用户名: 密码: 验证码:
方形钝体绕流湍流场特征参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钝体绕流广泛存在于航天、建筑、交通、环境等许多研究领域,因流体在钝体表面产生大范围的分离并形成宽阔的伴有旋涡脱落现象的尾流,使得具有简单几何边界的方形钝体周围的湍流场的模拟变得非常复杂。不仅为考察数学模型的计算能力,更为了保证建筑结构安全、减弱热岛现象、强化换热、促进污染物的扩散,对这种流动现象进行深入研究是十分必要和有意义的。
     本文通过分析国内外研究现状及存在问题基础上,结合理论分析、数值研究和实验方法主要完成了以下工作:
     首先研究了边界条件对钝体湍流场数值模拟计算结果的影响,通过对不同入口流速与湍流强度的多种工况的数值计算,考察了入流速度变化对流场中方形钝体顶部回流区分离长度及是否会产生附着的影响,分析了影响机理,确定了不同条件下速度函数中指数m的适用值,从而提高模型对绕流湍流场的预测的能力。分析了湍流强度对方形钝体顶面压力分布的影响,当湍流强度逐渐增大时,最大湍流动能kmax会向前移动并开始靠近钝体前缘拐点。
     通过对标准k-ε模型在研究方形钝体绕流运动中产生的问题,特别是钝体尖角处模拟计算值过高估算的问题深入分析发现,不能准确计算钝体顶部回流涡及湍流动能最大值kmax位置的原因,并不是完全由标准k-ε模型本身造成,更要考虑如何处理钝体边界处的壁面处理方法,通过对尖角处w和v相交过程的详细分析,明确了问题的原因,提出通过限制流体在钝体尖角转弯处来流方向的速度的方法,降低数值离散中控制体内数据传递的误差,消除横向速度在尖角处出现比实际值大的现象,从而达到准确预测钝体湍流场特征参数的目的。
     采用限定边界条件的方法,使用标准k-ε模型和LES模型对风洞内贴壁方形钝体绕流进行模拟计算,与经典实验结果进行比较,验证了标准k-ε模型的精度和适用性。同时分析了网格精度和计算域敏感度对LES模型模拟的影响,提出网格加密不会自动导致更好的结果,标准网格模拟的结果与实验的吻合度比细网格的更好。
     本文利用粒子成像PIV测速技术测量了通道内矩形截面贴壁方柱钝体模型的速度场,与模拟结果进行对比分析,除尾部回流区高于实验结果,其他位置结果较吻合,验证了限定迎风尖角壁面条件的基础上的标准k-ε模型的预测能力。
     选用德克萨斯州技术大学校园内的一栋测试建筑物(TTU)和玻璃屋(GLH)两种全尺寸建筑模型,考察了在大气边界层内标准k-ε模型的适用性,通过模拟风场的数值计算,在确定合适的入口边界后获得与实验数据较吻合的压力场结果,进一步验证了RANS法可用于大型工程流场研究,并研究明确了网格尺寸和分布、计算域尺寸、计算维数等的影响。并研究了LES法适用的入流边界条件。从计算精度和计算成本分析确定了RANS的适用性,并对复杂实体建筑物模型进行了模拟计算,考察了三种流速和两种流动方向的流场情况,分析了风速对建筑周围分离涡的影响及屋面压力的变化。
     本文的研究结果为加深流体问题物理现象的理解提供了理论依据,同时对钝体绕流场的研究可为相关工程领域设计提供参考,为以后更深入的研究打下基础。
The phenomena of turbulent flow over a blunt body exists widely in research fieldscovered aerospace, construction, transportation, environment, etc.. Because the fluid produceslarge-scale separation on the surface and forms wide wake flow accompanied withvortex-shedding, it is very complex to simulate the turbulence fluid fields around squarecross-sectioned bluff body with simple boundary. The study of such phenomena aims toinvestigate the numerical model’s computing capacity and ensure the safety of buildingstructures, as well as to weaken the heat island, enhance the heat exchanges and promotepollutants spread. In this case, it is necessary and significant to conduct the study in depth.
     Based on internal and external previous researches and existing problems, this paperaccomplished followed research works through theoretical analysis and numerical studycombined with experiments.
