用户名: 密码: 验证码:
四川盆地中西部中三叠统天然气藏特征及成藏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
至今为止,在四川盆地中三叠统只发现了中坝和磨溪两个大中型气藏(田),龙女寺、潼南、罗渡三个含气构造,尚未发现区域上成带分布的气田群。中三叠统雷口坡组为一套白云岩、石灰岩、泥页岩及石膏沉积,纵向上分五段,雷五段又称天井山组。雷口坡组岩性纵向上变化频繁,横向上差异较大。
     四川盆地中西部中三叠统主要为局限台地相和开阔台地相沉积,部分地区为蒸发台地相,主要亚相为泻湖和潮坪,川西发育有台地边缘滩微相,川中发育有台内滩微相。中三叠统破坏性成岩作用主要有5类:压实收缩和压溶作用、胶结作用、重结晶作用、自生矿物(黄铁矿、天青石、硬石膏等)的形成、溶孔及裂缝的充填作用;建设性成岩作用主要有3类:白云石化作用、溶蚀作用(膏溶、岩溶作用)和构造破裂作用。
     四川盆地中部雷口坡组储层为中孔低渗,储集空间多以溶蚀孔隙为主,喉道与孔隙的连通性差,裂缝不发育。孔隙既是储集空间,也是渗滤通道,孔渗的不匹配是气藏低渗低产的主要地质因素。盆地西部雷口坡组储层孔隙度较高,裂缝发育,储层连通性好,储集类型为裂缝—孔隙型,储集空间主要为粒间、粒内溶孔,裂缝是主要的渗滤通道。
     中三叠统存在有四种优质储层:滩相藻砂屑白云岩储层、古岩溶储层、礁滩储层和热液白云岩储层。四川盆地中三叠统的勘探常以寻找滩相藻砂屑白云岩储层为目标。古岩溶作用能使储层物性得到有效的改善,因而古岩溶储层也成为近年来雷口坡组勘探的重要目标。龙深1井、中46井礁滩组合的确定预示着川西可能发育有礁滩储层。龙深1井、中46井、青林1井、涞1井、磨16、22井、女深2井、遂47井、营21井等多口井热液矿物组合的发现预示着川西、川中可能发育有热液白云岩储层。磨溪中三叠统气藏天然气为混源气,以煤成气为主,油型气为辅,其煤成气主要来自于上二叠统龙潭组煤系烃源岩,油型气来自二叠系腐泥型烃源岩。中坝中三叠统气藏天然气也为混源气,但以油型气为主,煤成气为辅,其油型气主要来自二叠系腐泥型烃源岩,也可能有来源于更深层位的油裂解气,其煤成气来源于上三叠统须家河组的煤系烃源。
     磨溪和中坝气藏都具有烃源丰富、储层优质、圈闭形成早、保存条件好四个特征。
     磨溪T2l11气藏成藏主要经历了三个阶段:①中~晚三叠世烃源岩持续生烃和幕式排烃;②晚三叠世末构造圈闭形成和印支—燕山期天然气聚集;③喜玛拉雅期圈闭最终形成,天然气爆发式成藏。磨溪中三叠统气藏成藏模式:通过异常高压产生的裂缝,龙女寺构造二叠系烃源岩生成的油气垂向运移到T2l11储层,再侧向运移至磨溪构造,形成磨溪中三叠统气藏。
     中坝T2l3段气藏成藏主要经历了四个阶段:①中三叠世末表生成岩期—近地表孔隙建造期;②晚三叠世中晚期古背斜圈闭形成;③燕山期构造继承性发展—油气聚集;④喜玛拉雅期气藏最终定型。中坝中三叠统气藏成藏模式:位于彰明断层上盘的二叠系油型裂解气向上运移至雷三储层,位于彰明断层下盘的上三叠统煤成气,在往高处运移时,穿过彰明断层,侧向“倒灌”到上盘T2l3储层中,造成天然气的混源,形成中坝中三叠统气藏。
     四川盆地中三叠统油气成藏的主控因素有:①丰富的烃源条件,良好的保存条件和输导体系是油气成藏的基础和前提;②古构造和古隆起对中三叠统油气分布有明显的控制作用,对油气起着早期运聚指向的作用;③沉积相、成岩作用和构造破裂作用控制了优质储层的形成和分布。
So far, there were only two medium-scale gas fields found in the Middle Triassic Series (Leikoupo formation) of Sichuan Basin. The Middle Triassic Leikoupo formation is composed up of dolostone, limestone, shale and anhydrite, which could be divided into five members (Lei-1, Lei-2, Lei-3, Lei-4, and Lei-5). Lei-5 is also called Tianjingshan fromation. The lithology of Leikoupo formation varies vertically and horizontally.
