D., Baron, J.S., Lammers, R.B., et al.,1999. Simulations of snow distribution and hydrology in a mountain basin. Water Resources Research,35(5):1587-1603.
    [161]Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., et al.,2002. Development of a snowfall- snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology, 262(1-4):209-223.
    [162]Liston, G.E., Elder, K.,2006. A meteorological distribution system for high- resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology,7(2):217-234.
    [163]BergstrOm, S.,1976. Development and application of a conceptual runoff model for Scandinavian catchments. (Department of Water Resources Engineering, Lund Institute of Technology/University of Lund, Bulletin Series A, No.52,134 pp.).
    [164]Quick, M.C., Pipes, A.,1977. UBC watershed model. Hydrol. Sci. Bull.221,153-161.
    [165]Tangborn, W.V.,1984. Prediction of glacier derived runoff for hydro-electric development. Geogr. Ann.,66A(3):257-265.
    [166]Bφggild, C.E., Knudby, C.J., Knudsen, M.B., Starzer, W.,1999. Snowmelt and runoff modelling of an arctic hydrological basin in east Greenland. Hydrol. Proc.13,1989-2002.
    [167]Braithwaite R J, T Konzelmann C Marty, O B Olesen. Errors in daily ablation measurements in northern Greenland,1993-94, and their implications for glacier climate studies. Journal of Glaciology,1998,44(148):583-588.
    [168]张勇.度日模型在西南天山科其卡尔巴契冰川消融及融水径流模拟研究中的应用.中国科学院寒区旱区环境与工程研究所硕士毕业论文,2005.
    [169]Lang, H.,1986. Forecasting meltwater runoff from snow-covered areas and from glacier basins. In: Kraijenhoff, D.A., Moll, J.R. (Eds.), River Flow Modelling and Forecasting, D. Reidel publishing company,99-127, Chapter 5.
    [170]Takeuchi, Y., Naruse, R., Skvarca, P.,1996. Annual air-temperature measurement and ablation estimate at Moreno Glacier, Patagonia. Bull. Glacier Res.14,23-28.
    [171]Laumann, T., Reeh, N.,1993. Sensitivity to climate change of the mass balance of glaciers in southern Norway. J. Glaciol.39 (133),656-665.
    [172]Schytt, V.,1964. Scientific results of the Swedish glaciological expedition to Nordaustlandet, Spitzbergen,1957 and 1958. Geogr. Ann.46(3),243-281.
    [173]Singh, P., Kumar, N., Arora, M.,2000a. Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. J. Hydrol.235,1-11.
    [174]Singh, P., Kumar, N., Ramasastri, K.S., Singh, Y.,2000b. Influence of a fine debris layer on the melting of snow and ice on a Himalayan glacier. In: Nakawo, M., Raymond, C.F., Fountain, A. (Eds.), Debris-covered Glaciers, Proceedings of the Workshop on Debris-covered Glaciers, Seattle, 2000:IAHS Publ. no.264,63-69.
    [175]Kayastha, R.B., Ageta, Y., Nakawo, M.,2000a. Positive degree-day factors for ablation on glaciers in the Nepalese Himalayas: case study on glacier AX010 in Shoron Himal, Nepal. Bull. Glaciol. Res. 17,1-10.
    [176]Kayastha, R.B., Takeuchi, Y., Nakawo, M., Ageta, Y.,2000b. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degreeday factor. In: Nakawo, M., Raymond, C.F., Fountain, A. (Eds.), Debris-Covered Glaciers, IAHS Publ. no.264,71-81.
    [177]Kayastha R B,2001, Study of glacier ablation in the Nepalese Himalayas by the energy balance model and positive degree-day metod. D. Sc. Thesis, Nagoya University.
    [178]Schytt, V,1955. Glaciological investigations in the Thule Ramp area. SIPRE Report 28, Snow, ice and permafrost research establishment, Corps of Engineers, US Army, Wilmette, Illinois.88 pp.
    [179]Ambach, W.,1988a. Heat balance characteristics and ice ablation, western EGIG-profile, Greenland, Seventh Northern Research Basins Symposium/Workshop:Applied Hydrology in the Development of Northern Basins, May 25-June 1, Copenhagen Danish Society for Arctic Technology, Ililissat, Greenland,59-70.
    [180]Van de Wal, R.,1992. Ice and climate. PhD Thesis, Utrecht University,144 pp.
    [181]Braithwaite, R.J.,1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol.41(137),153-160.
    [182]Clyde, G.D.,1931. Snow-melting characteristics. Utah Agricultural Experiment Station Bull.231, 1-23.
    [183]Zingg, T.,1951. Beziehung zwischen Temperatur und Schmelzwasser und ihre Bedeutung fu" r Niederschlags-und Abflussfragen. IAHS Publ. no.32,266-269.