     The effect of boundary conditions on numerical simulation results of turbulence fluidfields around blunt body was studied. Through numerical calculations of the inlet velocity andturbulence intensity under varies operating conditions, the influent velocity variations’ impacton separated length of top recirculation zone over square cross-sectioned bluff body in fluidfield and reattachment emergence possibility was investigated. The effect mechanism wasanalyzed and the values of exponent m in velocity functions under different conditions wereidentified, so as to enhance the model’s predication ability to turbulence fluid fields over ablunt body. And the effect of turbulence fluid intensity on top surface pressure distribution ofsquare blunt body was analyzed, the results indicates that the maximum turbulent kineticenergy kmaxmay moving forward to front edge inflection point of bluff body with increasingturbulence intensity.
     Through the analysis to problems from the study of turbulent flow over square bluffbody by standard k-ε model, especially the over-estimated value computed by bluff body’sclosed angle simulation, it was found that the inaccurate representation of top backflow vortexand the position of kmaxwas not due to the imperfection of standard k-ε model completely, butunreasonable surface wall treatment of boundary conditions around the cube. The problemswere explained clearly by detailed analysis to the momentum wand v in the intersecting process. In order to predict the characteristics of turbulent flow field around thecube correctly, we proposed to limit the velocity at upwind sharp convex corner, so as toreduce the data transmission error in the control volume during the numerical discretizationprocess and to remove the amplification phenomenon of horizontal velocity in sharp corner.
     Simulations to wall turbulent flow over square bluff body in wind tunnel wereconducted by modified standard k-ε model and LES model. Compared with classicexperimental values, modeling results validated the accuracy and applicability of modifiedstandard k-ε model. And the impact of the grid size and computational domain sensitivity onLES simulating results was also analyzed. It is expressed that grid refinement cannot bringbetter results automatically, and some simulating results obtained by standard grid performedgreater than refined grid on percent of contact area to experimental values.
     The technology of particle image velocimetry (PIV) was used for velocity fieldmeasurement of square cross-sectioned wall-mounted cube in a channel. The comparison withsimulated results further validated accuracy of modified standard k-ε model based on wallsurface of limited windward sharp corner. Except that the recirculation region behind the cubeis greater than experimental results, other results matched well with experiment.
     Standard k-ε model was adopted in atmospheric boundary layer. Wind field simulationwas carried out for full-scale building models named TTU and GLH in campus of TechnologyUniversity of Texas. Under the condition of certain inlet boundary, obtained pressuredistribution results agree well with experimental results, it was further improved that themethod can be applied to large engineering fluid filed research. The study identified theimpact of the grid size and distribution, domain size, computational dimensionality, inflowboundary conditions is research for LES. Based on calculation accuracy and costing analysis,mulation was carried out for a substantially complex building model by RANS model usinglimited wall surface. The fluid filed with three velocity values and two flow directions wereinvestigated, and the impact of wind velocity on the detached vortexes around the buildingand the roof pressure variation were analyzed.
     The research results of this paper provide theoretical bases for further understanding thephysical phenomena of flow problems, and the study of turbulent flow flied over blunt bodyalso references for related engineering designs, which may set stage for future researches.
