用户名: 密码: 验证码:
基于化学反应动力学的DME发动机燃烧与排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺,排放法规日趋严格,柴油机的可持续发展面临严峻考验。近年来,二甲基醚(dimethyl ether,DME)由于其良好的着火性能而用作柴油机替代燃料的系列研究引起了人们的加倍关注。基于此,本课题结合国家973项目的内容,借鉴国内外研究工作的新进展,通过DME发动机缸内直喷(DI)和均质充量压燃(HCCI)两种不同的燃烧方式,应用详细化学反应机理进行了模拟计算和实验对比,为实现DME发动机的高效、低污染燃烧提供理论依据和实施方向。
     本文的研究内容和所取得的成果主要有以下几个方面:
     对DME发动机实验与数值模拟研究的现状进行了综述,全面分析了柴油机燃用DME的技术措施及其有关问题。以ZS195型直喷式柴油机为原型机,构建了DME发动机专用实验台架,在其上开展了DME发动机性能及常规排放物的测试研究。针对DME特殊的理化性能,进行了DME经高压燃油泵柱塞套间隙的泄漏量测量实验以及油管压力波实验,分析了DME热物性对燃油喷射特性和高压燃油泵泄漏量的影响;探讨了启喷压力、供油提前角、气门开启时刻、喷孔直径和压缩比等对DME缸内直喷发动机性能与排放的影响。台架实验结果表明,与燃用柴油相比,燃用DME时缸内直喷发动机在额定转速下,碳烟排放极低,NOX排放随着负荷的增加而增大,但燃用DME的NOX排放比柴油低;在中低转速下,HC排放比柴油高,且HC排放随着有效功率的升高呈下降趋势。与DME发动机缸内直喷方式相比,HCCI燃烧方式可有效抑制氮氧化物的排放,甚或降低至零排放水平,但HC排放明显增加。因此,有必要对DME发动机的HC排放加以重点研究及控制。
     在国内外首次开展了DME发动机非常规排放物的定量测试研究。为此,开展了DME发动机非常规排放物检测方法的研究,包括气相色谱法(GC)和傅立叶变换红外分析法(FTIR)。在GC实验中,首先对配有氢火焰离子化检测器的气相色谱仪的分离柱温、载气流速、气化室温度和检测器温度等工作条件进行了优化,采用外标法,经色谱工作站绘制出甲醛和甲酸甲酯的工作标准曲线,继而对发动机尾气进行检测,并将其结果与FTIR检测结果进行对比,确认FTIR可作为检测DME发动机非常规排放物的有效手段。进一步的FTIR实验结果表明,DME直喷发动机的排放中存在甲醛、甲酸甲酯和甲酸三种非常规排放物,其中甲醛排放浓度最高,甲酸甲酯排放浓度次之,甲酸排放浓度最小,甲酸排放浓度最低时低于10ppm。DME的HCCI燃烧方式与缸内直喷相比,前者甲醛和甲酸甲酯的排放浓度较高。
     应用详细化学反应动力学计算软件CHEMKIN,就DME发动机着火和燃烧过程开展了性能预测与计算结果的实验验证工作,构建了DME发动机的着火数据库,并深入探讨了热力学燃烧模型与着火数据库耦联的方法及其应用于DME发动机循环模拟计算的适用性。模拟计算结果表明,滞燃期是缸内温度、压力和燃空当量比的函数,在一定的燃空当量比范围内,着火滞燃期随燃空当量比增大而变小。计算结果与验证实验结果对比表明,Wiebe模型、Watson模型和Whitehouse-Way模型均可应用于DME发动机工作过程的模拟计算,其中,以着火数据库与Watson燃烧子模型相耦合的模拟计算结果与实验结果最为吻合。该项研究对于发展简洁而又实用的DME发动机工作过程模拟计算软件具有现实意义。
     开展了发动机数值计算专用软件KIVA3V的微机化移植、液态DME燃料数据库建库、引入液滴破碎模型以及燃烧模型改进等项基础工作,藉此对DME缸内直喷发动机的性能与非常规污染物排放量进行了三维数值模拟和预测研究。其中,液滴破碎过程的模拟分别采用TAB模型、基于表面波不稳定理论的KH-RT模型;燃烧模型分别采用了EDC模型、基于详细化学反应机理的部分搅拌器概念模型(PaSR)。模拟计算考虑了气相可压缩性、流场不均匀性及液滴破碎对发动机动力及排放性能的影响。三维湍流燃烧模拟关于直喷发动机缸内压力随曲轴转角的变化,以及NO排放浓度的预测值与实验结果吻合较好。同时,计算分析了缸内流场速度、温度和组分浓度分布随曲轴转角的变化历程;就进气加热、缸内温度、气体流动、壁面传热、缝隙效应,以及喷雾模型和化学反应机理的选择对甲醛、甲酸甲酯生成及其氧化过程的影响进行了参数分析;进一步探讨了预测值小于实验值的原因以及甲酸甲酯的生成机理。
     通过构建可应用于HCCI发动机燃烧排放研究的DME详细化学反应动力学燃烧模型,对DME均质充量压燃发动机的非常规排放物生成机理与控制策略进行了深入研究。详细模型包含97种物种和457个基元反应。通过模拟及其计算结果的实验验证,证实了详细模型的实用性和有效性,判明了DME氧化反应的主要历程与甲醛(CH2O)、甲酸(HCO2H)和NOX主要生成机理。计算结果表明,NOX排放中NO生成量达到最大值后有“冻结”现象出现,NO与N2O最终排放浓度极少且受缸内温度影响不大;随着缸内温度的增加,NOX排放中NO所占比重逐渐增加。基于化学反应速率及敏感度分析得知,DME发动机HCCI燃烧的NO生成主要有扩充的切尔多维奇机理和N2O生成机理这两个途径。
     为了节省计算机时,并为化学反应动力学模型与CFD多维模型耦合的燃烧计算提供一个行之有效的途径,在详细化学反应动力学模型的基础上,构建了包括36种组分、73个基元反应组成的简化机理模型。简化模型包括低温反应和负温度系数区子模型、高温裂解和高温氧化子模型以及NO排放子模型。利用该模型,可以计算着火点、燃烧速率、甲醛、甲酸和NO排放。将简化模型与FLUENT相耦合,进行了DME发动机HCCI燃烧数值二维模拟计算,结果表明,DME发动机HCCI燃烧的甲醛和甲酸排放物浓度较高,其排放浓度受燃空比、活塞环与气缸壁处缝隙和压缩比的影响较为明显。
Environmental and human health concerns over emissions from internal combustion engines continue to bring about increasingly stringent emission standards and drive research into the development of cleaner-burning fuels. Aiming at this current research situation together with the contents of National Basic Research Priorities Program (2001CB209207) administrated by the State Ministry of Science & Technology of China, this paper deals with combustion and exhaust gas emission characteristics in a small direct injection diesel engine fueled with pure dimethyl ether(DME).
