用户名: 密码: 验证码:
双程波动方程数值模拟和照明分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油地震勘探过程中,地震波场特征的数值模拟和照明分析对于帮助人们认识和分析地震波的传播规律、指导野外地震资料采集和观测系统设计、改善地震数据的处理质量、减少地下速度建模的不确定性、协助确定油气藏解释方案具有重要意义。
     本文在前人工作的基础上,采用单程波延拓算子中的SSF算子和FFD算子对单程声波方程进行了数值模拟和照明分析,进一步研究了采用交错网格有限差分方法对双程声波方程和双程弹性波方程的数值模拟和照明分析方法。在实际计算中发现合理地选择模拟参数,将对模拟和照明的运算效率和计算效果产生重要影响,因此本文针对有限差分方法中频散问题、稳定性问题和边界条件进行了具体分析和研究,给出了任意偶数阶差分精度的纵波、横波频散关系式,详细推导和建立了差分格式的稳定性条件。采用完全匹配层(PML)吸收边界条件进行边界影响的研究。通过大量的数值计算表明,采用完全匹配层吸收边界条件,只需半个波长厚度的PML,就可以很好地吸收边界反射波,其吸收效果远远优于阻尼衰减边界条件。对各种模型数据进行地震记录模拟和照明计算,取得了满意的结果。
     通过进一步研究还发现:单程声波方程的计算结果信噪比高,仅含有一次反射波,便于波场识别和分析,效率很高,但是单程波算子存在倾角限制,对于横向速度变化较大的模型误差较大,并且反射界面的反射系数是近似的;双程波动方程交错网格有限差分方法则可以处理横向速度任意变化的模型,模拟精度很高,并且界面反射系数不存在近似。若不需要考虑转换波问题,可采用双程声波方程进行计算,计算速度较快,仅含有纵波。双程弹性波方程的结果和实际情况最为接近,波场信息丰富。
In the process of petroleum seismic exploration, wave-equation forward modeling and illumination analysis both have great significance to help people understand and analyze the seismic wave propagation law, provide guidance for seismic data acquisition and seismic survey design, improve seismic data processing quality, reduce the uncertainty of subsurface velocity modeling and determine interpretation scheme of oil and gas reservoir.
     Based on previous researches and following the order from simple to complex, I conduct a further study on the seismic wave-equation forward modeling schemes and illumination analysis methods based on the one-way acoustic wave equation, two-way acoustic wave equation and two-way elastic wave equation, and then program to realize them respectively. The computation results of different velocity models indicate that the methods are correct and satisfied.
     At first, I make a research on the one-way acoustic wave equation seismic numerical simulation and illumination analysis. The one-way acoustic wave equation modeling is an simulation method which extrapolate wave field in the frequency wave-number domain and correct the perturbation due to transversely variable velocity in the frequency-space domain. By using SSF operator and FFD operator, Zero-offset synthetic records are gained. On the basis of positioning principle, I develop a faster method to get nonzero- offset common shot records that receive the extrapolated wave field on the surface of the model directly at each geophone, without extra lateral stacking. According to this kind of method, P-P common shot records and P-SV common shot records are simulated effectively. Based on one-way seismic simulation, seismic illumination analysis is conducted through which the results of Zero-offset seismic illumination, source illumination, source-receiver illumination and plane wave source illumination are achieved. The conclusions are that zero-offset seismic illumination is an ideal vertical incidence illumination, the results of source illumination and two-side receiving illumination are similar,while the one-side receiving case is different from them,in the case of small incident angles, SSF operator and FFD operator have no major difference, while not the case when the incident angle is greater than 40 degrees.The same as one-way wave simulation, the one-way wave seismic illumination has high efficiency.