引文
[1] Murakami S. Current status and future trends in computational wind engineering.Journal of Wind Engineering and Industrial Aerodynamics,67&68,1997:3-34p
    [2] Sohankar A, Norberg C, Davidson L. Simulation of unsteady3D flow around a squarecylinder at moderate Reynolds number. Phys. Fluids V11(2),1999:288-306p
    [3] Murakami S, Mochida A, Ooka R, Kato S, Iizuka S. Numerical prediction of flowaround a building with various turbulence models: Comparison of k-ε EVM, ASM,DSM, and LES with wind tunnel tests. ASHRAE Transactions, Vol.102, No.1,1996:741-753p
    [4] Baines W D. Effects of velocity distribution on wind loads and flow patterns onbuildings. Proceedings of Symposium No.16Wind Effects on Buildings and Structures,1963. UK: June26-28, NPL, Vol.1,197-225p
    [5] Nakaguchi H, Hashimoto K, Muto S. An experimental study on aerodynamic drag ofrectangular cylinders. Japan Soc. Aeronaut. Space Sci,16,1968:1-5p
    [6] Castro I P, Robins A G. The flow around a surface-mounted cube in uniform andturbulent streams. Journal of Fluid Mechanics, Vol.79, part2,1977:307-335p
    [7] Sakamoto H, Arie M. Flow around a cubic body immersed in a turbulent boundary layer.Journal of Wind Engineering and Industrial Aerodynamics,9,1982:275-293p
    [8] Hunt A. Wind-tunnel measurements of surface pressures on cubic building models atseveral scales. Journal of Wind Engineering and Industrial Aerodynamics,10,1982:137-163p
    [9] Ogawa Y, Oikawa S, Uehara K. Field and wind tunnel study of the flow and diffusionaround a model cube-I. Flow measurements. Atmospheric Environment, Vol.17, No.6,1983:1145-1159p
    [10] Martinuzzi R, Tropea C. The flow around surface-mounted, prismatic obstacles placedin a fully developed channel flow. Journal of Fluids Engineering, Vol.115,1993:85-92p
    [11] Larousse A, Martinuzzi R and Tropea C. Flow Around Surface-Mounted,Three-Dimensional Obstacles.9th International Symposium on Turbulent Shear Flow,Springer-Verlag,1991:127-139p
    [12] Hussein H and Martinuzzi R. Energy balance for turbulent flow around a surfacemounted cube placed in a channel. Physics of Fluids,8(3),1996:764-780p
    [13] Mertzger M M, Klewicki J C. Turbulent boundary layer interaction with a surfacemounted cube. Proceedings of the1997ASME Fluids Engineering Division SummerMeeting FEDSM’97, June22-26,1997, Vancouver, Canada: Vol.14,1-8p
    [14] Vermeer L J, Sorensen J N, and Crespo A. Wind Turbine Wake Aerodynamics. Progressin Aerospace Sciences,39,2003:467-510p
    [15] H lscher N, Niemann H. Towards quality accurance for wind tunnel tests: Acomparative testing program of the Windtechnologische Gesellschaft. Journal of WindEngineering and Industrial Aerodynamics,74-76,1998:599-608p
    [16] I Shinji et.al. Experimental study on flow and pressure fields over the roof of a cube byPIV measurements. The4th Int. Sym. Computational Wind Engineering (CWE2006),July,2006, Yokohama, Japan:435-438p
    [17] Richards P J, Hoxey R P, Short L J. Wind pressures on a6m cube. Journal of WindEngineering and Industrial Aerodynamics,89,2001:1553-1564p
    [18] Richards P J, Hoxey R P, Short L J. A6m cube in an atmospheric boundary layer flowPart1. Full-scale and wind tunnel results. Wind and Structures, Vol.5, No.2-4,2002:165-176p
    [19] Richards P J. Computational modeling of wind flow around low-rise buildings usingPHOENICS. Divisional Note No. DN1508, Buildings&Livestock Division, AFRCInstitute of Engineering Research, Silsoe, UK,1989
    [20] Baetke F, Werner H. Numerical simulation of turbulent flow over surface-mountedobstacles with sharp edges and corners. Journal of Wind Engineering and IndustrialAerodynamics,35,1990:129-147p
    [21] Paterson D A, Apelt C J. Simulation of flow past a cube in a turbulent boundary layer.Journal of Wind Engineering and Industrial Aerodynamics,35,1990:149-176p