     The author makes a summary on the experiments and simulations of DME engine after reading a great number of literatures on relevant research field. Then the existing problems and technical measures are analyzed. The performances and conventional emissions of DME engine are studied by experiments. The experiments according the physical chemistry characteristics of Dimethyl Ether (DME) to adjust the structure of diesel engine are done. The fuel leakage and pipe pressure waveforms are done by the fuel injection experiment under engine motored conditions. To DI DME engine, the influences of the nozzle opening pressure, the fuel delivery advance angle, the timing of the opening exhaust valve, the nozzle diameter and the compression ratio are analyzed. Compared with the original diesel engine, smokeless combustion is realized and oxides of nitrogen (NOX) emission are lower for the DME engine at rated speed condition. At medium or low speed condition, HC emissions are higher and decrease with the increase of load. To DI DME engine, NOX emission obviously decrease and HC emission obviously increase in HCCI DME engine. The experimental results show that it is necessary to specially study HC emission on DME engine.
     The unregulated emissions of engine are studied by experiments for the first time. In the experimental work the sample acquisition system and analysis method are constructed. Fourier Transform Infrared spectroscopy (FTIR) method is used to quantitatively investigate the characteristics of unregulated emissions from the tested DME engine and compared with those from diesel fuel. In order to ensure the reliability and accuracy of FTIR, gas chromatograph (GC) is also used in the experiments. Based on the optimization of column temperature, carrier gas flow rate, injection temperature, detector temperature for GC with hydrogen flame ionization detector (FID), the workstation of chromatogram collects data and draws the working curve of formaldehyde and methyl formate by using external standard method. Then the comparisons between FTIR and GC indicate FTIR is an effective means to study unregulated emission. Further work with FTIR is needed to investigate the formation and characteristic of unregulated emissions in DME engine. The results show there are formaldehyde, methyl formate and formic acid in DI DME engine emission. Among the three species, the content of formaldehyde is the highest, and the content of formic acid is the lowest which is less than 10×10-6. Comparing to DI DME engine, there are higher formaldehyde and methyl formate in HCCI DME engine emission.