     The restricted-platform and open-platform facies are predominant facies of Leikoupo formation in the west-Central Sichuan Basin, and the evaporative platform facies could be found as well. The main subfacies are lagoon and tidal flat. The western Sichuan basin has platform marginal bank microfacies, while the central Sichuan basin has platform inner bank microfacies. In the Leikoupo formation, compacting shrink & pressolution, cementation, recrystallization, the forming of authigenic mineral (pyrite, celestine, and anhydrite) and filling of pore or fracture are five destructive diagenesis for the pore formation. The constructive diagenesis for the pore formation is dolomitization, dissolution (anhydrite dissolution, karst) and fracturing.
     The Leikoupo reservoir in the Central Sichuan Basin is medium porosity and low permeability. The main reservoir space is dissolved pore, poor connectivity between throat and pore, and fracture is not developed. The non-match of porosity and permeability is the vital geological factor of low gas production rate. On the contrary, the Leikoupo reservoir in the western Sichuan basin has high porosity, and fracture is well developed with good reservoir connectivity. It is a type of fracture-pore reservoir, and the reservoir space is intergranular & intragranular dissolved pore, while fracture is the main percolation channel.
     There are four types of good reservoir in the Middle Triassic Series in the western-central Sichuan basin: alga arenitic dolomite reservoir of bank facies, karst reservoir, reef & bank reservoir and hydrothermal dolomite reservoir. The exploration target is used to looking for alga arenitic dolomite reservoir of bank facies in the Middle Triassic Series of Sichuan Basin. The paleokarst improved reservoir conditions effectively, thus the paleokarst reservoir are becoming the recent exploration target in Leikoupo formation. The reef & bank reservoir is possibly developed in Western Sichuan basin. Reef & bank lithology combination is discovered in the well of Longshen 1 and Zhong 46. Furthermore, the hydrothermal dolomite reservoir may be developed in the Middle-Central Sichuan resulting from the discovering of hydrothermal minerals in the well of Longshen 1, Zhong 46, Qinglin 1, Lai 1, Mo 16, Mo 22, Nvshen 2, Sui 47 and Ying 21 etc.
     The Moxi Middle Triassic gas field is a mix-source gas which contains main coal-genetic gas and a few petroliferous gas. The coal-genetic gas is from Upper Permian Longtan formation coal measure source rock, while the petroliferous gas is from Permain sapropel source rock. The Zhongba Middle-Triassic gas field is also a mix-source gas, but contains main petroliferous gas and a few coal-genetic gases. The petroliferous gas is possibly from Permian sapropel source rock. The coal-genetic gas is from Upper Triassic Xujiahe formation coal measure source rock .
     Both Moxi and Zhongba gas reservoirs have abundant hydrocarbon source, good reservoir rocks, early formed trap and good preservation condition. Moxi T2l11 gas reservoir has undergone three phases:①middle-late Triassic source rock generating hydrocarbon continuously and releasing hydrocarbon episodically,②the structure trap forming in the end of late Triassic Epoch, and gas trapped in the Yinzhi-Yanshan period,③trap finally formed in Himalaya period and the natural gas reservoir formed explosively. Moxi Middle Triassic gas reservoir forming model is: the Permian source hydrocarbon of Longnv structure migrated vertically to the T2l11 reservoir and then migrated to Moxi structure laterally through fractures caused by abnormal high formation pressure.