    [22] Basara B, Younis B. Progress in the prediction of turbulent wind loading on buildings.Journal of Wind Engineering and Industrial Aerodynamics,41-44,1992:2863-2874p
    [23] I Kimura, T Hosoda.3-D unsteady flow structures around rectangular column in openchannels by means of non-linear k model. Proc. of1st International symposium onturbulence and shear flow phenomena,1999, Stata Barbara, USA:1001-1006p
    [24] Murakami S, Mochida A, Hayashi Y. Examining the k-ε model by means of a windtunnel test and large-eddy simulation of the turbulence structure around a cube. Journalof Wind Engineering and Industrial Aerodynamics,35,1990:87-100p
    [25] Murakami S, Mochida A, Hayashi Y, Sakamoto S. Numerical study onvelocity-pressure field and wind forces for bluff bodies by k-ε, ASM and LES. Journalof Wind Engineering and Industrial Aerodynamics,41-44,1992:2841-2852p
    [26] Murakami S. Comparison of various turbulence models applied to a bluff body. Journalof Wind Engineering and Industrial Aerodynamics,46-47,1993:21-36p
    [27] Murakami S. Current status and future trends in computational wind engineering.Journal of Wind Engineering and Industrial Aerodynamics,67&68,1997:3-34p
    [28] Tsuchiya M, Murakami S, Mochida A, Kondo K, Ishida Y. Development of a new k-εmodel for flow and pressure fields around bluff body. Journal of Wind Engineering andIndustrial Aerodynamics,67&68,1997:169-182p
    [29] Mochida A, Shirasawa T, Yoshino H, Murakami S, Tominaga Y. CFD analysis of flowaround a cube using revised k-ε model based on mixed time scale concept. Proceedingsof the11th International Conference on Wind Engineering, June2-5,2003, Lubbock,TX: Vol.1,1149-1156p
    [30] Rodi W. On the simulation of turbulent flow past bluff bodies. Journal of WindEngineering and Industrial Aerodynamics,46-47,1993:3-20p
    [31] Leschziner M A. Computational modeling of complex turbulent flow-expectations,reality and prospects. Journal of Wind Engineering and Industrial Aerodynamics,46-47,1993:37-52p
    [32] Laurence D. Modeling flows around bluff bodies by Reynolds averaged transportequations. Journal of Wind Engineering and Industrial Aerodynamics,46-47,1993:53-68p
    [33] Abe K, Nagano Y, Kondoh T. Numerical prediction of separating and reattaching flowswith a modified low-Reynolds number k-ε model. Journal of Wind Engineering andIndustrial Aerodynamics,46-47,1993:85-94p
    [34] Zhang Y Q, Huber A H, Arya S P S, Snyder W H. Numerical simulation to determinethe effects of incident wind shear and turbulence level on the flow around a building.Journal of Wind Engineering and Industrial Aerodynamics,46-47,1993:129-134p
    [35] Richards P J, Hoxey R P. Appropriate boundary conditions for computational windengineering models using the k-ε turbulence model. Journal of Wind Engineering andIndustrial Aerodynamics,46-47,1993:145-154p
    [36] Frank W, Mauch H. Large-eddy-simulation of the flow around building models. Journalof Wind Engineering and Industrial Aerodynamics,46-47,1993:213-218p
    [37] Stathopoulos T, Zhou Y S. Numerical simulation of wind-induced pressures onbuildings of various geometries. Journal of Wind Engineering and IndustrialAerodynamics,46-47,1993:419-430p
    [38] Delaunay D, Lakehal D, Pierrat D. Numerical approach for wind loads prediction onbuildings and structures. Journal of Wind Engineering and Industrial Aerodynamics,57,1995:307-321p
    [39] Hoxey R P, Robertson A P, Basara B and Younis B A. Geometric parameters that affectwind loads on low rise buildings: full-scale and CFD experiments. Journal of WindEngineering and Industrial Aerodynamics,50,1995:243-252p
    [40] Qasim A M. Numerical predictions of fluid flow around a low rise building. Ph.D.Dissertation in Mechanical Engineering,1995