     Based on the ignition reaction kinetics mechanism and thermodynamic combustion sub-model of the engine fuelled with dimethyl ether, an ignition delay database library and working process simulation of the engine are set up in this paper. The calculated results show the higher are the temperatures, pressures and fuel/air equivalence ratios, the shorter is the ignition delay of DME. Comparisons between computational and experimental data show that combustion sub-models such as Wiebe model, Watson model and Whitehouse-Way model are suit to predict performance characteristics of engines operated on DME. The coupling of the Watson model with the ignition delay database library can result in the better results for predicting the engine performances.
     The performances and unregulated emissions of DME DI engine by 3D simulation are studied. KIVA3V code is compiled by PC computer and library of liquid DME on thermophysical properties are established. A Partially Stirred Reactor model for combustion and a secondary breakup model combined KH (Kelvin-Helmhotlz) and RT (Rayleigh-Taylor) two unstable waves theories are implemented in KIVA3V code. Influence of turbulence on combustion is taken into account by using code coupled with detailed chemical kinetic models of pollutants formation. The calculation results of in-cylinder pressure and oxides of nitrogen agree well with those of experiments. Through analyzing in-cylinder flow velocity, temperature and species concentration changed with the crank angle in calculation, the results are listed below. Formaldehyde is relative stable in low and medium temperature condition, and then accelerates oxidation with increasing in-cylinder temperature. Due to wall transfer and flow and local poor oxygen caused by combustion, there are higher concentration emissions of partial oxidation products of formaldehyde and methyl formate. The choice of spray model and chemical reaction mechanisms is obvious to the ignition timing and emissions. Increasing the size of the nozzle hole or the intake charge temperature can obviously reduce the concentration of formaldehyde. Moreover, the swirl through the optimization on intake port and the shape of combustion chamber can reduce the the concentration of formaldehyde. The underestimate of the concentration of methyl formate can be analyzed,and the forming mechanisms of methyl formate are summarried.
     The forming mechanisms of the unregulated emission of DME HCCI engine are analyzed and measures are provided to reduce unregulated emissions. This paper presents a new detailed chemical kinetic model for DME combustion that consists of 97 species and 457 elementary reactions. The practicability of the new model is obtained by the simulation results agreed well with the measured data. Through extending the application ranges of the new model and then analyzing the relationship of key reactions and important species changed with the crank angle, the main course of DME combustion is derived and the mechanisms of CH2O and HCO2H formation are obtained. The results researched the mechanism of NOX formation indicated the quantity of NO in NOX exhaust changed less after the NO formation max concentration was reached. The emission quantity of N2O and NO2 were less and almost had no effect by the in-cylinder temperature. The proportion of NO in NOX emission increases with the increase of in-cylinder temperature. Based on the analysis of reaction rates and sensitivity analysis of chemical reactions, the major paths of NO emission on the DME combustion occurring in the HCCI engine are extra Zeldovich mechanism and N2O approach.
     A new simplified chemical kinetic model is obtained in this paper. The simplified chemical kinetic model consists of 36 species and 73 reactions, and includes three sub-models, i.e., a low temperature and negative temperature coefficient region sub-model, a cytolysis and oxidation sub model for high temperature, and a sub-model for NOX. In order to gain further insights of CH2O and HCO2H formation, the calculation using CFD software FLUENT coupled with low temperature and negative temperature coefficient region sub-model and high temperature pyrolysis and oxidation sub model was done. The result shows there are higher concentration emissions of partial oxidation products of CH2O and HCO2H in emission. The obvious influences of parameters, such as intake temperature, equivalence ratio, compression ratio and the clearance around the piston are calculated and analyzed. This approach is useful in predicting unregulated emission in HCCI combustion process.
引文
[1]国家高技术研究发展计划重大专项(电动汽车)可行性研究报告.2001,9.