     Then I make a research on the seismic numerical simulation and illumi- nation analysis based on two-way acoustic wave equation and two-way elastic wave equation. The numerical simulation methods of these two kinds of wave equations are similar. Adopting their own one order velocity-stress wave equation, I deduce their staggered-grid finite-difference algorithm in detail and program them correctly.Considering the intrinsic problems of finite-difference technique such as numerical dispersion, stability problem and boundary reflection, I give out the grid-dispersion relations for the P and S waves, stability condition and the discrete formula of perfectly matched layers of arbitrary even order accuracy, analyze detailedly the influence of different stability parameter, different passion ratio and different spatial sampling ratio on the grid-dispersion.According to the theoretical analysis, grid discrete slows the wave propagation, and along the axis, the numerical dispersion is most severe and decreases as the incident angle increasing,in the diagonal direction the dispertion is lowest.The smaller is the stability parameter,the more severe is the dispertion.Then I adopt the perfectly matched absorbing layer to reduce the boundary reflection.Through a large amount of experiments,I find that half of the p-wave length of the PML layers can absorb the boundary reflection effectively,and then,I do comparisons of two different boundary conditions and two kind of different modeling accuracy. After numerical simulation, source illumination is computed.Based on two kinds of lens with high velocity and low velocity and acoustic wave equation, source illumination is computed, which reveals the defocusing effect of high velocity and focusing effect of low velocity. The multiple sources illumination of the model is even. Adopting poynting's theorem,I compute the elastic illumination vector in the first time.Two-way elastic equation can describe wave propagation and seismic illumination more accourately. The illumation changes obviously as the source position.So in order to acquisite high quality seismic data, we should change the position with even and high illumation to excite and receive seismic wave.
     According to the above research, conclusions are as follows: the one-way wave equation can provide synthetic records with high SNR, including only reflected waves or diffracted waves, which is useful for wave field recognition and analyzation. The computation efficiency is also very high, while the coefficient of reflection is approximate. Two-way acoustic wave equation can deal with the coefficient of reflection correctly and provide accurate wave field. The two-way elastic wave equation gives the most realistic results and can model many kinds of waves in the cost of computation. Thus, we can choose the proper type of wave equation to use in the practical work.
引文
1 Abdelazim A, Ibrahim. 3D ray-trace modeling to assess the effects of overburden and acquisition geometry on illumination of pre-evaporite reservoirs in Karachaganak Field, Kazakhstan[J].The Leading Edge, 2005,24 (9):940-944.
    2 Alford R M,Kelly K R,Boore D M.Accuracy of finite-difference modeling of the acoustic wave equation[J].Geophysics, 1974,39(6):834-842.
    3 Alterman Z, Karal F C. Propagation of elastic waves in layered media by finite-difference methods[J].BSSA, 1968,58(1):367-398.
    4 Audebert F,Nicoletis L,Froidevaux P. Regularization of illumination in angle domains-a key to true amplitude migration[J].The Leading Edge, 2005,24(6):643-654.
    5 Bear G, Lu R, Lu C P,Watson I,Willen D. The construction of subsurface illumination and amplitude maps via ray tracing[C].69th Annual Interna- tional Meeting,SEG, Expanded Abstracts, 1999:1532-1535.
    6 Bear G,Lu C P,Lu R,et al. The construction of subsurface illumination and amplitude maps via ray tracing[J].The Leading Edge, 2000,19(7):726- 728.
    7 Berenger J. A perfectly matched layer for the absorption of electromagnetic waves[J]J.Comput.Phys,1994,114:185-200.
    8 Berenger J. Three-dimentional perfectly matched layer for the absorption of electromagnetic waves[J]J.Comput.Phys,1996,127:363-379.
    9 Berkhout A J,Ongkiehong L,Volker A W F,et al. Comprehensive assessment of seismic acquisition geometries by focal beams-part I :theoretical consid- erations[J]. Geophysics ,2001 ,66(3):911-917.
    10 Boris J P,Book D L,Flux-corrected transport. I.SHASTA,A fluid transport algorithm that works:J.Comput.Phys.,1973,11:38-69.
    11 Campbell S, Pramik B, Cafarelli B. Comparative ray-based illumination analysis[C].72nd Annual International Meeting,SEG,Expanded Abstracts,2002:41-44.
    12 Carcione J M,Herman G C.and ten Kroode A.P.E.Seismic modeling[J]. Geophysics, 2002,67(4):1304-1325.
    13 Cerjan C,Kosloff D,Kosloff R,et al.A nonreflecting boundary condition for discrete acoustic and elastic wave equation[J].Geophysics,1985,50(4): 705-708.