     Zhongba T2l3 gas reservoir has undergone four phases:①epidiagenetic stage in the end of Middle Triassic Epoch to the near surface pore build-up stage,②ancient shielding forming stage in the Middle-Late Triassic Epoch,③the deep buried, big scale, complex hydrocarbon forming stage during the Yanshan period,④hydrocarbon reservoir ultimately formed during the Himalaya period. Zhongba Middle Triassic gas reservoir forming model is as follows. The Permian oil cracking gas in the hanging wall of Zhangming fault migrated upwards to T2l3 reservoir. When the Upper Triassic coal-genetic gas in the footwall of Zhangming fault migrated upwards and passed through Zhangming fault, the gas moved downwards to Lei-3 reservoir and formed the gas field.
     Main factors controlled hydrocarbon accumulation of middle Triassic in the western-central Sichuan Basin. Rich hydrocarbon source, good conservation and conduit system are the base and precondition of hydrocarbon accumulation. Paleo-uplift and paleostructure had obviously controlled the middle Triassic hydrocarbon distribution. Depositional facies, Diagenesis and structural fracturing controlled the forming and distribution of high-quality reservoir.
引文
[1]Adam, J. E., and M. L. Rhodes, 1960, Dolomitization by seepage reflux: AAPG Bulletin, v. 44, p. 1912– 1920.
    [2]Al-Aasm, I. 2003. Origin and characterization of hydrothermal dolomite in theWestern Canada Sedimentary Basin. Journal of Geochemical Exploration,v. 78-79, p. 9-15.
    [3]Badiozamani, K., 1973, The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin: Journal of Sedimentary Petrology, v. 43, p. 965– 984.
    [4]Barker C. Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs. 1990, AAPG Bulletin, 74: 1254-1261.
    [5]Cander-Harris. Interplay of water-rock interaction efficiency, unconformities, and fluid flow in a carbonate aquifer; Floridan Aquifer system[J]. AAPG Memoir, 1995, 63:103-124.
    [6]C.J.R.Braithwaite, G.Rizzi, G.Darke. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. The Geological society of London, 2004, Geological Society Special Publication 235)
    [7]Coniglio, M., R. Sherlock, A. E. Williams-Jones, K. Middleton, and K. Frape, 1994, Burial and hydrothermal diagenesis of Ordovician carbonates from the Michigan Basin, Ontario, Canada, in B. Purser, M. Tucker, and D. Zenger, eds., Dolomites: International Association of Sedimentologists Special Publication 21,p. 231– 254.
    [8]D.A.Budd, A.H.Saller, P.M.Harris. Unconformities and Porosity in Carbonate Strata . AAPG , 1995
    [9]Davies,G.R., 2004, Hydrothermal (thermobaric) dolomitization: Rock fabrics and organic petrology, in R. McAuley, ed., Dolomites-The spectrum: Mechanisms, models, reservoir development: Canadian Society of Petroleum Geologists, Seminar and Core Conference, January 13–15, 2004, Calgary, Extended Abstracts, CD format.
    [10]Davies,G.R.,2005. Hydrothermal dolomite and leached limestone reservoirs: tectonic,structural, mining and petroleum geology linkage. American Association of Petroleum Geologists () Canadian Society of Petroleum Geologists, Joint Annual Meeting, Calgary 2005. Program with abstracts.
    [11]Demicco, R.V., and R. J. Spencer, 2004, Constraints on dolomitization from models of brine origin and flow modeling, in R. McAuley,ed.,Dolomites- The spectrum: Mechanisms,models, reservoir development:Canadian Society of PetroleumGeologists, Seminar and Core Conference, January 13–15, 2004, Calgary, Extended Abstracts, CD format.
    [12]Dewers T, Ortoleva P. Nonlinear dynamieal aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release. American Journal of Science, 1994, 294(5):713-755
    [13]Drivet, E., and E. W. Mountjoy, 1997, Burial dolomitization in the Leduc Formation (Upper Devonian), southern Rimbey–Meadowbrook reef trend, Alberta: Journal of Sedimentary Research, v. 67, p. 411– 423.