    [41] Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies.Journal of Wind Engineering and Industrial Aerodynamics,69-71,1997:55-75p
    [42] Yu D, Kareem A. Numerical simulation of flow around rectangular prism. Journal ofWind Engineering and Industrial Aerodynamics,67&68,1997:195-208p
    [43] Shah K B, Ferziger J H. A fluid mechanicians view of wind engineering: Large eddysimulation of flow past a cubic surface. Journal of Wind Engineering and IndustrialAerodynamics,67&68,1997:211-224p
    [44] Brzoska M A, Stock D E, Lamb B K. Comparative study of flow about steps andbuildings. Proceedings of the1997ASME Fluids Engineering Division SummerMeeting FEDSM’97, June22-26,1997, Vancouver, Canada: Vol.14
    [45] Wright N G, Easom G J. Comparison of several computational turbulence models withfull-scale measurements of flow around a building. Wind and Structures, Vol.2, No.4,1999:305-323p
    [46] Easom G J. Improved turbulence models for computational wind engineering. Ph.D.Thesis in Civil Engineering,2000, The University of Nottingham, UK
    [47] Richards R J, Quinn A D. A6m cube in an atmospheric boundary layer Part2.Computational solutions. Wind and Structures, Vol.5, No.2-4,2002:177-192p
    [48] Knapp G, Wright N, Owen J. Comparison of full scale and CFD results for the Silsoe6m cube. Proceedings of the11th International Conference on Wind Engineering, June2-5,2003, Lubbock, TX: Vol.1,163-170p
    [49] Chikamatsu S, Nozawa K, Tamura T. Large eddy simulation of turbulent flows andpressures on a cube in an artificial wind. Proceedings of the11th InternationalConference on Wind Engineering, June2-5,2003, Lubbock, TX: Vol.1,195-202p
    [50] Qiu Y, Zhy W, Yang H. Numerical simulations of flow field around building.Proceedings of the11thInternational Conference on Wind Engineering, June2-5,2003,Lubbock, TX: Vol.1,1157-1166p
    [51] G Inaccarino and P Durbin. Reynolds averaged simulation of unsteady separated flow.International Journal of heat and fluid flow,24,2003:147-156p
    [52] S Krajnovic and L Davidson. Large-eddy simulation of the flow around a bluff around abluff body. AIAA Journal,40(5),2002:927-936p
    [53] S Murakami. Overview of turbulence models applied in CWE-1997. Journal of WindEngineering and Industrial Aerodynamics,74-76,1998:1-24p
    [54] Farhaeli M and Rahnama M. Large Eddy Simulation of separated flow over awall-mounted cube. Scientia Iranica,13(2),2006:124-133p
    [55] Yakhot A, Liu H and Nikitin N. Turbulent flow around a wall-mounted cube: A directnumerical simulation. International journal of heat and fluid flow,27(6),2006:994-1009p
    [56] Paik J, Sotiropoulos F and Porte-Agel F. Dettached eddy simulation of flow around twowall-mounted cubes in tandem. International Journal of Heat and Fluid Flow,30(2),2009:286-305p
    [57] Lim H C, I P Castro and R P Hoxey. Bluff bodies in deep turbulent boundary layers:Reynolds-number issues. Journal of Fluid Mechanics,571,2007:97-118P
    [58] Lim H C, T G Thomas and I P Castro. Flow around a cube in a turbulent boundary layer:LES and experiment. Journal of wind engineering and industrial aerodynamics,97(2),2009:96-109p
    [59]傅德薰,马延文,王力.钝体绕流流场分离涡的数值模拟.航空学报.1991,12(9):339-443页
    [60]朱国林,王开春,郭应钧.用三维N-S方程计算钝体绕流.空气动力学学报.1994,12(2):152-158页
    [61]李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动.水科学进展.2000,11(4):357-361页
    [62]童兵,祝兵,周本宽.绕方柱流速度场的数值模拟.西南交通大学学报.2002,37(2):121-124页
    [63]王远成,吴文权.基于RNG k-ε湍流模型钝体绕流的数值模拟.上海理工大学学报.2004,26(6):519-523页
    [64]陈善群,王泽.方柱绕流湍流数值模拟方法的对比分析.三峡大学学报(自然科学版).2008,30(5):18-21页
    [65]邓小兵,张涵信,李沁.三维方柱不可压缩绕流的大涡模拟计算.空气动力学学报.2008,26(2):167-172页
    [66]王小华,朱文芳,何钟怡.方形钝体受限绕流的三维数值模拟.2008,25(5):671-675页
    [67]陈素琴,宋文雷.边长为6m的立方体其周围流场的数值研究.应用力学学报.2008,25(2):258-262页
    [68]王汉封.有限长度钝体尾流的三维特性.中南大学学报(自然科学版).2011,42(2):495-500页
    [69]汪大洋,周云,谭平.三维钝体结构风压分布与绕流特性的大涡模拟研究.空气动力学学报.2011,29(3):270-279页.