    [2]吴克刚,马志义,陈世海.车用柴油机排气污染物控制措施[J].长安大学学报(自然科学版),2002,22(3):81-84
    [3]王贺武,周龙保,陈鸿雁等.柴油机燃用二甲醚的燃烧特性[J].燃烧科学与技术,2000,6(3):200-204.
    [4]张光德,黄震.绿色能源二甲醚发动机的研究开发[J].柴油机,2003年第二期,P9-11.
    [5]倪维斗,靳晖,李政等.二甲醚(DME)经济解决中国能源与环境问题的重大关键[J].能源与环境,2003年第1期,P9-14.
    [6] Lide,D.R., Handbook of Chemistry and Physics,80th ed.,CRC Press,1999.
    [7]贾明生,凌长明.二甲醚的物化特性和国内应用前景分析[J].石油与天然气化工,2003,32(6):336-338.
    [8]张煜盛,常汉宝,张亚珺.柴油机高效清洁燃料二甲醚(DME)的研究及其发展[J].内燃机工程,2001,22(1):17-22.
    [9] Teng, H., McCandless, J.C. and Schneyer, J.B.,“Compression Ignition Delay (Physical + Chemical) of Dimethyl Ether– an Alternative Fuel for Compression-Ignition Engines,”SAE Paper, No.2003-01-0759, 2003.
    [10] Golovitchev Nordin, Chomiak. Neat Dimethyl Ether:Is It Really Diesel Fuel of Promise?[C].SAE 982537,1998.
    [11]宁波,宁智.柴油的替代燃烧-DME[J].小型内燃机与摩托车,2002,31(1):37-40.
    [12]罗毅,许斯都,尧命发.代用燃料DME及其研究进展[J].小型内燃机与摩托车,2001,30(2):17-20.
    [13]徐立华.柴油机含氧清洁燃料研究简述[J].内燃机,2003年第1期:P34-36.
    [14]钱伯章,龚永祥.新型清洁燃料———二甲醚的开发和发展前景[J].能源技术,2003,24(4):156-159.
    [15]刘勇,张杰杉.二甲醚一步法合成技术进展[J].天然气工业,2000,20(5):79-83
    [16] Ohnd Y. Development of dimethyl ether synthesis technology and associated diesel engine test [J]. Oil Gas European Magazine,2001,27(2):35 - 39.
    [17]张光德,黄震.绿色能源二甲醚发动机的研究开发[J].柴油机,2003年第2期,P9-11.
    [18] Murayama, T., Chikahisa, J., Guo, J., and Miyano, M.,“A Study of Compressions Ignition Methanol Engine With Converted Dimethyl Ether as an Ignition Improver,”SAE Paper 922212.
    [19] Sorenson, S. C., and Mikkelsen, S. E.,“Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fueled With Neat Dimethyl Ether,”SAE Paper 950964.
    [20] Hansen, J. B., Voss, B., Joensen, F., Sigurdardo′ttir, I.-D., 1995,“Large Scale Manufacture of Dimethyl Ether—A New Alternative Diesel Fuel From Natural Gas,”SAE Paper No. 950063.
    [21] Sorenson, S. C., and Mikkelsen, S. E., 1995,“Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fueled With Neat Dimethyl Ether,”SAE Paper 950964.
    [22] Fleisch, T., McCarthy, C., Basu, A., Udovich, Charbonneau, P., Slodowske, W., Mikkelsen, S.-E., and McCandless, J., 1995,“A New Clean Diesel Technology: Demonstration of ULEV Emissions on a Navistar Diesel Engine Fueled With Dimethyl Ether,”SAE Paper 950061.
    [23] Kapus, P., and Ofner, H., 1995,“Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethyl Ether,”SAE Paper 950062.
    [24] http://www.aboutdme.org/
    [25] Bradley L Edgar, Robert W Dibble Naegeli. Auto2ignition of Dimethyl Ether and Dimethoxy Methane Sprays at High Pressure [C]. SAE Paper 971677, 1997.
    [26] Kensuke Wakai, Keiya Nishida. Spray and Ignition Characteristics of Dimethyl Ether Injected by a DI Diesel Injector [C].COMODIA1998, 1998.
    [27] Jaeman Lim, Yongrae Kim. Characteristics of the Spray and Combustion Process of DME under Engine Conditions [C].COMODIA2004, 2004.
    [28] Sorenson S C. Dimethyl Ether in Diesel Engines: Progress and Perspectives [J ]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 2001, 213 (7) :652-658.