    [184]Corps of Engineers,1956. Summary report of the snow investigations, snow hydrology. US Army Engineer Division (North Pacific,210 Custom House, Portland, Oregon),437 pp.
    [185]Kuzmin, P.P.,1961. Melting of snow cover, Israel Program for Scientific Translation,290 pp.
    [186]Kuusisto, E.,1980. On the values and variability of degree-day melting factors in Finland. Nord. Hydrol.11(5):235-242.
    [187]张勇,刘时银,丁永建.中国西部冰川度日因子的空间变化特征[J].地理学报,2006,61(1):89-98.
    [188]Kayastha R B, Yutaka Ageta, Masayoshi Nakawo et al. Positive degree-day factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau. Bulletin of Glaciological Research,2003,20:7-14.
    [189]Braithwaite R. J., O. B. Olesen. Seasonal variation of ice ablation at the margin of the Greenland ice sheet and its sensitivity to climate change, Qamanarssup sermia, West Greenland. Journal of Glaciology,1993,39(132):967-974.
    [190]Ohmura A. Physical basis for the temperature-based melt index method. J. Appl. Meterol.,2001,40: 753-761.
    [191]白重瑗.冰川与气候的关系[J].冰川冻土,1989,11(4):287-297.
    [192]Shi Yafeng, Liu Shiyin,1999. Estimation of the response of the glaciers in China to the global warming in the 21st century. Chinese Science Bulletin,45(7):668-672.
    [193]Kuhn, M.,1987. Micro-meteorological conditions for snow melt. J. Glaciol.33(113):263-272.
    [194]Jordan, R. A.,1991.One dimensional temperature model for a snow cover. Technical documentation for SNTHERM.89, US Army Corps of Engineers, Cold Region Research Laboratory, Hanover, New Hampshire.
    [195]Sequin B., Itier B. Using midday surface temperature to estimate daily evaporation from Satellite thermal IR Data [J]. Int. J Remote Sensing.1983,4:371-384.
    [196]谢贤群.遥感瞬时作物表面温度估算农田全日蒸发散总量[J].环境遥感.1991,6(4):253-259.
    [197]李晶,刘时银,张勇.天山南坡科契卡尔巴西冰川消融期雪面能量平衡研究[J].冰川冻土, 2007,29(3):366-373.
    [198]叶晗,王惠林,刘勇.基于DEM的山区入射潜在太阳辐射模拟[J].遥感技术与应用,2004,19(5):415-419.
    [199]蒋熹.冰雪反照率研究进展[J].冰川冻土,2006,28(5):728-738.
    [200]Schaaf.C.B, Gao F, Strabler A H, etc. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS [J]. Remote Sen Environ,2002,83:135-148.
    [201]Iziomon.M.G., Mayer H., Matzarakis A., Downward atmospheric long wave irradiance under clear and cloudy skies:Measurement and parameterization, Journal of Atmospheric and Solar Terrestrial Physics,2003,65:1107-1116.
    [202]Zhengming Wan, Dosier J.1996, A Generalized Split window Algorithm for Retrieving Land Surface Temperature from Space [J]. IEEE Transactions on Geosciences and Remote Sensing,34 (4):892-905.
    [203]Anderson, E.A., National Weather Service River Forecast System - Snow Accumulation and Ablation Model [J]. NOAA Tech. Memo. NWS HYDRO-17. US Department of Commerce, Silver Springs, M D,1973,217.
    [204]Hottel, H. C.1976. A simple model for estimating the transmittance direct solar radiation through clear atmospheres. Solar Energy, Vol.18:129-134.
    [205]戴维.产汇流过程模拟系统的实现[D],新疆大学硕士毕业论文,2004.
    [206]Singh, V.P.,1995, Computer Models of Watershed Hydrology. Highlands Ranch: Water Resource Publications.
    [207]Singh, V.P. and D.K. Frevert,2002a, Mathematical Models of Large Watershed Hydrology. Highlands Ranch: Water Resource Publications.
    [208]Singh, V.P. and D.K. Frevert,2002b, Mathematical Models of Small Watershed Hydrology. Highlands Ranch: Water Resource Publications.
    [209]Jayatilaka, C. and L.D. Connell,1995. A Review of Catchment Scale Hydrologic Modeling Approaches. Report 95/5 for The Cooperative Research Centre for Catchment Hydrology.
    [210]Beven, K.J.,2003. Rainfall-Runoff Modeling: The Primer. New York: Wiley.
    [211]World Meteorological Organization,1975, Intercomparison of Conceptual Models Used in Operational Hydrological Forecasting. WMO No.429:Geneva.
    [212]World Meteorological Organization, Intercomparison of Models Used of Snowmelt Runoff.1986, WMO No.646:Geneva.