    [14]Du Rouchet J. Stress field, a key to oil migration. AAPG Bulletin, 1981, 65(1):74-85
    [15]Evans, D. G., and J. A. Nunn, 1989, Free thermohaline convection in sediments surrounding a salt column: Journal of Geophysical Research, v. 94, p. 12,413–12,422.
    [16]Garven, G., and R. A. Freeze, 1984, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits:2. Quantitative results: American Journal of Science, v. 284,p. 1125– 1174.
    [17]Graham R. Davies and Langhorne B. Smith, Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, November, 2006, 90(11):1641-1690.
    [18]Hao Fang, Li Sitian, Gong Zaisheng, et al. Thermal regime, inter-reservoir compositional heterogeneities, and reservoir filling history of the Dongfang gas field, Yinggehai Basin, South China Sea: Evidence for episodic fluid Injections in overpressured basins? [J]. AAPG Bulletin, 2000, 84:607~626.
    [19]Hooper E D.Fluid migration along growth faults in compacting sediments[J].J Petrol Geol,1991,4(2): 161~180.
    [20]Hsu K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedim entology, 1969, 12:11-25
    [21]Hunt J M.Generation and migration of petroleum from abnormally pressured fluid compartments.AAPG Bulletin, 1990, 74(1):1-12
    [22]J. Anderson, D. M. Smith, and R. J. Bodnar.An adaptation of the spindle stage for geometric analysis of fluid inclusions with applications (in Fourth biennial Pan-American conference on Research on fluid inclusions; program and abstracts, Anonymous,)Program and Abstracts; Biennial Pan-American Conference on Research on Fluid Inclusions (1992), 4-10.
    [23]Jones, G. D., P. L. Smart, F. F. Whitaker, B. J. Rostron, and H. G.Machel, 2003, Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin:AAPGBulletin, v. 87, no. 8, p. 1273–1298.
    [24]King, R. H., 1947, Sedimentation in the Permian Castille Sea:AAPG Bulletin, v. 31, p. 470– 477.
    [25]Korte C, Kozur H W, Bruckschen P, Veizer J. Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 2003, 67 (1): 47~62.
    [26]Lucia F J. Carbonate Reservoir Characterization[M]. Berlin, Heidelberg, New York: Springer Verlag, 1999:1-226.
    [27]Machel, H. G., E. W. Mountjoy, and J. E. Amthor, 1996, Mass balance and fluid flow constraints on regional scale dolomitization, Late Devonian, Western Canada sedimentary basin: Bulletin of Canadian Petroleum Geology, v. 44, no. 3, p. 566–571.
    [28]Meissner F F. Petroleum geology of the bakken formation, Wiliston Basin, North Dakota and Montana[C]// Proceedings of Williston Basin Symposium. September 24-27, Montana Geological Society. Billings, 1978: 207-227.
    [29]Momper J A. Oil migration limitations suggested by geological and geochemical considerations[J]. AAPG Continuing Education Course Note Series, 1978, 8:1-60.
    [30]Morrow, D. W., 1998, Regional subsurface dolomitization: Models and constraints: Geoscience Canada, v. 25, no. 2, p. 57– 70.
    [31]Morrow, D. W., and K. L. Aulstead, 2004, Convection-driven subsurface hydrothermal dolomitization in Middle Devonian-age shallow water limestones in the 0.4 tcf Kotaneelee gas field of southeastern Yukon territory, in R. McAuley, ed., Dolomites-The spectrum:Mechanisms, models, reservoir development: Canadian Society of Petroleum Geologists, Seminar and Core Conference,January 13–15, 2004, Calgary, Extended Abstracts, CD format.
    [32]Osborne M J,Swarbrick R E.Mechanisms for generating overpressure in sedimentary basins:a reevaluation.AAPG Bulletin, 1997, 81:1023~1041
    [33]Oliver, J., 1986, Fluids expelled tectonically from orogenic belts:Their role in hydrocarbon migration and other geologic phenomena:Geology, v. 14, p. 99– 102.
    [34]Qing, H., and E. W. Mountjoy, 1992, Large-scale fluid flow in the Middle Devonian Presqu’ile Barrier, Western Canada sedimentary basin: Geology, v. 20, p. 903– 906.