    [29] Mitsuru Konno, Shuichi Kajitani. NO Emission Characteristics of a CI EngineFueled with Neat Dimethyl Ether [C]. SAE 1999-01-1116.
    [30] Curran H J , Pitz W J . A Wide Range Modeling Study of Dimethyl Ether Oxidation [ J ]. International Journal of Chemical Kinetics, 1998(30):229-241.
    [31] Fischer S L, Dryer F L. The Reaction Kinetics of Dimethyl Ether ( I) High2Temperature Pyrolysis and Oxidation in Flow Reactors[J ]. International Journal of Chemical Kinetics, 2000(32): 713-740.
    [32]尧命发.柴油机燃用二甲基醚(DME)应用基础研究,天津大学博士论文,1999.
    [33]张光德.含氧燃料发动机的燃烧研究,上海交通大学博士论文,2002.
    [34]魏明锐.二甲基醚发动机喷射雾化的理论和实验研究,华中科技大学博士论文,2004.
    [35]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟,华中科技大学博士论文,2004.
    [36]王锡斌.柴油机燃用多种燃料的喷雾和燃烧过程多维数值模拟的研究,西安交通大学博士论文,2003.
    [37]陆艺红,张煜盛,刘镇.DME发动机着火与燃烧过程的数值模拟研究[J].华中科技大学学报(自然科学版),2002,30(7):23-26.
    [38]石宇,张煜盛,莫春兰,等.DME简化反应模型及其在HCCI燃烧分析中的应用研究[J].安全与环境学报,2006,6(2):105-110.
    [39]罗马吉,黄震.二甲醚均质压燃燃烧化学反应动力学机理数值模拟[J].上海交通大学学报,2005,39(8):1266-1271.
    [40] Zhou L B, Wang H W, Jiang D M, et al. Study of performance and combust ion characterist ics of a DM E-fueled, light-duty, direct-injection diesel engine [C]. SAE 1999-01-3669.
    [41] Jun Yu, Jookwang Lee and Choongsik Bae. Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System[C].SAE2002-01-2898.
    [42] Rolf Egnell.Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel[C].SAE 2001-01-0651.
    [43] Ho Teng, James C. McCandless and Jeffrey B. Schneyer.Thermochemical Characteristics of Dimethyl Ether—An Alternative Fuel for Compression-Ignition Engines[C].SAE 2001-01-0154.
    [44] Liu I, Cant N W, Bromly J H, et al. Formate species in the low2temperature oxidation[J ] . Chemosphere, 2001, 42 (5/7):583-589.
    [45]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社, 2001.
    [46] http://kinetics.nist.gov/RealFuels
    [47] http://www.me.berkeley.edu/gri_mech/
    [48] http://diesel.me.berkeley.edu/~gri_mech/new21/version12/text12.html
    [49] http://diesel.me.berkeley.edu/~gri_mech/new21/version21/text21.html
    [50] http://www.me.berkeley.edu/gri_mech/version30/files30/grimech30.dat
    [51] IPPe Dagaut,Jean-Claude Boettner,Michel Cathonnet.Chemical Kinetics Study of Dimethylether Oxidation in a Jet Stirred Reactor From 1 to 10 atm:Experimental and Kinetic Modeling[M].Twenty-sixth Symposium(international) on Combustion:627-632,1996.
    [52]吕兴才,黄震,李孝禄.代用燃料二甲醚的研究现状与前景[J].车用发动机,2003年8月第4期。
    [53] Hyunguk Kim, Sungwoo Cho, Kyoungdoug Min“Reduced Chemical Kinetid Model of DME for HCCI Combustion”SAE paper 2003-01-1822.
    [54] Hiroyuki Yamada, Hideki Sakanashi, Namil Choi, Astumu Tezaki.“Simplified Oxidation Mechanism of DME Applicable for Compression Ignition”. SAE 2003-01-1819.
    [55] Curran H J, Fischer S L and Dryer F L. The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors[J]. International Journal of Chemical Kinetics,2000, 32(12): 741-759.
    [56] Kaiser, E.W., Wallington, T.J., Hurley, M. D., Platz, J., Curran, H. J., et al.Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames[C].Journal of Physical Chemistry A,2000,104 (35):8194-8206.