    [70] Speziale C G. Analytical methods for the derivation of Reynolds stress closures inturbulence. Annual Review of Fluid Mechanics, Vol.23,1991:107-157p
    [71] Davidson P A. Turbulence-an introduction for scientists and engineers. OxfordUniversity Press,2004:107-157p
    [72] Leschziner M A. Modelling turbulence in physically complex flows. IndustrialHydraulics and Multiphase flows-Hydro2000, Thomas Telford, London, UK
    [73] Wilcox David C. Turbulence Modeling for CFD. Second edition. Anaheim: DCWIndustries,1998:174p
    [74] Bardina J E, Huang P G, Coakley T J (1997).Turbulence Modeling Validation, Testing,and Development. NASA Technical Memorandum110446
    [75]张兆顺编著.湍流.北京:国防工业出版社,2002:253-309页
    [76]张兆顺,崔桂香,许春晓著.湍流理论与模拟.清华大学出版社,1991:200-231页
    [77] Kato M and Launder B E. The Modeling of Turbulent Flow Around Stationary andVibrating Square Cylinders. Proc.9th Symposium on Turbulent Shear Flows, August,1993, Kyoto:10.4.1-10.4.6p
    [78] M Tsuchiya, S Murakami, A Mochida, K Kondo&Y Ishida. Development of a new k-emodel for flow and pressure fields around bluff body. Wind Engineeering&IndustrialAerodynamics,67&68,1997:169-182p
    [79] Yakhot V, Orszag S A. Renormalization group analysis of turbulence, I-Basic Theory.Journal of Scientific Computing, Vol.1, No.1,1986:3-51p
    [80] Vermeer L J, Sorensen J N, and Crespo A. Wind Turbine Wake Aerodynamics. Progressin Aerospace Sciences,39,2003:467-510p
    [81] Bardina J, Ferziger J H&Reynolds W C. Improved subgrid scale models for large eddysimulation. AIAA-80-1357,1980:1-9p
    [82] Smagorinsky J. General circulation experiments with the primitive equations, i. thebasic experiment. Monthly Weather Review.91,1963:99-164p
    [83] Yoshizawa A. Statistical theory for compressible turbulent shear flows, with theapplication to subgrid modeling. Phys. Fluids A,29,1986:2152-2164p
    [84] Germano M, Piomelli U, Moin P and Cabot W H. A dynamic sub-grid scale eddyviscosity model. Physics of Fluids, A,3,1991:1760-1765p
    [85] Gao F, O'Brien E E. A large-eddy simulation scheme for turbulent reacting flows. Phys.Fluids A,5,1993:1282-1284p
    [86] Erlebacher G, Hussaini M Y, Speziale C G, and Zang T A. Toward the large-eddysimulation of compressible turbulent flows. Fluid Mech.,238,1992:155-185p
    [87] Germano M. Turbulence: the filtering approach. Fluid Mech.,238,1992:325-336p
    [88] Normand X, and Lesieur M. Direct and large-eddy simulation of laminar breakdown inhigh-speed axisymmetric boundary layers. Theoret. Comput. Fluid Dynamics,3,1992:231-252p
    [89] Meneveau C, and Lund T S. The dynamic Smagorinsky model and scale-dependentcoefficients in the viscous range of turbulence. Phys. Fluids,9,1997:3932-3934p
    [90] Knight D, Zhou G, Okong’o N, and Shukla V. Compressible large eddy simulation usingunstructured grids. AIAA,1998:98-0535p
    [91] Lilly D K. On the application of the eddy viscosity concept in the inertial subrange ofturbulence. NCAR Manuscript,1966:123p
    [92]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004:99-105页,146页
    [93]帕坦卡SV.张政译.传热与流体流动的数值计算.北京:科学出版社,1984:146-151页
    [94]刘顺隆,郑群.计算流体力学.哈尔滨:哈尔滨工程大学出版社,1998:199-209页
    [95] Martinuzzi R, Havel B. Turbulent flow around two interfering surface-mounted cubicobstacles in tandem arrangement. Journal of Fluids Engineering,722,2000:24-31p
    [96] Castro I, Robins A. The flow around a surface-mounted cube in uniform and turbulentstreams. Fluid Mech.,79,1977:307-335p
    [97] Ito S, Okuda Y, Kikitsu H, Ohashi M, Taniguchi T and Taniike Y. Experimental study onflow and pressure fields over the roof of a cube by PIV measurements. The4th Int. Sym.Computational Wind Engineering, July2006, Yokohama, Japan:435-438p