    [213]World Meteorological Organization, Simulated Real-Time Intercomparison of Hydrological Models. 1992, WMO No.646:Geneva.
    [214]Smart, GM.,1999. Turbulent Velocity Profiles and Boundary Shear in Gravel-Bed Rivers. Journal of Hydraulic Engineering (ASCE),125(2):106-116.
    [215]Saint-Venant De, B.,1843. Note a Joindre au Memoire sur la Dynamique des Fluids. Comptes-Rendus Hebdomadaires des Seances de 1’Acadamie des Sciences,17.
    [216]Stoker, J., Water Waves.1957, New York: Interscience.
    [217]Singh, V.P.,2001. Kinematic wave modelling in water resources: a historical perspective. Hydrological Processes,15(4):671-706.
    [218]Chow, V.T., D.R. Maidment and C.W Mays, Applied Hydrology.1988, New York: Mc Graw-Hill.
    [219]Cunge, J.A., F.M. Holly and A. Verwey, Practical aspects of computational river hydraulics,2nd edition.1980, New York:Pitman.
    [220]Bedient, P. and W. Huber, Hydrology and Floodplain Analysis.1988, Reading: Addison- Wesley Publishing Company.
    [221]Fread, D.L., Channel routing, in Hydrological forecasting, M.G. Anderson and T.P. Burt, Editors. 1985, John Wiley and Sons Ltd.:Chinchester.
    [222]Lane, S.N., P.A. Biron, A.G. Roy, et al.. The application of computational fluid dynamics to natural river channels: Three-dimensional versus two-dimensional approaches. Geomorphology,1999. 29(1-2):1-20.
    [223]Nicholas, A.P. and S. McLelland,2004. Computational fluid dynamics modelling of three-demensional processes on natural river floodplains. Journal of Hydraulic Research,42(2): 131-144.
    [224]Versteeg, H. and W. Malalasekera, An introduction to computational fluid dynamics-the finite volume method.1995, London:Longman.
    [225]Sellin, R. and B. Willets, Three-Demensional Structures, Memory and Energy Dissipation in Meandering Compound Channel Flow, in Floodplain Processes, M.G. Anderson, D.E. Walling, and P.D. Bates, Editors.1999, John Wiley:New York.
    [226]Christensen, S.,2003. A synthetic groundwater modeling study of the accuracy of GLUE uncertainty intervals. Nordic Hydrology,35(1):45-59.
    [227]Beven, K.J., and J. Feyen, The future of distributed modeling - Special issues. Hydrological Processes,2002.16(2):169-172.
    [228]Beven, K.J., Towards an alternative blueprint for a physically based digitally simulated hydrologic response modeling system. Hydrological Processes,2002.16(2):189-206.
    [229]Claxton, A., Modelling subsurface water and chemical transport through floodplain system - PhD thesis, in School of Geography.2002, Bristol University:Bristol, UK.
    [230]Jin, J., X. Gao, Z.L. Yang, et al., Comparative Analyses of Physically Based Snowmelt Models for Climate Simulations. Journal of Climate,1999.12:2643-2657.
    [231]Li, L. and S. P. Simonovic, System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrological Processes,2002.16,2645-2666.
    [232]Niu, G Y. and Z. L. Yang,2006. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. Journal of Hydrometeorology,7:917-933.
    [233]Domes, P. F., J. W. Pomeroy, A. Pietroniro, et al., Influence of landscape aggregation in modelling snow-cover ablation and snowmelt runoff in a sub-arctic mountainous environment. Hydrological Sciences Journal - des Sciences Hydrologiques,2008.53(4):725-740.
    [234]Bloschl, G. and M. Sivapalan, Scale Issues in Hydrological Modelling - a Review. Hydrological Processes,1995.9(3-4):251-290.
    [235]Harvey, L.D.D., Upscaling in global change research. Climatic Change,2000.44(3):223-223.
    [236]Peterson G.D., Scaling ecological dynamics: Self-organization, hierarchical structure, and ecological reslience. Climatic Change,2000.44(3):291-309.
    [237]Heuvelink, G.B.M.,1998. Uncertainty analysis in environmental modeling under a change of spatial scale. Nutrient Cycling in Agroecosystems,50(1-3):255-264.
    [238]Hardy, R.J., P.D. Bates and M.G. Anderson,1999. The importance of spatial resolution in hydraulic models for floodplain environments. Journal of Hydrology,216(1-2).
    [239]Horritt, M.S. and P.D. Bates,2001. Predicting floodplain inundation:raster-based modeling versus the finite-element approach. Hydrological Processes,15(5):825-842.
    [240]Wood, E., M. Sivapalan, K.J. Beven, et al.,1988. Effects of spatial variability and scale implications to hydrologic modelling. Journal of Hydrology,102(1-4):29-47.