    [57] Lund CMHCT-AGeneral Computer Program for Calculating Time-dependent Phenomena Involving One-dimensional Hydrodynamics,Transport,and Detailed Chemical Kinetics.Lawrence Livemore National Laboratory Report UCRL-52504.
    [58] Kee R.J.,Miller J.A.,and Jefferson T.H.CHEMKIN:A General-purpose,Problem-independent Transportable Fortran Chemical Kinetics Code Package.Sandia Report,SAND80-8003,1980,1-2.
    [59] Kee R.J.,Rupley F.M.,and Miller J.A. CHEMKIN-Ⅱ:A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetic.Sandia Report,SAND89-8009,1989.
    [60] Kee R.J.,Rupley F.M.,Meeks K,and Miller J.A..CHEMKIN-Ⅲ:A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetic.Sandia Report,SAND96-8216,1996.
    [61]周重光.LPG发动机三维燃烧模拟计算与实验研究.浙江大学博士学位论文,2003.
    [62] Dickinson, R.P. and Gelinas, R.J., Journal of Computational Physics, Vol.21, pp:123-147, 1976.
    [63] Dougherty, E.P. et al., Journal of Computational Physics, Vol.71, pp:1794-1802, 1979.
    [64] Cukier, R.I. et al., Journal of Computational Physics, Vol.51, 1978.
    [65] Kramer, M.A. et al., AIM: The Analytically Integrated Magnus Method for Linear and Second Order Sensitivity Coefficients, Sandia National Laboratories Report SAND82-8231, 1982.
    [66] Kramer, M.A. et al., CHEMSEN:A Computer Code for Sensitivity Analysis of Elementary Chemical Reaction Models, Sandia National Laboratories Report SAND82-8230, 1982.
    [67] Easley W L,Apoorva A,Lavoie G A.Modeling HCCI combustion and emissions using detailed chemistry.SAE 2001-01-1029.
    [68] Noda T and Foster D. A numerical study to control combustion duration of hydrogen-fueled HCCI by using multi-zone chemical kinetics simulation. SAE 2001-01-0250.
    [69] Roy Ogink,Valeri Golovitchev.Gasoline HCCI modeling:Computer program combining detailed chemistry and gas exchange processes.SAE 2001-01-3614.
    [70] Nebojsa Milovanovic,Rui Chen.Influence of the variable valve timing strategy on the control of a homogeneous charge compression(HCCI) engine.SAE 2004-01-1899.
    [71] Salvador M Aceves,Joel Martinez-Frias,Daniel L et al.A decoupled model of detailed fluid mechanics followed by detailed chemical kinetics for prediction ofIso-Octane HCCI combustion.SAE 2001-01-3612.
    [72] Aceves S, Flowers D, Westbrook C K, et al. A multi-zone model for prediction of HCCI combustion and emission. SAE 2000-01-0327.
    [73] Kong S C,Marriott C D,Reitz R D,et al.Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD.SAE 2001-01-1026.
    [74]贾明,解茂昭.ISAT在HCCI发动机多维详细反应动力学计算中的应用及其改进[J].内燃机学报,2006,24(1):9-14.
    [75] Wang Zhi,Wang Jianxin,Shuai Shijin.Numerical simulation of HCCI engine with multi-stage gasoline direct injection using 3D-CFD with detailed chemistry.SAE 2004-01-0563(SP 1819).
    [76]徐建新,共轨燃油系统高压燃油泵若干关键问题研究,华中科技大学硕士论文, 2004.
    [77]严兆大.热能与动力机械测试技术.北京:机械工业出版社,1999.
    [78]傅若农.色谱分析概论.北京:化工出版社. 2000.
    [79]周小松.柴油机燃用DME的排放实验研究,华中科技大学硕士论文, 2006.
    [80]张杰,黄一平.变换红外光谱法在高聚物研究中的应用[J].广东化工,2006,33(154):56-57.
    [81]边归国.环境科学中傅立叶变换红外光谱法的应用[J].分析测试技术与仪器,2003,9(3):136-140.
    [82]连晨舟,吕子安,徐旭常.典型毒害气体的FTIR吸收光谱分析[J].中国环境监测,2004,20(2):17-20.
    [83] Kee Robert J, Rupley Fran M ,Meeks Ellen. ChemkinⅢ: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics[C] . SAND9628216 Unlimited Release Printed May 1996,1996.