    [98]吴德铭,郜冶.实用计算流体力学基础.哈尔滨:哈尔滨工程大学出版社,2006:460页
    [99] Mathey F, Cokljat D, Bertoglio J P, Sergent E. Assessment of the vortex method forlarge eddy simulation inlet conditions. Prog. Comput. Fluid Dyn,140,2006:233-258p
    [100] Acharya S, Dutta S et al. Turbulent flow past a surface mounted two dimensional rib.ASME Journal of Fluids Engineering1994,116:238-246p
    [101]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展.学与实践.2002,24(5):1-14页
    [102]代钦,魏润杰,黄湛等.超音速喷流DPIV瞬时速度场实验测量.北京航空航天大学学报.2001,27(6):666-669页
    [103] Hoxey R P, Moran P. Full scale wind pressure and load experiments: single-span7.0×22.6m glass house. Division Note DN.1605, AFRC Engineering Research, Silsoe,1991
    [104] Tamura T, Nozawa K, Kondo K. AIJ guide for numerical prediction of wind loads onbuildings. Wind Eng. Ind. Aerodyn,96,2008:1974-1984p
    [105] Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T. AIJguide lines for practical applications of CFD to pedestrian wind. environment aroundbuildings. Wind Eng. Ind. Aerodyn,96,2008:1749-1761p
    [106] Levitan M L, Mehta K C, Vann W P. Field measurements of pressures on the Texas Techbuilding. Wind Eng. Ind. Aerodyn,38,1991:227-234p
    [107] Richards P J, Hoxey R P. Appropriate boundary conditions for computational windengineering models using the k–e turbulence model. Wind Eng. Ind. Aerodyn,46-47,1993:145-153p
    [108] Blocken B, Carmeliet J, StathopoulosT. CFD evaluation of wind speed conditions inpassages between parallel buildings-effect of wall-function roughness modifications forthe atmospheric boundary layer flow. Wind Eng. Ind. Aerodyn,95,2007:941-962p
    [109] Richards P J, Norris S E. Appropriate boundary conditions for computational windengineering models revisited. Wind Eng. Ind. Aerodyn,99,2011:257-266p
    [110] Yang W, Quan Y, Jin X, Tamura Y, Gu M. Influences of equilibrium atmosphereboundary layer and turbulence parameters on wind loads of low rise buildings. WindEng. Ind. Aerodyn,96,2008:2080-2092p
    [111] Yang Y, Gu M, Chen S, Jin X. New inflow boundary conditions for modeling the neutralequilibrium atmospheric boundary layer in computa tional wind engineering. Wind Eng.Ind. Aerodyn,97,2009:88-95p
    [112] Gorle C, vanBeeck J, Rambaud P, VanTendeloo G. CFD modeling of small particledispersion: the influence of the turbulence kinetic energy in the atmospheric boundarylayer. Atmos. Environ,43,2009:673-681p
    [113] Parente A, Gorle′C, vanBeeck J, Benocci C. Improved k-e model and wall functionformulation for the RANS simulation of ABL flows. Wind Eng. Ind. Aerodyn,99,2011:267-278p
    [114] Kempf A, Klein M, Janicka J. Efficient generation of initial and inflow conditions fortransient turbulent flows in arbitrary geometries. Flow Turbulence Combust.74,2005:67-84p
    [115] Lund T S, Wu X, Squires K D. Generation of turbulent inflow data for spatiallydeveloping boundary layer simulations. Comput. Phys.140,1998:233-258p
    [116] Nozawa K, Tamura T. Large eddy simulation of the flow around a low-rise buildingimmersed in a rough-wall turbulent boundary layer. Wind Eng. Ind. Aerodyn,90,2002:1151-1162p
    [117] Mathey F, Cokljat D, Bertoglio J-P, Sergent E. Assessment of the vortex method forlarge eddy simulation inlet conditions. Prog. Comput. Fluid Dyn,6,2006:58-67p
    [118] Selvam R P. Computation of pressures on Texas Tech University building using largeeddy simulation. Wind Eng. Ind. Aerodyn,67-68,1997:647-657p

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700