    [241]Beven, K.J., Uniqueness of place and process representations in hydrological modeling. Hydrology and Earth System Sciences,2000.4(2):203.
    [242]Bloschl, G., Scaling in hydrology. Hydrological Processes,2001.15:705-711.
    [243]Beven, K.J., On landscape space to model space mapping. Hydrological Processes,2001.15(2): 323-324.
    [244]Beven, K.J., Linking Parameters across Scales - Subgrid Parameterizations and Scale- Dependent Hydrological Models. Hydrological Processes,1995.9(5-6):507-525.
    [245]Loehle, C., Chanllenges of ecological complexity. Ecological Complexity,2004.1(1):3-6.
    [246]Franks, S.W. and K.J. Beven, Estimation of evapotranspiration at the landscape scale: A fuzzy disaggregation approach. Water Resources Research,1997.33(12):2929.
    [247]Lin, B., and K. Shiono, Numerical modeling of solute transport in compound channel flows. Journal of Hydraulic Research,1995.33(6):773-788.
    [248]Ye, J. and J.A. McCorquodale,1998. Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering (ASCE),124(7):687-698.
    [249]Beven, K.J., and P. Carling, Velocities, roughness and dispersion in the lowland River Severn, in Lowland Floodplain Rivers, P. Carling and G. Petts, Editors.1992, John Wiley & Sons: New York.
    [250]Klemes, V., Operational Testing of Hydrological Simulation-Models. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1986.31(1):13-24.
    [251]Mualem, Y, Hydraulic conductivity of unsaturated soils:predictions and formulas, in Methods of soil analysis. Part 1, A. Klute, Editor.1986, Agronomy Society of America: Madison.799-823.
    [252]Beven, K.J., Changing Ideas in Hydrology: The Case of Physically Based Models. Journal of Hydrology,1989.105:157-172.
    [253]Knight, D.W., K. Shiono and J. Pirt. Prediction of depth mean velocity and discharge in natural rivers with overbank flow. In Proc. Int. Conf. on Hydraulic and Environmental Modelling of Coastal, Eatuarine and River Waters.1989. University of Bradford: Gower Technical.
    [254]Dingman, S.L. and K.P. Sharma, Statistical development and validation of discharge equations for nutural channels. Journal of Hydrology,1997.199:13-35.
    [255]Bjerklie, D.M., S. L. Dingman, C.L. Vorosmarty, et al. Evaluating the potential for measuring river discharge from space. Journal of Hydrology,2003.278(1-4):17-38.
    [256]Granger, R. and A. Pietroniro, Special collection: Application of remote sensing in hydrology-Preface. Canadian Journal of Remote Sensing,2003.29(6):Ⅵ-Ⅷ.
    [257]Su, Z.B. and P.A. Troch, Application of quantitative remote sensing to hydrology. Physics and Chemistry of the Earth,2003.28(1-3):1-2.
    [258]Grayson, R.B., G. Bloschl, A.W. Western, et al., Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources,2002.25(8-12):1313-1334.
    [259]Schmugge, T.J., W.P. Kustas, J.C. Ritchie, et al., Remote sensing in hydrology. Advances in Water Resources,2002.25(8-12):1367-1385.
    [260]Pietroniro, A. and R. Leconte, A review of Canadian remote sensing application in hydrology, 1995-1999. Hydrological Processes,2000.14(9):1641-1666.
    [261]Dubayah, R., D. Lettenmaier, E.F. Wood and J. Rhoads, Using remote sensing data in macroscale hydrological modeling, IAHS Publ.267, in Remote Sensing and Hydrology 2000, K. Owe, J. Brubaker, and A. Rango, Editors.2001, IAHS Press:Wallingford.151-155.
    [262]Barrett, E.C., Sattellite Remote Sensing in Hydrometry, in Hydrometry:Princeples and Practices, R.W. Herchy, Editor.1999. Wiley & Son: New York.
    [263]Schultz, GA., E.T. Engman著,韩敏译.水文与水管理中的遥感技术[M],中国水利水电出版社,2006.
    [264]Bates, P.D., M.S. Horritt, C.N. Smith, et al., Integrating remote sensing observations of flood hydrology and hydraulic modeling. Hydrological Processes,1997.11(14):1777-1795.
    [265]Schultz, GA., Remote sensing applications to hydrology:Runoff. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1996.41(4):453-475.
    [266]Smith, L.C., Satellite remote sensing of river inundation area, stage and discharge: a review. Hydrological Processes,1997.11:1427-1439.
    [267]Horritt, M.S., A statistical active contour model for SAR image segmentation. Image and Vision Computing,1999.17:213-224.
    [268]Horritt, M.S., D.C. Mason and et al., Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. Internatinal Journal of Remote Sensing,2001. 22(13):2489-2507.