    [84] Lutz Andrew E, Kee Robert J, Miller James A. Senkin :A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Semsitivity Analysis[C] . SAND8728248 Revised Unlimited Release Printed November 1997,1997.
    [85]金国栋.内燃机燃烧学.武汉:华中理工大学出版社, 1991.
    [86] Yudai Yamasaki, Shinya Takabashi, Norimasa Iida. Auto-Ignition and CombustionAnalysis of DME Air HCCI Engine by Chemiluminescence Measurement and Numerical Calculation[C]. International Symposium on Alcohol Fuels Conference and Exhibition,2002.
    [87]李向荣,苟晨华,孙柏刚等.柴油机喷雾混合过程数值模拟的发展与现状[J].车用发动机,2004年第2期(总第150期):P1-6.
    [88]徐春,张煜盛,徐建新,等.零维模型在二甲醚发动机工作过程中的应用研究[J].柴油机设计与制造,2003年第3期:P9-12.
    [89]石宇,张煜盛,张勇.二甲基醚发动机热力循环模拟与参数分析[J].船海工程,2004年第3期:P19-23.
    [90]尧命发,许斯都,许俊峰.二甲基醚(DME)燃烧特性研究[J].内燃机学报,2001,19(3):197-203.
    [91] Hirt C W, et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J.Comp. Phys, Vol. 14, pp. 227~253, 1974.
    [92] Amsden, A.A., O'Rourke, P.J., Butler, T.D. KIVA: A computer program for a 2 and 3 dimensional fluid flows with chemical reactions and fuel sprays. Los Alamos National Laboratory report, LA-10245-MS,1985.
    [93] Amsden, A.A., O'Rourke, P.J., Butler, T.D. KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos National Laboratory report, LA-11560-MS,1989.
    [94] Amsden A A. KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries. LASL Report: LA-12503-MS 1993.
    [95] Amsden, A.A. KIVA-3V: A block-structured KIVA program for engines with vertical or canted valves. Los Alamos National Laboratory report, LA-13313-MS,1997.
    [96] Amsden, A.A. KIVA-3V Release 2: Improvements to KIVA-3V. Los Alamos National Laboratory report, LA-UR-99-915,1999.
    [97] Torres, D., O'Rourke, P. KIVA-4. 14th International Multidimensional Engine Modeling User's Group Meeting, Detroit. MI. USA., 2004.
    [98]解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社,2005.
    [99]范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科技大学出版社, 1992.
    [100]贺萍.直喷式柴油机喷雾碰壁混合三维数值模拟及实验研究.华中理工大学博士学位论文, 1996.
    [101]徐海涛.直喷式柴油机喷雾混合机理、建模及三维数值模拟.华中理工大学博士学位论文,1998.
    [102]流体力学,上下册周光炯编,高等教育出版社,2001.
    [103] Han Z. and Reitz R.D. Turbulence Modeling of Internal Combustion Engines Using RNG k-εModels. Combustion Science and Technology, Vol 106(4-6):267-295,1995.
    [104] O.Rourke P.J. and Amsden A.A. The Tab Method for Numerical Calculation of Spray Droplet Breakup SAE Paper 872089
    [105]蒋勇,范维澄,廖光煊,等.喷雾过程中液滴不稳定破碎的研究[J].火灾科学,2000,9(3):1-5.
    [106] R.D. Reitz. Modeling Atomization Processes in High-Pressure Vaporizing Sprays.Atomization and Spray Technology, Vol.3:309-337,1987
    [107] Reitz. R D. Modeling Engine Spray/ Wall Impingement. SAE880107
    [108] Su T.F., Patterson M., Reitz R.D., and Farrell P.V., Experimental and Numerical Studies of High Pressure Multiple Injection Sprays. SAE 960861,1996
    [109] Ricart L.M., Xin J., Bower G.R., and Reitz R.D.. In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine. SAE 971591,1997
    [110] Yutaka Murate,Jin Kusaka, Yasuhiro Daisho. The 3-D CFD Modeling Combined with Detailed Chemistry for Diesel Spray Combustion[C].COMODIA 2004.
    [111] Magnassen B F, Hjertager B H, On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. 16th Symp.(Int.) on Combust.,1977.
    [112] Brink A., Mueller C., Kilpinen P., and Hupa. M.,Brief Communication: Possibilities and Limitations of the Eddy Break-Up Model. Combustion and Flame,Vol.123:275-279,2000.