    14 Chen Xiumei,Wang Huazhong,Chen Jiubing,Ma Zaitian.Prestack depth migra- tion by surface controlled illumination in a target-oriented way[C].72nd Annual International Meeting,SEG,Expanded Abstracts, 2002:1180-1183.
    15 Chew W C,Liu Q H,Perfectly matched layers for elastodynamics:a new absorbing boundary condition[J].Journal of Computational Acoustics,1996,4(4): 341- 359.
    16 Chew W C,Weedon W H.A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates[J].Micro.Opt.Tech.Lett,1994,7: 599- 604.
    17 Claerbout J F,Doherty S M.Downward continuation of moveout-corrected seismograms[J].Geophysics,1972,37(2):741-768.
    18 Clayton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations [J].BSSA, 1977,67(6):1529-1540.
    19 Collino F,Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics, 2001,66(1):294-307.
    20 Crase E. High-order(space and time) finite-difference modeling of the elastic equation[C].60th Ann.Internat.1990:987-991.
    21 Dablain M A. The application of high-order differencing to the scalar wave equation[J].Geophysics, 1986,51(1):54-66.
    22 Dong Liangguo,Cai Xiwei,Li Peiming,et al. Seismic wave illumination for Yumen overthrust structure and seismic survey optimal design[C].75th Annual International Meeting,SEG,Expanded Abstracts, 2005:48-52.
    23 Duquet B, Marfurt K J, Dellinger J A. Kirchhoff modeling, inversion for reflectivity,and subsurface illumination[J].Geophysics,2000, 65 (4):1195 -1209.
    24 Fei Tong,Larner K.Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport[J]. Geophysics,1995, 60(6):1830-1842.
    25 Festa G,Nielsen S.PML Absorbing Boundaries[J].BSSA, 2003,93(2):891-903.
    26 Fontecha B,Cai Wenyin,Ortigosa F,et al. Wave equation migration and illumination on a 3-D GOM deep water dataset[C].75th Annual International Meeting,SEG,Expanded Abstracts, 2005:1989-1993.
    27 Gazdag J,Sguazzero P.Migration of seismic data by phase shift plus inter- polation[J].Geophysics,49(2),1984:124-131.
    28 Gazdag J.Wave equation migration with the phase-shift method[J]. Geo- physics,1978,43(7):1342-1351.
    29 Hoelting C,Duncan W,Marfurt K,et al.A preliminary study of salt flank illumination at Vinton Dome, Louisiana: Do we need lateral wavefield continuation?[C]. 72nd Annual International Meeting,SEG,Expanded Abstr- acts, 2002:1368-1371.
    30 Hoffmann J. Illumination, resolution, and image quality of PP- and PS-waves for survey planning[J].The Leading Edge, 2001,20(9):1008-1014.
    31 Hubral P,Hoecht G.,Jaeger R.Seismic illumination [J].The Leading Edge, 1999, 18(11):1268-1271.
    32 Ibrhim A A. 3D ray-trace modeling to assess the effects of overburden and acquisition geometry on illumination of pre-evaporite reservoirs in Karachaganak Field, Kazakhstan [J]. The Leading Edge, 2005, 20:940-944.
    33 Israeli M,Orszag S A.Approximation of radiation boundary conditions[J].J. comput.phys,1981,41:115-135.
    34 Jaeger R,Hoecht G,Hubral P. A new look at subsurface illumination in seismic imaging[C].67th Annual International Meeting, SEG, Expanded Abstracts,1997:1666-1668.
    35 Jin Shengwen,Luo Mingqiu,Xu Shiyong,et al.Illumination amplitude correc- tion with beamlet migration [J]. The Leading Edge, 2006, 25(9): 1046-1050.
    36 Jin Shengwen,Walraven D.Wave equation GSP prestack depth migration and illumination[J].The Leading Edge, 2003, 22(7):606-610.
    37 Johnson S G. Notes on perfectly matched layers (PMLs) [R]. 2007:1-16
    38 Jones I,Bridson M,Goodwin M.4D illumination and elastic modelling[C]. 72nd Annual International Meeting,SEG,Expanded Abstracts, 2002:1712-1714.
    39 Kabir N,Burch and T,Etgen J.Subsalt wavefield illumination and amplitude study on Mars field in the Gulf of Mexico[C].76th Annual International Meeting, SEG, Expanded Abstracts, 2006:535-538.