    [35]Qing, H., and E. W. Mountjoy, 1994, Formation of coarsely crystalline,hydrothermal dolomite reservoirs in the Presqu’ile Barrier,Western Canada sedimentary basin:AAPG Bulletin, v. 78, no. 1,p. 55–77.
    [36]Shields, M. J., and P. V. Brady, 1995, Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian,Western Canada sedimentary basin: Bulletin of Canadian Petroleum Geology, v. 43, no. 4, p. 371–392. 37[]Shields, M. J., and P. V. Brady, 1996, Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian,Western Canada sedimentary basin- Reply: Bulletin of Canadian Petroleum Geology, v. 44, no. 3, p. 572– 573.
    [38]Snarsky A N. Verteilung von Erdgas, Erdoel und Wasser im Profil[J]. Zeitschrift fuer Angewandte Geologie, 1961, 7(1):2-8.
    [39]Spencer C W. Hydrocarbon generation as a mechanism for overpressuring in Rocky Mountain region[J]. AAPG Bulletin, 1987, 71:368-388
    [40]Stearns, M.D., Stearns, H.T. & Waring, G.A. 1935. Thermal Springs in the United States. US Geological Survey Water Supply Paper, 679-B,59-191.
    [41]Whelan J K, Kennicutt II M C, Brooks J M, et al. Organic geochemical indicators of dynamic fluid flow process in petroleum basins[J]. Organic Geochemistry, 1994, 22:587~615
    [42]White D E. Thermal waters of volcanic origin[J]. Bulletin of Geological Society of America, 1957, 68:1637-1657
    [43]Yao, Q., and R. V. Demicco, 1995, Paleoflow patterns of dolomitizing fluids and paleohydrogeology of the southern Canadian Rocky Mountains: Evidence from dolomite geometry and numerical modeling: Geology, v. 23, no. 9, p. 791–794.
    [44]Yao, Q., and R. V. Demicco, 1997, Dolomitization of the Cambrian carbonate platform, southern Canadian Rocky Mountains:Dolomite front geometry, fluid inclusion geochemistry, isotopic signature and hydrogeologic modelling studies: American Journal of Science, v. 297, p. 892– 938.
    [45]白国平.世界碳酸盐岩大油气田分布特征[J].古地理学报,2006,8(2):241-250.
    [46]戴金星.中国煤成气研究二十年的重大进展[J].石油勘探与开发,1999,26(3):1-10
    [47]戴金星,夏新宇,卫延召,等.四川盆地天然气的碳同位素特征[J],石油实验地质,2001,23(2):115-121
    [48]戴金星,卫延召,赵靖舟,等.晚期成藏对大气田形成的重大作用[J].中国地质,2003,30(1):10-19.
    [49]戴鸿鸣,黄清德,王海清,等.天然气横向运移研究—以四川盆地磨溪气田为例[J].天然气地球科学,1998,9(2):7-11
    [50]杜敏,汪三谷,万茂霞,等.四川盆地上三叠统须家河组天然气地球化学特征及成因类型判识[J] .天然气勘探与开发,2007,30(2):26-29
    [51]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-30.
    [52]郭正吾,邓康龄.四川盆地形成与演化[M].北京:地质出版社,1996
    [53]郝芳,邹华耀,王敏芳,等.油气成藏机理研究进展和前沿研究领域[J].地质科技情报,2002,21(4):7-14.
    [54]郝石生.天然气藏的形成和保存[M].北京:石油工业出版社,1995.
    [55]华保钦.构造应力场地震泵和油气运移[J].沉积学报,1995,13(2):77~85.
    [56]黄思静,杨俊杰,张文正,等.石膏对白云岩溶解影响的试验模拟研究[J].沉积学报,1996,14(1):103-108.
    [57]黄志龙,柳广弟,郝石生.脉冲式混相涌流—天然气成藏的一种特殊运移方式[J].天然气工业,1998,18(2):7~9.
    [58]金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.