    [269]Horritt, M.S., D.C. Mason and D.M. Cobby, et al., Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sensing of Environment,2003.85:271-281.
    [270]Eineder, M., Efficient simulation of SAR interferograms of large areas and of rugged terrain. IEEE Transactions on Geoscience and Remote Sensing,2003.41(6):1415-1427.
    [271]Richards, J.A., P.W. Woodgate and A.K. Skidmore,1987. An Explanation of Enhanced Radar Backscattering from Flooded Forests. International Journal of Remote Sensing,8(7):1093-1100.
    [272]Ramsey, E.W., Monitoring Flooding in Coastal Wetlands by Using Radar Imagery and Ground-Based Measurements. International Journal of Remote Sensing,1995.16(13):2495-2502.
    [273]Wang, Y., L.L. Hess, S. Filoso, et al., Understanding the radar backscattering from flooded and nonflooded Amazonian forests:Results from canopy backscatter modeling. Remote Sensing of Environment,1995.54(3):324-332.
    [274]Sandholt, I., J. Andersen, G. Dybkjaer, et al., Integration of earth observation data in distributed hydrological models:the Senegal River Basin. Canadian Journal of Remote Sensing,2003.29(6): 701-710.
    [275]Wilson, M.D., Evaluation the effect of data and data uncertainty on predictions of flood inundation-PhD Thesis, in Faculty of Engineering, Science and Mathematics - School of Geograpy.2004, University of Southampton: Southampton.
    [276]Bowen, A.H. and R.G. Waltermire, Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography. Journal of the American Water Resources Association,2002.38(1): 33-41.
    [277]Anderson, M.G. and T.P. Burt, The role of topography in controlling throught flow generation. Earth Surface Processes and Landforms,1978.3:331-344.
    [278]Waddington, J.M., N.T. Roulet and A.R. Hill, Runoff mechanisms in a forested groundwater discharge wetland. Journal of Hydrology,1993.147:37-60.
    [279]Aronica, G., B. Hankin and K.J. Beven, Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources,1998.22(4):349-365.
    [280]Quinn, P.F., K.J. Beven and R. Lamb, The Ln(a/Tan-Beta) Index - How to Calculate It and How to Use It within the Topmodel Framework. Hydrological Processes,1995.9(2):161-182.
    [281]Yapo, P.O., H.V. Gupta and S. Sorooshian, Automatic calibration of conceptual rainfall-runoff models:Sensitivity to calibration data. Journal of Hydrology,1996.181(1-4):23-48.
    [282]Gupta, V.K. and S. Sorooshian, The Relationship between Data and the Precision of Parameter Estimates of Hydrologic-Models. Journal of Hydrology,1985.81(1-2):57-77.
    [283]Sorooshian, S., V. K. Gupta and J. L. Fulton, Evaluation of Maximum-Likelihood Parameter-Estimation Techniques for Conceptual Rainfall-Runoff Models-Influence of Calibration Data Variability and Length on Model Credibility. Water Resource Research,1983.19(1):251-259.
    [284]Boyle, D.P., H.V. Gupta, S. Sorooshian, et al., Toward improved streamflow forecasts:Value of semidistributed modeling. Water Resources Research,2001.37(11):2749-2759.
    [285]Goovaerts, P., Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology,2000.228(1-2):113-129.
    [286]Borga, M. and A. Vizzaccaro,1997. On the interpolation of hydrologic variables:Formal equivalence of multiquadratic surface fitting and kriging. Journal of Hydrology,195(1-4):160-171.
    [287]UNESCO, World Water Balance and Water Resources of the Earth.1978, UNESCO:Paris.
    [288]Sevruk, B. and S. Klemm, Catalogue of National Standard Precipitation Gauges.1989, World Meterological Organization: Geneva.
    [289]Krajewski, W.F. and J.A. Smith, Radar hydrology., rainfall estimation.2002.25(8-12):1387-1394.
    [290]Morin, E., W.F. Krajewski, D.C. Goodrich, et al., Estimating rainfall intensities from weather radar data. The scale-dependency problem.2003.4(5):782-797.
    [291]Collier, C.G., Precipitation measuring weather radar, in Hydrometry, R.W. Herschy, Editor.1999, Wiley:New York.181-197.
    [292]Fabry, F., A. Bellon, M.R. Duncan, et al., High-Resolution Rainfall Measurements by Radar for Very Small Basins - the Sampling Problem Reexamined. Journal of Hydrology,1994.161(1-4):415-428.
    [293]Clarke, R.T., Uncertainty in the estimation of mean annual flood due to rating-curve definition. Journal of Hydrology,1999.222:185-190.