    40 Kelly K R,Ward R W,Treitel S,et al.Synthetic seismograms a finite- difference approach[J].Geophysics, 1976,41(1):2-27.
    41 Kessinger W.Illumination angle compensation in Kirchhoff depth migration [C].74th Annual International Meeting,SEG,Expanded Abstracts,2004:1017- 1020.
    42 Laurain R,Vinje V, Strand C. Simulated migration amplitude for improving amplitude estimates in seismic illumination studies[C].74th Annual International Meeting, SEG, Expanded Abstracts, 2004,23(3):240-245.
    43 Laurain R,VINJE V.Prestack depth migration and illumination maps[C]. 71st Annual International Meeting,SEG,Expanded Abstracts, 2001: 929-932.
    44 Lecomte I,Gjoystdal H,Drottning A.Simulated prestack local imaging: A robust and efficient interpretation tool to control illumination, resolution,and time-lapse properties of reservoirs[C].73rd Annual International Meeting,SEG,Expanded Abstracts, 2003:1525-1528.
    45 Lecomte I. Illumination,resolution,and incidence-angle in PSDM:a tutorial [C]. 76th Annual International Meeting, SEG,Expanded Abstracts, 2006: 2544-2548.
    46 Levander A R.Fourth-order finite-difference P-SV seismograms[J]. Geoph-ysics, 1988,53(11):1425-1436.
    47 Li Z.Compensating finite-difference errors in 3-D migration and modeling [J].Geophysics, 1991(6),56:1650-1660.
    48 Liu Shouwei,Geng Jianhua,Feng Wei. Controlled illumination and seismic acquisition geometry for target-oriented imaging[J].Applied Geophysics, 2005,2(4):230-234.
    49 Luo Mingqiu,Cao Jun,Xie Xiaobi,et al.Comparison of illumination analyses using one-way and full-wave propagators[C]. 74th Annual International Meeting,SEG, Expanded Abstracts, 2004:67-70.
    50 Madariaga R. Dynamics of an expanding circular fault[J]. BSSA,1976, 66(3): 639-666.
    51 Marcinkovichh C, Olsen B.On the Implementation of Perfectly Matched Layers in a 3D Fourth-Order Velocity-Stress Finite-Difference Scheme[C]. 72nd Annual International Meeting, SEG, Expanded Abstracts,2002:1-4.
    52 Marfurt K J.Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,1984, 49(5):533-549.
    53 Moczo P,Kristek J,Halada L.3D Fourth-Order Staggered-Grid Finite- Difference Schemes:Stability and Grid Dispersion[J].BSSA,2000, 90(3): 587-603.
    54 Moldoveanu N,Lee K,Jorgensen P. Onboard 3D & 4D subsurface target illumination=A tool to optimize streamer marine acquisition[C].73rd Annual International Meeting,SEG, Expanded Abstracts, 2003:4-7.
    55 Moldoveanu N,Schneider C.PP and PS subsalt target illumination:a com- parison study for different acquisition geometries[C].71st Annual Inter- national Meeting,SEG,Expanded Abstracts, 2001:56-59.
    56 Muerdter D R,Ratcliff D W.Subsalt illumination determined by ray-trace modeling:A catalog of seismic amplitude distortions caused by various salt shapes[C].70th Annual International Meeting,SEG,Expanded Abstracts, 2000:733-736.
    57 Muerdter D, and Ratcliff D. Understanding subsalt illumination through raytrace modeling, Part 1:Simple 2D salt models [J]. The Leading Edge, 2001, 20(6):578-594.
    58 Muerdter D,Kelly M,Ratcliff D.Understanding subsalt illumination through ray-trace modeling, Part 2:Dipping salt bodies, salt peaks, and nonreciprocity of subsalt amplitude response [J].The Leading Edge, 2001, 20(7):688-697.
    59 Muerdter D,Ratcliff D.Understanding subsalt illumination through ray- trace modeling, Part 3:Saltridges and furrows, and the impact of acquisi- tion orientation[J]. The Leading Edge, 2001,20(8):803-816.
    60 Ostmo S,Maao F.Seismic illumination from finite-difference modeling[C].
    65th EAGE Conference&Exhibition, 2003:146-149.