    [113] Karlsson J.A.J., Modeling Auto-Ignition,Flame Propagation and Combustion in Non-stationary Turbulent Sprays. PhD thesis, Chalmers University of Technology, G?teborg,1995.
    [114] Golovitchev V.I.,Nordin,N.,Jarnicki,R.,and Chomiak,J.,2000,”3-D Diesel Spray Simulations Using a New Detailed Chemical Turbulent Combustion Model,”SAEPaper 2000-01-1891.
    [115] Golovitchev V.I., Nordin N., Detailed Chemistry Spray Combustion Model for Kiva Code, the International Multidimensional Engine Modeling User’s Group Meeting Detroit USA 2001.
    [116] Golovitchev V.I., Nordin N., Detailed Chemistry Sub-Grid Scale Model of Turbulent Spray Combustion for the KIVA Code Paper99-ICE-237, ICE-Vol.33-3
    [117] Nordin N., Complex Chemistry Modeling Diesel Spray Combustion.PhD thesis,Chalmers University of Technology,2001.
    [118] Gustavsson J., Golovitchev V.I., Spray Combustion Simulation Based on Detailed Chemistry Approach for Diesel Fuel Surrogate Model JSAE 20030137
    [119] Feng Tao, Golovitchev V.I., Jerzy Chomiak. Self-Ignition and Early Combustion Process of n-Heptane Sprays Under Diluted Air Conditions: Numerical Studies Based on Detailed Chemistry [C]. SAE 2000-01-2931.
    [120] Wen Hua, Liu Yongchang,Wen Mingrui,et al. Multidimensional modeling of Dimethyl Ether (DME) spray combustion in DI diesel engine[J].Zhejiang Univ SCI 2005 6A(4):276-282.
    [121]肖进,溶气燃油射流雾化与燃烧机理研究,上海交通大学博士论文,2004.
    [122]章炜,基于KIVA-3V的柴油机缸内流动和燃料过程的数值仿真研究,合肥工业大学硕士论文,2004.
    [123] http://www.tfd.chalmers.se/~nordin/KJS/Patches/Files/Mechanisms/.
    [124] Onishi S, Hong lo S, Shoda K, et al .“Active thermal atmosphere combustion (ATAC )—A new combustion process for internal combustion engines,”SAE paper No.790501,1979.
    [125]王谦,吴小勇.均质充量压缩燃烧发动机的特点与研究现状[J].华东船舶工业学院学报(自然科学版), 2005,19(3):75-79.
    [126] Marinov, N. M., Pitz, W.J., Westbrook, C.K., Hori, M., and Matsunaga, N. An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO2 Conversion in a Flow Reactor, Proceedings of the Combustion Institute, Volume 27, pp. 389-396, 1998. (UCRL-JC-129372).
    [127]钟赟,乔信起,李德钢,等.二甲醚发动机HCCI燃烧的试验和数值模拟研究[J].车用发动机,2005年第2期,p10-12.
    [128] YAMADA H , SUZAKI K, SAKANASHI H , et al. Kinetic measurements in homogeneous charge compression of dimethyl ether: role of intermediate formaldehyde controlling chain branching in the low-temperature oxidation mechanism[J] . Combustion and Flame, 2005, 140 (1):24-33.
    [129] Philippe D., Jocelyn I., Michel C. The low temperature oxidation of DME and mutual sensitization of the oxidation of DME and nitric oxide : experimental and detailed kinetic modeling[J ]. Combustion Science and Technology, 2001,165:61—84.
    [130] Bowman C T.24th Symposium(International) on Combustion[C].The Combustion Institute,1992.
    [131]黄豪中,一个新的用于HCCI发动机燃烧研究的正庚烷化学动力学简化模型[J].内燃机学报,2005,23(1):42-51.
    [132]方湄.空化水射流清洗技术的研究,北京科技大学博士论文,2004.
    [133] Fluent 6.2 User's Guide.Fluent Inc.2005.
    [134]韩占忠,王敬,兰小平编.FLUENT/fluent:流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [135] Watson N., Pilley A. D., and Marzouk,M.A.. A Combustion Correlation for Diesel Combustion Engine Simulation, Proceedings of SAE P-86 800029,1980,51-63.
    [136]刘永长.内燃机原理.武汉:华中科技大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700