    [294]Schmidt, A.R., Analysis of stage-discharge relations for open-channel flow and their associated uncertainties, PhD Thesis.2002, Universitz of Ollinois: Urbana. p.328.
    [295]Potter, K.W. and J.F. Walker, A model of discontinious measurement error and its effect on the probability distribution of flood discharge measurements. Water Resources Research,1981.17(5): 1505-1509.
    [296]Carling, P.A. and E. Wood, Simulation offlow overpool-riffle topography:a consideration of the velocity reversal hypothesis. Earth Surface Processes and Landforms,1994.19:320-332.
    [297]Laplace, D., P. Deshons and A. Soulie, Discharge measurement in a point under a floating support. Houille Blanche-Revue Internationale De L Eau,2001. (5):63-66.
    [298]Kuprianov, V.V., Aerial methods of measuring river flow, in Hydrometry. Principles and practices, R.W. Herschey, Editor.1978, Wiley:Chichester. p.473-478.
    [299]房世峰,裴欢,戴维,刘志辉.遥感和GIS支持下的分布式融雪径流过程模拟研究[J].遥感学报,2008,12(4):655-662.
    [300]Alsdorf, D.E., J.M. Melack, T. Dunne, et al., Interferometric radar measurements of water level changes on the Amazon flood plain. Nature,2000.404:p.174-177.
    [301]Chen, Y.C. and C.L. Chiu, An efficient method of discharge measurement in tidal streams. Journal of Hydrology,2002.265(1-4):212-224.
    [302]Chen, Y.C. and C.L. Chiu, A fast method of flood discharge estimation. Hydrological Processes, 2004.18(9):1671-1684.
    [303]Connell, R.J., D.J. Painter and C. Beffa, Two-dimensional flood plain flow. Ⅱ:Model validation. Journal of Hydrologic Engineering,2001.6(5):406-415.
    [304]Horritt, M.S. and P.D. Bates, Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology,2001.253(1-4):239-249.
    [305]Brivio, P.A., R. Colombo, M. Maggi and R. Tomasoni, Integration of remote sensing data and GIS for accurate mapping of flooded areas. International Journal of Remote Sensing,2002.23(3): 429-441.
    [306]Horritt, M.S. and P.D. Bates, Evaluation of 1D and 2D numerical models for predicting riverflood inundation. Journal of Hydrology,2002.268(1-4):87-99.
    [307]惠凤鸣,田庆久.基于MODIS数据的雪情分析研究[J].遥感信息,2004,4.
    [308]冯学智,李文君.雪盖卫星遥感信息的提取方法探讨[J].中国图像图形学报,2000,5(10):836-839.
    [309]丁建丽,张飞,塔西甫拉提·特依拜.塔里木盆地南缘典型植被光谱特征分析-以新疆于田绿洲为例[J].干旱区资源与环境,2008,22(11):160.
    [310]张飞,丁建丽,塔西甫拉提·特依拜,等.渭干河-库车河三角洲绿洲盐渍化地地物光谱数据分析[J].光谱学与光谱分析[J],2008,28(12):2921.
    [311]房世峰,裴欢,刘志辉.新疆天山北坡典型研究区融雪期地物光谱特征分析[J].光谱学与光谱分析,2010.30(5).
    [312]Beven K. J.,1984. Infiltration into a class of vertically non uniform soils, Hydrolog. Sci. J.,29, 1425-1434.
    [313]Loague, K.M. and P.C. Kyriakidis.1997. Spatial and temporal variability in the R-5 infiltration data set: Deja vu and rainfall-runoff simulations. Water Resources Research 33,2883-2895.
    [314]Beven K.J., Rainfall-Runoff Modelling: The Primer. John Wiley & Sons.,2001.
    [315]Sorooshian S. and V.K. Gupta,1995, Model Calibration. In:V.P. Singh, Editor, Computer Models of Watershed Hydrology, Water Resources Publication, Highlands Ranch, Colorado,80126-0026, USA, pp.23-68.
    [316]Sen M. and Stoffa P.L..1995. Global Optimisation Methods in Geophysical Invemion. Elsevier. Amsterdam.
    [317]Wang Q.J.,1991. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resources Research,27(9):2467-2471.
    [318]Kuczera G.A.,1997. Efficient subspace probabilistic parameter optimsation for catchment models. Water Resources Research,33(1):177-185.
    [319]McCuen R.H..1973. The role of sensitivity analysis in hydrologic modeling. Journal of Hydrology, 18:37-53.
    [320]Hornberger GM. and Spear R.C..1981. An approach to the preliminary analysis of environmental systems. Journal of Environmental Management,12:7-18.
    [321]Young P.C.,1983. The validity and credibility of models for badly defined systems. In Beck M.B. and Van Straten G. (eds) Uncertainty and Forecasting of Water Quality. Springer-Verlag, New York, 69-98.