    61 Qin Fuhao,Wang Bin,Zhang Po,et al. Kirchhoff preSDM Interactive Dip-gather Stacking and Dip Illumination Panel Generation[C].75th Annual Interna- tional Meeting,SEG,Expanded Abstracts, 2005:1882-1886.
    62 Rappapport C M.Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space[J]Microwave Guided Wave Lett.,1995,5: 90-92.
    63 Rickett J E.Illumination-based normalization for wave-equation depth migration[J].Geophysics, 2003,68(4):1371-1379.
    64 Rietveld W E A, Berkhout A.J., Wapenaar C. P. A.Controlled Illumination of Hydrocarbon Reservoirs[C].61st Annual International Meeting,SEG, Ex- panded Abstracts, 1991:1281-1284.
    65 Rietveld W E A, Berkhout A.J.,Wapenaar C.P.A.Optimum seismic illumina- tion of hydrocarbon reservoirs[J].Geophysics,1992,57(10):1334-1345.
    66 Rietveld W E A,Berkhout A.J.Prestack depth migration by means of con- trolled illumination[J].Geophysics, 1994,59(5):801-809.
    67 Ristow D,Ruhl T.Fourier finite-difference migration[J].Geophysics,1994, 59(12):1882-1893.
    68 Santos M A C, Filho D M S,Osório P L M. Phase-shift anisotropic depth migration using controlled illumination applied to a model of the San Alberto field-Bolivia[C].75th Annual International Meeting,SEG,Expanded Abstracts, 2005:1910-1914.
    69 Schneider W A,Winbow G A.Efficient and accurate modeling of 3-D seismic illumination[C].69th Annual International Meeting,SEG,Expanded Abstracts, 1999:633-636.
    70 Stoffa P L,Fokkema J T,de Luna Freire R M,et al.Split-step Fourier migration [J]. Geophysics, 1990, 55(4): 410-420.
    71 Stolt R H.Migration by Fourier transform[J].Geophysics, 1978,43(1):23-48.
    72 Virieux J.P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J].Geophysics, 1986, 51(4):889-901.
    73 Virieux J.SH-wave propagation in heterogeneous media:velocity-stress finite-defference method[J].Geophysics, 1984, 49(11):1193-1957.
    74 Walraven D.,Drummond J.,Rodriguez A.,et al.Integrated Seismic Illumination and Gravity Modeling in Refinement of a Subsalt Interpretation[C].72nd Annual International Meeting,SEG,Expanded Abstracts, 2002:621-624.
    75 Wang Changlong,Zhang Shulun,Yang Qiqiang,et al.Residual migration velocity analysis with controlled illumination[C].76th Annual International Meeting,SEG,Expanded Abstracts, 2006:3081-3085.
    76 Wu Ru-Shan and Chen Ling. Mapping Directional Illumination and Acquisition- Aperture Efficacy by Beamlet Propagators[C]. 72nd Annual International Meeting, SEG, Expanded Abstracts, 2002:1352-1355.
    77 Wu Ru-Shan,Chen Ling.Directional illumination analysis using beamlet decomposition and propagation [J].Geophysics, 2006, 71(4): S147-S159.
    78 Xie X B,Yang H.A Full-wave Equation Based Seismic Illumination Analysis Method[C].70th EAGE Conference&Exhibition, 2008:284-288.
    79 Xie Xiao-Bi,Jin Sheng-Wen,Wu Ru-Shan.Three-dimensional illumination analysis using wave equation based propagator[C].73rd Annual InternationalMeeting,SEG,Expanded Abstracts, 2003:989-992.
    80 Xie Xiao-Bi,Jin Shengwen,Wu Ru-Shan.Wave equation based illumination analysis[C].74th Annual International Meeting,SEG,Expanded Abstracts, 2004:933-936.
    81 Xie Xiao-Bi,Jin Sheng-Wen,Wu Ru-Shan.Wave-equation-based seismic illumi- nation analysis[J].Geophysics,2006,71(5):S169-S177.
    82 Xie Xiao-Bi,Wu Ru-Shan,Fehler M.Seismic resolution and illumination:A wave-equation-based analysis[C].75th Annual International Meeting,SEG, Expanded Abstracts, 2005:1862-1867.