    [59]蓝贵,张豫,梁大庆,等.龙门山山前带北段中三叠统雷三段储层特征与含油气评价,1997,四川石油管理局川西北矿区,内部报告
    [60]雷卞军,周跃宗,杨金利,等.川中—川南过渡带嘉陵江组二段沉积相及其展布特征[J].中国地质,2006,33(5):1149-1158
    [61]李国蓉,刘存革,徐国强,等.2002.塔河油田奥陶系碳酸盐岩古岩溶作用研究.中石化石油勘探开发研究院成果报告
    [62]李毅.四川盆地雷口坡组成藏条件研究,2008,中石油西南油气田公司勘探开发研究院,内部报告.
    [63]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].四川成都:成都科技大学出版社,1993
    [64]刘树根,王允诚,张高信,等.川东大池干井构造带上石炭统构造储层研究[J].中国海上油气(地质),1994,8(1):37-44.
    [65]刘树根,庞家黎,童崇光,等.川西晚三叠世前陆盆地的形成与演化[J ].天然气工业,1995,15(2):11-15
    [66]刘树根,李国蓉,李巨初,等.川西前陆盆地流体的跨层流动和天然气爆发式成藏[J].地质学报,2005,79(5):690-699.
    [67]刘树根,时华星,王国芝,等.济阳坳陷桩海潜山下古生界碳酸盐岩储层形成作用研究.2007,内部报告
    [68]刘树根,黄文明,张长俊,等.四川盆地白云岩成因的研究现状及存在问题[J].岩性油气藏,2008,20(2):6-15
    [69]刘树根,孙玮,李智武,等.四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J].天然气地球科学,2008,19(3):293-300
    [70]刘树根,汪华,孙玮,等.四川盆地海相领域油气地质条件专属性问题分析[J].石油与天然气地质,2008,29(6):781-792
    [71]刘新社,席胜利,周焕顺.鄂尔多斯盆地东部上古生界煤层气储层特征[J].2007,35(1):37-40
    [72]罗啸泉.龙门山前中三叠统雷口坡组油气聚集规律,2007,第六届全国油气运移学术研讨会
    [73]罗志立.地裂运动与中国油气分布[M].1991,石油工业出版社.
    [74]罗志立,罗平,刘树根,等.塔里木盆地古生界油气勘探新思路[J].新疆石油地质.2001,22(5):365-370.
    [75]马永生.碳酸盐岩储层研究新进展与发展趋势.2008,第五届全国油气储层大会PPT.
    [76]邱楠生,金之钧.油气成藏的脉动式探讨[J].地学前缘,2000,7(4):561~567.
    [77]冉隆辉,谢姚祥,王兰生,等.从四川盆地解读中国南方海相碳酸盐岩油气勘探[J].石油与天然气地质,2006,27(3):289-294.
    [78]邵先杰.川西地区有机流体包裹体产状、组分及成因序次分析[J].吉林大学学报(地球科学版),2006,36(5):820-824
    [79]四川油气区石油地质志编写组.中国石油地质志(卷十)四川油气区[M].北京:石油工业出版社,1989:432
    [80]宋文海.论龙门山北段推覆构造及其油气前景[J].天然气工业,1989,9(8):2-9
    [81]孙健,董兆雄,郑琴.白云岩成因的研究现状及相关发展趋势[J] .海相油气地质,2006,10(3):25-29.
    [82]田景春,张长俊,等.川西中三叠统雷口坡组沉积相-层序研究,2005,内部报告
    [83]王奖臻,李朝阳,李泽琴等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,2001,29(2):41-45.
    [84]王杰,陈践发,等.海相碳酸盐烃源岩的研究进展[J].天然气工业,2004,24(8):21-23.