    [322]Nash J.E. and Sutcliffe J.V..1970. River flow forecasting through conceptual models I. A discussion of principle. Journal of Hydrology.10:282-290.
    [323]Box G. E. P and Tiao G. C.,1973. Bayesian inference in Statistical Analysis. Wiley- interscience, New York.
    [324]Freer J., MC Donnell J., Beven K.J. et al.,1997. Topgraphic controls on subsurface stormflow at the hillslope scale for two hydrologically distinct small catchments. Hydrological Processes.11(9): 1347-1352.
    [325]Aronica G., Hankin B.G. and Beven K.J..1998. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources,22:349-365.
    [326]Franks S.W., Gineste Ph., Beven K.J., et al.1998. On constraining the preictions of a distributed model:the incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resources Research,34:787-797.
    [327]Loague K.M. and Freeze R.A..1985. A comparison of rainfall-runoff modeling techniques on small upland catchments. Water Resources Research,21:229-248.
    [328]Houghton-Carr H.A..1999. Assessment criteria for simple conceptual daily rainfall-runoff models. Hydrological Science Journal,44:237-263.
    [329]Vrugt, J. A., C. G. H. Diks, H. V. Gupta, et al..2005. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res.,41,W01017,doi:10.1029/2004WR003059.
    [330]Kundzewicz Z.W. eds.,2007. New Uncertainty Concepts in Hydrology and Water Resources. World Meteorological Organization, Geneva.
    [331]Goodman, L.,1960. On the Exact Variance of Products. Journal of the American Statistical Association:708-713.
    [332]Ku, H.,1966. Notes on the Use of Propagation of Error Formulas. J Research of National Bureau of Standards-C. Engineering and Instrumentation,70(4):263-273.
    [333]JCSS:Joint Committee on Structural Safety,1981.1 General principles on reliability for structural design. Int. Assoc. for Bridge and Structural Engineering. Melchers, R.E.,1999. Structural reliability analysis and prediction.2nd Edition, Wiley.
    [334]Dawson, R.J., Hall, J.W., Sayers, P.B., et al.,2005. Sampling-based flood risk analysis for fluvial dike systems. Stochastic Environmental Research and Risk Assessment,19(6).
    [335]Walley, P.,1991. Statistical Reasoning with Imprecise Probability. Chapman and Hall.
    [336]Klir, G.J. and Smith, R.M.,2001. On measuring uncertainty and uncertainty-based information: recent developments. Annals of Mathematics and Artificial Intelligence,32:5-33.
    [337]Hall,J. and Anderson, M.,2002. Handling uncertainty in extreme or unrepeatable hydrological processes - the need for an alternative paradigm. Hydrological Processes,16(9):1867-1870.
    [338]Kavetski, D.N., Franks, S.W. and Kuczera, G.,2003. Confronting input uncertainty in environmental modelling. In: Q. Duan, H. Gupta, S. Sorooshian, A.N. Rousseau and R. Turcotte (Editors), Calibration of Watershed Models. Water Science and Applications Series. American Geophysical Union, pp.49-68.
    [339]Thiemann, M., Trosset, M., Gupta, H. and Sorooshian, S.,2001. Bayesian recursive parameter estimation for hydrologic models. Water Resources Research,37(10):2521-2535.
    [340]Vrugt, J.A., Gupta, H.V., Bouten, W., et al.,2003. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research,39(8):art. no.-1201.
    [341]Vrugt, J.A., Bouten, W., Gupta, H.V., et al.,2002. Toward improved identifiability of hydrologic model parameters:The information content of experimental data. Water Resources Research, 38(12):art. no.-1312.
    [342]Doherty, J. and Johnston, J.M.,2003. Methodologies for calibration and predictive analysis of a watershed model. Journal Of The American Water Resources Association,39(2):251-265.
    [343]Kuczera, G.,1983. Improved Parameter Inference In Catchment Models.l. Evaluating Parameter Uncertainty. Water Resources Research,19(5):1151-1162.
    [344]Beven, K.J.,2005. A Manifesto for the equifinality thesis. Journal of Hydrology,320:18-36.
    [345]Beven, K.J. and Young, P.,2003. Comment on "Bayesian recursive parameter estimation for hydrologic models" by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian. Water Resources Research,39(5):art. no.-1116.
    [346]Funtowicz, S.O. and Ravetz, J.,1990. Uncertainty and quality in science for policy. Kluwer, Dordrecht.
    [347]Risbey, J.S., van der Sluijs, J.P. and Ravetz, J.,2001. Protocol for Assessment of Uncertainty and Strength of Emission Data - Nr. E-2001-10, Department of Science Technology and Society, Utrecht University, Utrecht.