    83 Ye Yueming,Li Zhenchun,Han Wengong,et al.Beamlet prestack depth migration and illumination:A test based on the Marmousi model[J].Applied Geophy- sics,2006,3(4):203-209.
    84 Yu Jianhua and Schuster G.T.Enhancing Illumination Coverage of VSP Data by Crosscorrelogram Migration[C].74th Annual International Meeting, SEG, Expanded Abstracts, 2004:2501-2504.
    85 Zeng Y Q,He J Q,Liu Q H.The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media [J]. Geoph- ysics, 1988,53(11):1425-1436.
    86蔡其新,何佩军,秦广胜等.有限差分数值模拟的最小频散算法及其应用[J].石油地球物理勘探,2003,38(3):247-252.
    87常君勇.交错网格有限差分法地震数值模拟[D].北京:中国地质大学(北京),2007.
    88陈凌.小波束域波场的分解、传播及在地震偏移成像中的应用[D].北京:中国地震局,2002.
    89陈生昌,曹景忠,马在田.基于拟线性Born近似的叠前深度偏移方法[J].地球物理学报,2001,44(5):704-710.
    90陈生昌,曹景忠,马在田.稳定的Born近似叠前深度偏移方法[J].石油地球物理勘探,2001,36(3):291-296.
    91陈生昌,曹景忠,马在田.基于Rytov近似的叠前深度偏移方法[J].石油地球物理勘探,2001,36(6):690-697.
    92程祖依编.弹性动力学基础[M].武汉:中国地质大学出版社,2001.
    93丁仁伟,李振春,叶月明等.基于波动方程的聚焦点控制照明叠前深度偏移[J].石油地球物理勘探,2007,42(6):616-621.
    94董良国,李培明.地震波传播数值模拟中的频散问题[J].天然气工业,2004,24(6):53-56.
    95董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报,2000, 43(6):856-864.
    96董良国,马在田,曹景忠等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.
    97董良国,吴晓丰,唐海忠等.逆掩推覆构造的地震波照明与观测系统优化[J].石油物探,2006,45(1):40-47.
    98董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999.34(1):45-56.
    99杜正聪,贺振华,黄德济.缝洞储层地震波场数值模拟[J].勘探地球物理进展,2003,26(2):103-108.
    100杜正聪,贺振华,黄德济等.缝洞模型波动方程正演与偏移[J].成都理工大学学报,2003,30(4):386-390.
    101杜正聪,贺振华,蒲利春等.变参考慢度Rytov近似傅氏偏移方法[J].石油大学学报,2004,28(4):31-34.
    102杜正聪.缝洞储层地震波场正演与偏移[D].四川:成都理工大学,2003.
    103冯伟,王华忠,吴如山等.面向目标控制照明的合成波源偏移[J].石油物探,2004,43(3):223-228.
    104冯伟,吴如山,王华忠等.面向目标的小束源照明和成像[J].地球物理学进展,2006,21(3):802-808.
    105贺振华,胡光岷,黄德济.数学检波器与波动方程地震叠前正演[J].成都理工大学学报,2004,31(6):675-678.
    106贺振华,王才经,李建朝等编著.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社.1989.
    107贺振华,王寿勇,G.H.F.加德纳.倾斜平面波地震剖面的F-K正演模拟及偏移[J].石油物探,1985,24(3):1-17.
    108贺振华,熊晓军.等时叠加波动方程叠前正演[J].物探化探计算技术,2005,27(3):194-200.
    109胡光岷,贺振华,黄德济.基于TCP/IP协议的地震资料网络并行处理研究[J].成都理工学院学报,1999,26(4):338-342.
    110姜绍辉.波动方程照明分析调研报告.个人交流,2007.
    111克莱鲍特J F著,许云译.地震成像理论及方法[M].北京:石油工业出版社.1985.
    112李万万.基于波动方程模拟的地震采集参数论证方法及应用研究[D].北京:中国地质大学,2008.
    113李万万.基于波动方程正演的地震观测系统设计[J].石油地球物理勘探.2008,43(2):134-141.
    114李志明,刘春玲.一种理想的二维波场深度延拓法[J].石油地球物理勘探,1990,25(5):517-528.