    [85]王兰生,茍学敏,刘国瑜,等.四川盆地天然气的有机地球化学特征及其成因[J].沉积学报,1997,15(2):49-53
    [86]王连进,叶加仁,等.沉积盆地超压形成机制述评[J] .2001,22(1):17-20
    [87]王顺玉,戴鸿鸣,王廷栋,等.磨溪气田高成熟天然气的气源与运移[J].勘探家,1998,3(2):5-8
    [88]王阳,杨洪志,等.磨溪气田雷一1气藏西端地质特征及开采机理研究,内部报告,2002
    [89]王一刚,余晓锋,杨雨,等.流体包裹体在建立四川盆地古地温剖面研究中的应用[J].1998,23(3):285-288
    [90]王运生,金以钟.四川盆地长兴期生物礁及礁型气藏[J].矿物岩石,1996,16(2):62-69
    [91]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002. 
    [92]邬长武,蒋春雷,郑志祥,等.塔中16-24井区奥陶系碳酸盐岩古岩溶研究[J].矿物岩石,2002,22(2):69-73
    [93]伍大茂,吴乃苓,郜建军.四川盆地古地温研究及其地质意义[J].石油学报,1998,19(1):18-23
    [94]吴楠,刘显凤,杨世刚,等.东濮凹陷白庙地区古近系超压成因机理[J].地质科技情报,2007,26(2):65-68
    [95]吴游,张奇,张华义,等.四川盆地碳酸盐岩背斜圈闭气藏勘探经验总结及典型气藏分析,1999,四川石油管理局地质勘探开发研究院,内部报告
    [96]许浩,魏国齐,汤达祯,等.川西地区有机流体包裹体的特征分析及其地质意义[J].现代地质,2004,18(3):360-365
    [97]徐国盛,刘树根.川西上三叠统高压封存箱与天然气成藏关系研究[J].1999,26(4):411-417
    [98]徐国盛,刘树根,等.四川盆地天然气成藏动力学[M].北京:地质出版社,2005.
    [99]徐国盛.磨溪-龙女寺构造带嘉陵江组天然气成藏条件研究.2008,内部报告
    [100]雍锐.磨溪气田雷一1气藏整体开发方案. 2005,内部报告
    [101]曾联波.构造应力与油气运移聚集的关系[A].见:油气成藏机理及油气资源评价国际研讨会论文集[C].北京:石油工业出版社,1997.
    [102]赵靖舟,罗继红,吴少波,等.成藏动力系统的内涵及其勘探意义[J].中国石油勘探,2002,7(4):15-17.
    [103]赵靖舟.幕式成藏理论的提出及其勘探意义[J].石油实验地质,2005,27(4):315-326.
    [104]赵靖舟.论幕式成藏[J].天然气地球科学,2005,16(4):469-476.
    [105]赵靖舟.幕式成藏的机理和规律探讨[J].天然气工业,2006,26(3):9-11.
    [106]赵永刚,陈景山,雷卞军,等.川中川南过渡带嘉二段成藏条件及主控因素[J].西南石油学院学报,2006,28(6):9-12
    [107]赵永刚,陈景山,雷卞军,等.川中—川南过渡带嘉二气藏成藏条件分析及有利区块评价[J].大庆石油地质与开发,2006,25(5):17-20
    [108]张奇,吴游,罗玉宏,等.碳酸盐岩勘探经验总结和典型油气藏样本库,2000,中石油西南油气田公司勘探开发研究院,内部报告.
    [109]张树林,田世澄,陈建渝.断裂构造与成藏动力系统[J].石油与天然气地质,1997,18(4):261~266.
    [110]张树林等.油气垂向运移与复式成藏的动力学研究[A].见:油气成藏机理及油气资源评价国际研讨会论文集[C].北京:石油工业出版社,1997.
    [111]张义纲.天然气动态平衡成藏的四个基本条件[J].石油实验地质,1991,13(3):210-221
    [112]郑荣才,陈洪德.川东黄龙组古岩溶储层微量和稀土元素地球化学特征[J].成都理工学院学报,1997,24(1):1-7
    [113]郑永坚,林峰,王廷栋,等.川西北中坝凝析气田形成的地质地化条件[J].西南石油学院学报,1990,12(4):18-30
    [114]朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J].地学前缘(中国地质大学(北京):北京大学),2006,13(2):234-248
    [115]朱光有,张水昌,梁英波,等.四川盆地高含H2S天然气的分布与TSR成因证据[J].地质学报,2006,80(8):1208-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700