    [348]Van der Sluijs, J. et al.,2003. RIVM/MNP Guidance for Uncertainty Assessment and Communication, University of Utrecht & RIVM, Utrecht.
    [349]Kalman, R.,1960. New approach to linear filtering and prediction problems. ASME Trans., Journal Basic Eng,82-D(35-45).
    [350]Welch, G. and Bishop, G.,2004. An introduction to the Kalman Filter. TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175.
    [351]Jazwinski, A.H.,1970. Stochastic Processes and Filtering Theory. Elsevier, New York.
    [352]Walker, J.P., Willgoose, G.R. and Kalma, J.D.,2001. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms. Advances in Water Resources,24:631-650.
    [353]Canizares, R., Madsen, H., Jensen, H:R. and Vested, H.J.,2001. Developments in operational shelf sea modelling in danish waters. Estuarine and Coastal Shelf Science,53:595-605.
    [354]Madsen, H. and Canizares, R.,1999. Comparison of extended and ensemble Kalman fitlers for data assimilation in coastal area modelling. International Journal For Numerical Methods in Fluids,31: 961-981.
    [355]Julier, S.J. and Uhlmann, J.K.,1996. A general method for approximating nonlinear transformations of probability distributions.
    [356]Evensen, G.,1992. Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. Journal of Geophysical Research,97(C11):17905-17924.
    [357]Evensen, G.,1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research,99:10143-62.
    [358]Moradkhani, H., Sorooshian, S., Gupta, H.V., et al.,2005. Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Advances In Water Resources,28(2):135-147.
    [359]Andrieu, C., Doucet, A. and Robert, C.P.,2004. Computational advances for and from Bayesian Analysis. Statistical science,19(1). Cappe, O., Guillin, A., Marin, J.M. and Robert, C.P.,2004. Population Monte Carlo. Journal of Computational and Graphical Statistics,13(4):907-929.
    [360]Liu, J.S. and Chen, R.,1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association,93(443):1032-1044.
    [361]Pitt, M.K. and Shephard, N.,1999. Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association,94(446):590-599.
    [362]Kitagawa, G., Takanami, T. and Matsumoto, N., 2001. Signal extraction problems in seismology. International Statistical Review,69(1):129-152.
    [363]Moradkhani, H., Hsu, K.-L., Gupta, H. and Sorooshian, S.,2005. Uncertainty assessment of hydrologic model states and parameters:Sequential data assimilation using the particle filter. Water Resources Research,41:doi:10.1029/2004WR003604.
    [364]Spear, R.C. and Hornberger, G.M.,1980. Eutrophication in Peel Inlet, Ⅱ, Identification of critical uncertainties via Generalised Sensitivity Analysis. Water Resource Research,14:43-49.
    [365]Wagener, T., McIntyre, N., Lees, M.J., et al.,2003. Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrological Processes,17(2): 455-476.
    [366]Bedford, T and Cooke, R,2001, Probabilistic Risk Analysis: Foundations and Methods, Cambridge University Press.
    [367]Funtowicz, S.O., and Ravetz, J.,1999, Post-normal science: an insight now maturing, Futures,25: 735-755.
    [368]Pielke, R A, Jr.,1999, Who decides? Forecasts and responsibilities in the 1997 Red River Floods, Appl. Behav. Sci. Rev.,7:83-101.
    [369]Van Asselt, M B A, and Rotmans, J,2002, Uncertainty in integrated assessment modelling, from Positivism to Pleuralism, Clmate Change,54:75-105.
    [370]Pielke, R A, Jr and Conant, R T,2003, Best practices in prediction for decision-making: lessons from the atmospheric and earth sciences, Ecology,84(6):1351-1358.
    [371]Raiffa, H.,1968. Decision Analysis: Introductory Lectures on Choices Under Uncertainty. Addison-Wesley, Reading M A.
    [372]Lindley, D.V.,1990. Making Decisions.2nd ed., Wiley, London.
    [373]Keynes, J.M.1921 A Treatise on Probability. MacMillan?, London.
    [374]Ben-Haim, Y,2006, Info-Gap Decision Theory,2nd Edition, Academic Press:Amsterdam.
    [375]Lempert, R. J., Popper, S. W. and Bankes, S. C.,2003, Shaping the Next One Hundred Years:New Methods for Quantitative, Long-Term Policy Analysis, RAND, Santa Monica, CA.
    [376]Ben-Haim, Y.,1996. Robust Reliability in the Mechanical Sciences. Springer, Berlin.
    [377]Ben-Haim, Y. and Elishakoff, I.,1990. Convex Methods of Uncertainty in Applied Mechanics. Elsevier, Amsterdam.
    [378]Sniedovich, M.,2007. The art and science of modeling decision-making under severe uncertainty, Decision- Making in Manufacturing and Services,1(1-2),109-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700