    115李志明.三维波动方程深度偏移和模型正演[J].石油地球物理勘探,1991,26(1):1-9.
    116栗宝鹃.基于射线理论的照明分析[D].山东:中国石油大学(华东),2007.
    117刘法启,单国健,Morton S.单程波方程偏移算法的相位问题研究[J].石油物探,2007,46(6):598-604.
    118卢秀丽.海底地震仪观测的粘弹性地层地震波场正演模拟[D].吉林:吉林大学,2003.
    119陆基孟主编.地震勘探原理(上、下册)[M].山东:石油大学出版社,2001.
    120吕彬,李斐,李振春等.聚焦点控制照明波动方程叠前深度偏移初探[J].岩性油气藏,2007,19(1):113-116.
    121吕公河,尹成,周星合等.基于采集目标的地震照明度的精确模拟[J].石油地球物理勘探,2006,41(3):258-261.
    122马在田著.地震成像技术-有限差分法偏移[M].北京:石油工业出版社,1989.
    123牟永光,裴正林著.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2004.
    124牛滨华,孙春岩,李明编著.各向同性固体连续介质与地震波传播[M].北京:石油工业出版社,2002.
    125孙伟家,符力耘,碗学检.基于相位编码的地震照明度分析[J].石油地球物理勘探.2007,42(5):539-543.
    126王成祥,赵波,张关泉.基于起伏地表的混合法叠前深度偏移[J].石油地球物理勘探,2002,37(3):219-223.
    127王成祥,赵波,张关泉等.地下复杂介质地震处理中的CFP技术[J].地球物理学进展,2003,18(1):30-34.
    128王荣东.多相介质地震波场模拟与AVO属性分析[D].北京:中国地质大学(北京),2007.
    129王兆湖,陈湛文,崔兴福.面炮成像、控制照明与AVA道集[J].地球物理学进展,2008,23(3):826-833.
    130吴永国.复杂地质体波动方程地震波场模拟与偏移成像[D].四川:成都理工大学,2007.
    131熊高君,贺振华,黄德济等.改进的正演模拟定位原理[J].石油地球物理勘探,1998,33(6):742-748.
    132熊高君,贺振华,黄德济等.转换横波共炮记录单程声波方程正演模拟[J].物探化探计算技术,1998,20(3):213-217.
    133熊高君,贺振华,张琳等.共炮记录正演模拟检波点下延记录原理[J].石油物探,1999,38(2):43-49.
    134熊高君.复杂构造波动方程波场模拟及成像新方法研究[D].四川:电子科技大学,2000.
    135熊小兵,贺振华.相位移加有限差分法波动方程正演模拟[J].石油物探,1998,37(3):22-28.
    136熊晓军,贺振华,黄德济.复杂地表条件下的地震波场模拟方法研究[J].西安石油大学学报,2006,21(6):5-8.
    137熊晓军,贺振华,黄德济.起伏地表的单程波动方程地震叠前正演[J].天然气工业,2007,27(1):44-46.
    138熊晓军,贺振华,文晓涛等.基于波动方程的地震观测系统设计方法研究[J].中国矿业大学学报.2007,36(1):132-136.
    139熊晓军.单程波动方程地震数值模拟新方法研究[D].四川:成都理工大学,2007.
    140杨顶辉,滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探,1997,32(2):181-190.
    141杨冬,姜弢.可控震源定向照明方法的仿真研究[J].地球物理学进展,2008,23(3):822-825.
    142杨敬磊,李振春,叶月明等.地震照明叠前深度偏移方法综述[J].地球物理学进展,2008,23(1):146-152.
    143张金海,王卫民,赵连锋.傅里叶有限差分法三维波动方程正演模拟[J].地球物理学报,2007,50(6):1854-1862.
    144张叔伦.波动方程相移偏移法[J].石油地球物理勘探,1981,4:1-14.
    145张文波.井间地震交错网格高阶差分数值模拟及逆时偏移成像研究[D].陕西:长安大学,2005.
    146张文忠.Biot介质的交错网格差分法波场模拟研究[D].北京:中国地质大学(北京),2007.
    147周星合.地质模型创建及地震采集设计中地震波照明度模拟与分析研究[D].四川:西南石油学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700